78
Cryogenics Cryogenics for for particle particle accelerators accelerators Ph. Lebrun CAS Course in General Accelerator Physics Divonne-les-Bains, 23-27 February 2009

Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

  • Upload
    others

  • View
    2

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

CryogenicsCryogenics

for for particleparticle

acceleratorsacceleratorsPh. Lebrun

CAS Course in General Accelerator PhysicsDivonne-les-Bains, 23-27 February

2009

Page 2: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

ContentsContents

Low

temperatures

and liquefied

gases•

Cryogenics

in accelerators

Properties

of fluids•

Heat

transfer

& thermal insulation

Cryogenic

distribution & cooling

schemes•

Refrigeration

& liquefaction

Page 3: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

ContentsContents

Low

temperatures

and liquefied

gases•••

CryogenicsCryogenicsCryogenics

in in in acceleratorsacceleratorsaccelerators

•••

PropertiesPropertiesProperties

of of of fluidsfluidsfluids•••

HeatHeatHeat

transfertransfertransfer

& thermal & thermal & thermal insulationinsulationinsulation

•••

CryogenicCryogenicCryogenic

distribution & distribution & distribution & coolingcoolingcooling

schemesschemesschemes•••

RefrigerationRefrigerationRefrigeration

& & & liquefactionliquefactionliquefaction

Page 4: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

cryogenics, that branch of physics which deals with the production of very low temperatures and their effects on matter

Oxford English Dictionary2nd

edition, Oxford University Press (1989)

cryogenics, the science and technology of temperatures below 120 K

New International Dictionary of Refrigeration3rd

edition, IIF-IIR Paris (1975)

Page 5: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Characteristic temperatures of cryogensCharacteristic temperatures of cryogens

Cryogen Triple point [K]

Normal boiling point [K]

Critical point [K]

Methane 90.7 111.6 190.5

Oxygen 54.4 90.2 154.6

Argon 83.8 87.3 150.9

Nitrogen 63.1 77.3 126.2

Neon 24.6 27.1 44.4

Hydrogen 13.8 20.4 33.2

Helium 2.2 (*) 4.2 5.2

(*):

λ

Point

Page 6: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Densification, Densification, liquefactionliquefaction

& & separationseparation

of of gasesgases

Air separation

by cryogenic

distillation

Up to 4500 t/day

LOX

130 000 m3

LNG carrier with

double hull

Ariane 5

25 t LHY, 130 t LOX

LNG

LIN & LOX

Rocket fuels

Page 7: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

What is a low temperature?What is a low temperature?

The entropy

of a thermodynamical

system in a macrostate

corresponding

to a multiplicity

W of microstates

is

S = kB

ln W•

Adding

reversibly

heat

dQ

to the system results

in a change of its

entropy

dS

with

a proportionality

factor T T = dQ/dS

⇒ high temperature: heating produces

small entropy change

⇒ low temperature: heating produces

large entropy change

L. Boltzmann’s grave in the Zentralfriedhof, Vienna, bearing

the entropy

formula

Page 8: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Temperature and energyTemperature and energy

The average thermal energy of a particle in a system in thermodynamic equilibrium at temperature T is

E ~ kB

TkB

=

1.3806

×

10−23

J.K-1

1 K is equivalent to 10-4

eV

or 10-23

J thermal energy–

a temperature

is

«

low

»

for a given

physical

process

when

kB

T is

small

compared

with

the characteristic

energy

of the process

considered

cryogenic temperatures reveal phenomena with low characteristic energy and enable their application

Page 9: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

CharacteristicCharacteristic

temperaturestemperatures of of lowlow--energyenergy

phenomenaphenomena

Phenomenon Temperature

Debye temperature

of metals few 100 K

High-temperature

superconductors ~ 100 K

Low-temperature

superconductors ~ 10 K

Intrinsic

transport properties

of metals < 10 K

Cryopumping few K

Cosmic

microwave

background 2.7 K

Superfluid

helium

4 2.2 K

Bolometers

for cosmic

radiation < 1 K

Low-density

atomic

Bose-Einstein condensates ~ μK

Page 10: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Operating Operating temperaturetemperature & performance of & performance of superconductorssuperconductors

Superconductivity

only

exists

in a limited

domain

of temperature, magnetic

field

and current

density

Electrotechnical

applications require

transport current

and magnetic

field

Operating temperature

of the device

must therefore

be

significantly

lower

than

the critical

temperature

of the superconductor

T [K]

B [T]

J [kA/mm2]

Page 11: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Optimization of operating temperatureOptimization of operating temperature for superconducting RF cavityfor superconducting RF cavity

Power per unit length

P/L ~ RS

E 2

/ ω•

BCS theory

RBCS

= (A ω2 /T) exp (-B Tc

/T)•

For practical materials RS

= RBCS

+ R0

Refrigeration (Carnot)

Pa

= P

(Ta

/T -

1)⇒ optimum operating temperature for superconducting cavities is

well below critical temperature of superconductor

0

500

1 1.5 2 2.5T [K]

Arb

itrar

y U

nits

Cavity lossCarnot efficiencyCooling power

Niobium

Page 12: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Useful range of cryogensUseful range of cryogens & critical temperature of superconductors& critical temperature of superconductors

0 20 40 60 80 100 120 140 160 180

Oxygen

Argon

Nitrogen

Neon

Hydrogen

Helium

T [K]

Below PatmAbove Patm

Nb-TiNb3

SnMg B2 YBCO Bi-2223

Page 13: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

CryogensCryogens

for for superconductingsuperconducting

devicesdevices

Helium

is

the only

practical

cryogen

for LTS devices•

Subcooled

nitrogen

is

applicable to HTS devices

at

low

and moderate

current

density•

Thanks

to its

general

availability

and low

cost, liquid

nitrogen

is

very

often

used

for precooling

and thermal shielding

of helium-cooled

devices•

In spite of its

cost, neon

can

constitute

an interesting

alternative to subcooled

nitrogen

for operating HTS at

high

current

density, and to helium

for MgB2 devices⇒ in the following, focus on helium and nitrogen

Page 14: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

ContentsContents

•••

LowLowLow

temperaturestemperaturestemperatures

and and and liquefiedliquefiedliquefied

gasesgasesgases•

Cryogenics

in accelerators

•••

PropertiesPropertiesProperties

of of of fluidsfluidsfluids•••

HeatHeatHeat

transfertransfertransfer

& thermal & thermal & thermal insulationinsulationinsulation

•••

CryogenicCryogenicCryogenic

distribution & distribution & distribution & coolingcoolingcooling

schemesschemesschemes•••

RefrigerationRefrigerationRefrigeration

& & & liquefactionliquefactionliquefaction

Page 15: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Superconductivity and circular acceleratorsSuperconductivity and circular accelerators

Normal conducting

Superconducting (LHC)

Magnetic field 1.8 T (iron saturation)

8.3 T (NbTi critical surface)

Field geometry Defined by magnetic circuit

Defined by coils

Current density in windings

10 A/mm2 400 A/mm2

Electromagnetic forces

20 kN/m 3400 kN/m

Electrical consumption

10 kW/m 2 kW/m

Beam energy, field in bending magnets and machine radius are related by:

Ebeam

= 0.3 B r[GeV] [T] [m]

At the LHC (r = 2.8 km), B = 8.33 T to reach Ebeam

= 7 TeV•

Superconductivity permits to produce high field and thus to limit size and electrical consumption of the accelerators

Page 16: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

LimitingLimiting

energyenergy

storedstored

in in beambeam

Energy

W stored

in the beams

of circular

accelerators

and collidersW [kJ]

= 3.34 Ebeam

[GeV]

Ibeam

[A]

C [km]C circumference

of accelerator/collider⇒building compact machines, i.e. producing higher bending field B

limits beam stored energy

Example: the LHCEbeam

= 7000 GeVIbeam

= 0.56 A

W = 350 MJ!C = 26.7 km

Page 17: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

LowLow

impedanceimpedance

for for beambeam

stabilitystability

Transverse impedanceZT

(ω) ~ ρ

r / ω

b3

ρ wall electrical resistivityr average machine radiusb half-aperture of beam pipe

Transverse resistive-wall

instability–

dominant in large machines–

must be

compensated

by beam

feedback, provided

growth

of instability

is

slow enough–

maximize

growth

time τ

~ 1/ ZT

(ω) i.e. reduce

ZT

(ω)

⇒ for a large machine with small aperture, low transverse impedance is achieved through low ρ, i.e. low-temperature wall

LHC beam

pipe

Page 18: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

CryopumpingCryopumping

maintainsmaintains

good vacuumgood vacuum

1.E-121.E-111.E-101.E-091.E-08

1.E-071.E-061.E-051.E-041.E-031.E-021.E-011.E+00

1.E+011.E+021.E+031.E+04

1 10 100 1000

T [K]

Psa

t [kP

a]

HeH2NeN2ArO2CH4CO2H2O

Saturation pressure of all gases

except

helium

vanish

at

cryogenic

temperature

Page 19: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

RationaleRationale

for for superconductivitysuperconductivity

& & cryogenicscryogenics in in particleparticle

acceleratorsaccelerators

Cryogenics Superconductivity

Reduce

power consumption

Limit

beam

stored

energy

Compactness Reduce

cost

Beam

stability

Beam

vacuumCryopumping

Beam impedance

Zero resistance

Page 20: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

ContentsContents

•••

LowLowLow

temperaturestemperaturestemperatures

and and and liquefiedliquefiedliquefied

gasesgasesgases•••

CryogenicsCryogenicsCryogenics

in in in acceleratorsacceleratorsaccelerators

Properties

of fluids•••

HeatHeatHeat

transfertransfertransfer

& thermal & thermal & thermal insulationinsulationinsulation

•••

CryogenicCryogenicCryogenic

distribution & distribution & distribution & coolingcoolingcooling

schemesschemesschemes•••

RefrigerationRefrigerationRefrigeration

& & & liquefactionliquefactionliquefaction

Page 21: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Properties of cryogens compared to waterProperties of cryogens compared to water

Property He N2 H2 O

Normal boiling point [K] 4.2 77 373

Critical temperature [K] 5.2 126 647

Critical pressure [bar] 2.3 34 221

Liq./Vap. density (*) 7.4 175 1600

Heat of vaporization (*) [J.g-1] 20.4 199 2260

Liquid viscosity (*) [μPl] 3.3 152 278

(*) at normal boiling point

Page 22: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Vaporization of normal boiling cryogensVaporization of normal boiling cryogens under 1 W applied heat loadunder 1 W applied heat load

Cryogen [mg.s-1] [l.h-1] (liquid)

[l.min-1](gas NTP)

Helium 48 1.38 16.4

Nitrogen 5 0.02 0.24

These

numbers

may

be

used

for measuring

heat

load

to a cryogen

bath from

boil-off flow measurements

at

constant liquid

level

At

decreasing

level, the escaping

flow is

lower

than

the vaporization

rate and a correction must be

applied

Page 23: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Amount of cryogens required to cool down 1 kg ironAmount of cryogens required to cool down 1 kg iron

Using Latent heat only Latent heat and enthalpy of gas

LHe

from 290 to 4.2 K 29.5 litre 0.75 liter

LHe

from 77 to 4.2 K 1.46 litre 0.12 litre

LN2 from 290 to 77 K 0.45 litre 0.29 litre

⇒ recover enthalpy from cold gas (i.e. moderate flow of cryogen)

⇒ pre-cool with liquid nitrogen to save liquid helium

Page 24: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

600 kW precooling

to 80 K with LIN (up to ~5 tons/h)

1260 tons LIN unloaded

CooldownCooldown

of LHC of LHC sectorsector

(4625 t over 3.3 km)(4625 t over 3.3 km)

Page 25: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Phase diagram of heliumPhase diagram of helium

1

10

100

1000

10000

0 1 2 3 4 5 6

Temperature [K]

Pre

ssur

e [k

Pa]

SOLID

VAPOUR

He IHe IICRITICAL

POINT

PRESSURIZED He II(Subcooled liquid)

SATURATED He II

SUPER-CRITICAL

SATURATED He I

λ LINE

Page 26: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Helium as a cooling fluidHelium as a cooling fluid

Phase domain Advantages Drawbacks

Saturated He IFixed temperatureHigh heat transfer

Two-phase flowBoiling crisis

Supercritical MonophaseNegative J-T effect

Non-isothermalDensity wave instability

He IILow temperatureHigh conductivityLow viscosity

Second-law costSubatmospheric

Page 27: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

He II cooling of LHC magnets allows to reach the He II cooling of LHC magnets allows to reach the 8 8 --10 T range using 10 T range using NbNb--Ti superconductorTi superconductor

0

500

1000

1500

2000

2500

3000

6 7 8 9 10 11 12

B [T]

Jc [A

/mm

2]

NbTi @ 4.5 KNbTi @ 1.8 KNb3Sn @ 4.5 KLHC Spec Cable 1LHC Spec Cable 2

+ 3 tesla

Page 28: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Enhancement of heat transferEnhancement of heat transfer

Low viscosity

⇒ permeation•

Very high specific heat

⇒ stabilization–

105

times that of the conductor per unit mass–

2 x 103 times that of the conductor per unit volume

Very high thermal conductivity

⇒ heat transport–

103

times that of cryogenic-grade OFHC copper–

peaking at 1.9 K

Full benefit of these transport properties can only be reaped by

appropriate design providing good wetting of the superconductors and percolation paths in the insulation, often in conflict with other technical requirements

Page 29: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

High thermal High thermal conductivityconductivity

of the of the liquidliquid suppressessuppresses

boilingboiling

Electrical heater in saturated liquid helium

He I (T=2.4 K) He II (T=2.1 K)

Page 30: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

HeatHeat

transfertransfer

acrossacross electricalelectrical

insulationinsulation

of LHC of LHC

superconductingsuperconducting

cablecable

Conduction in polyimide

C. Meuris

et al.

Page 31: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

CalorimetryCalorimetry

in in isothermalisothermal

He II bathHe II bath

For slow thermal transients, the He II bath is

quasi-isothermal: a single temperature

measurement

allows

to estimate

heat

deposition/generation

Q'

Q'

= Mbath

dH/dt|1

Mbath

can

be

estimated

by in situ

calibration, using

applied

heating

power W'

W'

= Mbath

dH/dt|2

T

Q'

W'

Page 32: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

1.88

1.885

1.89

1.895

1.9

1.905

1.91

1.915

1.92

9:30 10:30 11:30

Tempe

rature evolution

 [K]

LQATO_15R1_TT821.POSST

LBARA_16R1_TT821.POSST

LBBRA_16R1_TT821.POSST

LBARB_16R1_TT821.POSST

LQATH_16R1_TT821.POSST

LBBRA_17R1_TT821.POSST

LBARA_17R1_TT821.POSST

LBBRD_17R1_TT821.POSST

LQATK_17R1_TT821.POSST

LBARA_18R1_TT821.POSST

LBBRA_18R1_TT821.POSST

LBARB_18R1_TT821.POSST

LQATH_18R1_TT821.POSST

LBBRA_19R1_TT821.POSST

LBARA_19R1_TT821.POSST

LBBRD_19R1_TT821.POSST

Taverage

MeasurementMeasurement

of of electricalelectrical

dissipation in LHC dissipation in LHC magnetmagnet subsectorsubsector

by He II by He II calorimetrycalorimetry

10 W applied on Q15R1Before heating

With heating

ΔU [J/kg] -1.1 78

M [kg] 823

ΔU [kJ] -0.92 64.2

t [s] 2880 6600

W [W] -0.3 9.7

ΔW [W] 10.0

The additional power measured by He II calorimetry is 10.0 W, corresponding to the applied electrical power

The method is validated and able to resolve < W

L. Tavian

Page 33: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

ContentsContents

•••

LowLowLow

temperaturestemperaturestemperatures

and and and liquefiedliquefiedliquefied

gasesgasesgases•••

CryogenicsCryogenicsCryogenics

in in in acceleratorsacceleratorsaccelerators

•••

PropertiesPropertiesProperties

of of of fluidsfluidsfluids•

Heat

transfer

& thermal insulation

•••

CryogenicCryogenicCryogenic

distribution & distribution & distribution & coolingcoolingcooling

schemesschemesschemes•••

RefrigerationRefrigerationRefrigeration

& & & liquefactionliquefactionliquefaction

Page 34: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

TypicalTypical

heatheat

transfertransfer coefficients coefficients atat

cryogeniccryogenic

temperaturestemperatures

T [K]

Page 35: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Heat conduction in solidsHeat conduction in solids

Fourier’s law:

k(T): thermal conductivity

[W/m.K]

( )dxdTSTkQcon ⋅⋅=

Thermal conductivity integrals for standard construction materials are tabulated

dxQcon

T1

T2S

dT

∫ ⋅ dTk(T) : thermal conductivity integral [W/m]

∫ ⋅⋅=T2

T1con dTk(T)

LSQIntegral

form:

Page 36: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Thermal conductivity integralsThermal conductivity integrals of selected materials [W/m]of selected materials [W/m]

From vanishingly low temperature up to 20 K 80 K 290 K

OFHC copper 11000 60600 152000

DHP copper 395 5890 46100

1100 aluminium 2740 23300 72100

2024 aluminium

alloy 160 2420 22900

AISI 304 stainless steel 16.3 349 3060

G-10 glass-epoxy composite 2 18 153

Page 37: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

NonNon--metallic composite metallic composite support postsupport post

with heat interceptswith heat intercepts

5 K cooling line (SC He)

Aluminium

strips to thermal shield at 50-75 K

Aluminium

intercept plates glued to G-10 column

Page 38: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Thermal radiationThermal radiation

Wien’s law–

Maximum of black body power spectrumλmax

.T = 2898 [μm.K]

Stefan-Boltzmann’s law–

Black body

Qrad

= σ A T4

σ = 5.67 x 10-8

W/m2.K4

(Stefan Boltzmann’s constant)–

“Gray”body

Qrad

= ε σ A T4

ε emissivity of surface–

“Gray”

surfaces at T1

and T2

Qrad

= E σ A (T14 –T2

4)E function of ε1

, ε2

, geometry

T1 T2 > T1

ε1 ε2

Qrad1

Qrad2

Page 39: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Emissivity of technical materialsEmissivity of technical materials at low temperaturesat low temperatures

Radiation from 290 KSurface at 77 K

Radiation from 77 KSurface at 4.2 K

Stainless steel, as found 0.34 0.12

Stainless steel, mech. polished 0.12 0.07

Stainless steel, electropolished 0.10 0.07

Stainless steel + Al foil 0.05 0.01

Aluminium, as found 0.12 0.07

Aluminium, mech. polished 0.10 0.06

Aluminium, electropolished 0.08 0.04

Copper, as found 0.12 0.06

Copper, mech. Polished 0.06 0.02

Page 40: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Residual gas conductionResidual gas conduction

Viscous

regime–

At

high

gas

pressure

λmolecule

<< d–

Classical

conduction

Qres

= k(T) A dT/dx–

Thermal conductivity

k(T) independant

of pressure•

Molecular

regime–

At

low

gas

pressure

λmolecule

>> d–

Kennard’s law

Qres

= A α(T) Ω P (T2

– T1)–

Conduction heat

transfer

proportional

to pressure, independant

of spacing

between

surfaces Ω depends

on gas

species–

Accommodation coefficient α(T) depends

on gas

species, T1

, T2

, and geometry

of facing

surfaces

T1 T2

d λmolecule

: mean

free path

of gas

molecules

Page 41: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

MultiMulti--layer insulationlayer insulation (MLI)(MLI)

Complex system involving three heat transfer processes–

QMLI

= Qrad

+ Qsol

+ Qres

With n reflective layers of equal emissivity, Qrad

~ 1/(n+1)–

Due to parasitic contacts between layers, Qsol

increases with layer density

Qres

due to residual gas trapped between layers, scales as 1/n in molecular regime

Non-linear behaviour

requires layer-to-layer modeling

In practice–

Typical data available from (abundant) literature–

Measure performance on test samples

Page 42: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Typical heat fluxes at vanishingly low temperature Typical heat fluxes at vanishingly low temperature between flat plates [W/mbetween flat plates [W/m22]]

Black-body radiation from 290 K 401

Black-body radiation from 80 K 2.3

Gas conduction (100 mPa

He) from 290 K 19

Gas conduction (1 mPa

He) from 290 K 0.19

Gas conduction (100 mPa

He) from 80 K 6.8

Gas conduction (1 mPa

He) from 80 K 0.07

MLI (30 layers) from 290 K, pressure below 1 mPa 1-1.5

MLI (10 layers) from 80 K, pressure below 1 mPa 0.05

MLI (10 layers) from 80 K, pressure 100 mPa 1-2

Page 43: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

ContentsContents

•••

LowLowLow

temperaturestemperaturestemperatures

and and and liquefiedliquefiedliquefied

gasesgasesgases•••

CryogenicsCryogenicsCryogenics

in in in acceleratorsacceleratorsaccelerators

•••

PropertiesPropertiesProperties

of of of fluidsfluidsfluids•••

HeatHeatHeat

transfertransfertransfer

& thermal & thermal & thermal insulationinsulationinsulation

Cryogenic

distribution & cooling

schemes•••

RefrigerationRefrigerationRefrigeration

& & & liquefactionliquefactionliquefaction

Page 44: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Transport of refrigerationTransport of refrigeration in large distributed cryogenic systemsin large distributed cryogenic systems

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5Distance [km]

Tem

pera

ture

diff

eren

ce [K

] Pressurised He II Saturated LHe II He I

Tore Supra

TevatronHERA

UNKLHC

SSC (main Ring)

SSC (HEB)

LEP2 TESLA

Page 45: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Cryogenic distribution scheme: design issuesCryogenic distribution scheme: design issues

Monophase

vs. two-phase–

temperature control–

hydrostatic head & flow instabilities•

Pumps vs. no pumps–

efficiency & cost–

reliability & safety•

Use of liquid nitrogen–

cooldown

and/or normal operation–

capital & operating costs of additional fluid–

safety in underground areas (ODH)•

Lumped vs. distributed cryoplants•

Separate cryoline

vs. integrated piping•

Number of active components (valves, actuators)•

Redundancy of configuration

Page 46: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

The The TevatronTevatron

at at FermilabFermilab, USA, USA

Page 47: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

TevatronTevatron

distribution schemedistribution scheme

Central helium liquefier, separate ring cryoline

and 24 satellite refrigerators

Page 48: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

HERA proton ring at DESY, GermanyHERA proton ring at DESY, Germany

Page 49: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

HERA distribution schemeHERA distribution scheme

Central cryoplant

and separate ring

cryoline

Page 50: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

RHIC RHIC atat

Brookhaven National Brookhaven National LabLab, USA, USA

Page 51: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

RHIC distribution schemeRHIC distribution scheme

Central cryoplant

and piping integrated in

magnet cryostat

Page 52: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

The LHC The LHC atat

CERNCERN

Page 53: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

LHC distribution schemeLHC distribution scheme

Pt 3

Pt 4

Pt 5

Pt 6

Pt 7

Pt 8

Pt 1

Pt 2

8 x 18 kW @ 4.5 K

1'800 SC magnets

24 km and 20 kW @ 1.9 K

36'000 tons @ 1.9 K

96 tons of He

Cryogenic plant

Header D

Header B

Header C

Header F

Vacuum Vessel

Beam Screen

Superconducting Coil

Thermal Shield

Radiative Insulation

Header E

Line C'

Typical LHC Cross-section

Heat Exchang

1.8 K Supply

Support Post

Cryogenic Distribution Line

Main Dipole Cryostat

Cryoplants

at five points, separate ring cryoline,

107 m long strings

Page 54: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

PrinciplePrinciple

of He II of He II coolingcooling

of LHC of LHC magnetsmagnets

Page 55: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

3.3 km

CryogenicCryogenic

operationoperation

of LHC of LHC sectorsector

Page 56: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

ContentsContents

•••

LowLowLow

temperaturestemperaturestemperatures

and and and liquefiedliquefiedliquefied

gasesgasesgases•••

CryogenicsCryogenicsCryogenics

in in in acceleratorsacceleratorsaccelerators

•••

PropertiesPropertiesProperties

of of of fluidsfluidsfluids•••

HeatHeatHeat

transfertransfertransfer

& thermal & thermal & thermal insulationinsulationinsulation

•••

CryogenicCryogenicCryogenic

distribution & distribution & distribution & coolingcoolingcooling

schemesschemesschemes•

Refrigeration

& liquefaction

Page 57: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Thermodynamics of cryogenic refrigeration Thermodynamics of cryogenic refrigeration

First principle [Joule]

R

Qi

Q0

T0= 300 K

Ti

W : mechanical work

WQQ i0 +=

Second principle [Clausius]i

i

0

0

TQ

TQ

(= for reversible process)

Hence, ii

i0 Q

TQTW −⋅≥ which can be written in three different ways:

ii0 QΔSTW −⋅≥ introducing entropy S

as i

ii T

QΔS =1

⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅≥ 1

TTQW

i

0i Carnot factor

2

iΔEW ≥ introducing exergy

E

as ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅= 1

TTQΔE

i

0ii

3

Page 58: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Minimum refrigeration workMinimum refrigeration work

Consider the extraction of 1 W at 4.5 K, rejected at 300 KThe minimum refrigeration work (equation 2) is:

W65.714.530011

TTQW

i

0imin =⎟

⎠⎞

⎜⎝⎛ −⋅=⎟⎟

⎞⎜⎜⎝

⎛−⋅=

In practice, the most efficient helium refrigerators have an efficiency of about 30% w.r. to the Carnot limit.

W2200.365.7

ηW W min

real ===⇒

Page 59: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

C.O.P. of large C.O.P. of large cryogeniccryogenic

heliumhelium

refrigeratorsrefrigerators

0

100

200

300

400

500

TORESUPRA

RHIC TRISTAN CEBAF HERA LEP LHC

C.O

.P. [

W/W

@ 4

.5K

]

Carnot

Page 60: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Refrigeration cycles and dutiesRefrigeration cycles and duties

A

BT

S, entropy

ΔQ

Thermodynamic transformation from A to B,if reversible:

∫ ⋅=B

AdSTΔQ

Introduction to the T-S diagram

To make a refrigeration cycle, need a substance, the entropy of which depends on some other variable than temperature

A B

T

S

CD

T1

T2

ΔQ1

ΔQ2

ΔQ1

: heat absorbed at T1ΔQ2

: heat rejected at T2

Refrigeration cycle A B C D

Pressure of gas: Compression/expansion cycleMagnetization of solid: magnetic refr. cycle

Page 61: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

TT--S diagram for heliumS diagram for helium

H= 30 J/g

40

50

60

70

80

90

100

110

120

130

140

23456789

10111213141516171819202122232425

0 5000 10000 15000 20000 25000Entropy [J/kg.K]

Tem

pera

ture

[K] P= 0.1 MPa0.20.51510 2

ρ= 2 kg/m³5102050100

Page 62: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

A Carnot cycle is not feasible for helium liquefactionA Carnot cycle is not feasible for helium liquefaction

• It would need a HP of 613 kbar!

There exists no true isothermal compressor

There exists no true isentropic compressor or expander

T

S

4.5 K

300 K

1.3 bar

613 kbar 82 kbar

3.89 J/g.K 8.07 J/g.K

Page 63: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

A real cycleA real cycle internalinternal

heatheat

exchange and paraexchange and para--isothermalisothermal

compressioncompression

T

S

4.5 K

300 K

1.3 bar

20 bar

3.89 J/g.K 8.07 J/g.K

Q

Practical

compressors

are adiabatic, need

aftercooling

and if multistage, intercooling

Heat

exchanger

between

HP and LP streams

Page 64: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Elementary cooling processes on TElementary cooling processes on T--S diagramS diagram

P1

P2 (< P1)

T

S

A

B1

B2

B'2

B3

isobar(heat exchanger) adiabatic (expansion engine)

isentropic

isenthalpic(Joule-Thomson valve)

H

Page 65: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Brazed aluminium plate heat exchangerBrazed aluminium plate heat exchanger

Page 66: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

CryogenicCryogenic turboturbo--expanderexpander

Page 67: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Maximum JouleMaximum Joule--Thomson inversion temperaturesThomson inversion temperatures

Cryogen Maximum inversion temperature [K]

Helium 43

Hydrogen 202

Neon 260

Air 603

Nitrogen 623

Oxygen 761

While

air can

be

cooled

down and liquefied

by JT expansion from

room temperature, helium

and hydrogen

need

precooling

down to below

inversion temperature

by heat

exchange or work-extracting

expansion (e.g. in turbines)

Page 68: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

TwoTwo--stage Claude cyclestage Claude cycle

Page 69: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

ClaudeClaude--cycle cycle heliumhelium

refrigeratorsrefrigerators//liquefiersliquefiers (Air Liquide & Linde) (Air Liquide & Linde)

HELIAL SL HELIAL ML HELIAL LLMax. Liquefaction capacity without LN2 25 L/h 70 L/h 145 L/hMax. Liquefaction capacity with LN2 50 L/h 150 L/h 330 L/hCompressor electrical motor 55 kW 132 kW 250 kWSpecific consumption for liquefaction w/o LN2 645 W/W 552 W/W 505 W/W

% Carnot 10% 12% 13%

Page 70: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

T54.5 K - 20 K loads

(magnets + leads + cavities)

T7

T1

T2

T3

T4

T8

T6

E1

E7

E3

E4

E6

E8

E9a

E9b

E10

E11

E12

E13

LN2Precooler

20 K - 280 K loads

(LHC current leads)

50 K - 75 K loads

(LHC shields)

Adsorber

T1

T3

T7

T4

T8

T5

T6

201 K

75 K

49 K

32 K

20 K

13 K10 K

9 K

4.4 K

0.1 M

Pa

0.4 M

Pa

1.9 M

Pa

0.3 M

Pa

T2

LHC shields

To LHC loads

from LHC loads

from LHC loads

ProcessProcess

cycle & Tcycle & T--S S diagramdiagram

of of LHC 18 kW @ 4.5 K LHC 18 kW @ 4.5 K cryoplantcryoplant

Page 71: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

LHC 18 kW @ 4.5 K helium LHC 18 kW @ 4.5 K helium cryoplantscryoplants

33 kW @ 50 K to 75 K23 kW @ 4.6 K to 20 K 41 g/s liquefaction4 MW compressor powerC.O.P. 220-230 W/W @ 4.5 K

Air Liquide

Linde

Page 72: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

OilOil--injected screw compressor injected screw compressor

Page 73: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Compressor stationCompressor station of LHC 18 kWof LHC 18 kW@ 4.5 K h@ 4.5 K heliumelium

refrigeratorrefrigerator

Page 74: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Challenges of power Challenges of power refrigerationrefrigeration

atat

1.8 K1.8 K

1

10

100

1000

10000

0 1 2 3 4 5 6

Temperature [K]

Pre

ssur

e [k

Pa]

SOLID

VAPOUR

He IHe IICRITICAL

POINT

PRESSURIZED He II(Subcooled liquid)

SATURATED He II

SUPER-CRITICAL

SATURATED He I

Compression > 80

Compression of large mass flow-rate of He vapor

across

high

pressure ratio⇒ intake He at maximum density, i.e. cold•

Need

contact-less, vane-less

machine ⇒

hydrodynamic

compressor•

Compression heat

rejected

at

low

temperature

thermodynamic

efficiency

Page 75: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

4 cold compressor stagesCartridge 1st

stage

Cold compressors for 1.8 K refrigerationCold compressors for 1.8 K refrigeration

Axial-centrifugal impeller

Page 76: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

Simplified flowSimplified flow--schemesschemes of the 1.8 K refrigeration units of LHCof the 1.8 K refrigeration units of LHC

CC

Hea

tIn

terc

epts

Air Liquide Cycle IHI-Linde Cycle

4 K, 15 mbar124 g/s

20 K, 1.3 bar124 g/s

0.35 bar

4.75 bar

4 K, 15 mbar124 g/s

20 K, 1.3 bar124 g/s

0.59 bar

9.4 bar

4.6 bar

CC

CC

CC

CC

CC

CC

CC

T

T

T

Adsorber

Adsorber

WC

WC

WC WC

HX

HX

HX

HX

Page 77: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

C.O.P. of LHC 1.8 K C.O.P. of LHC 1.8 K unitsunits

0

200

400

600

800

1000

Air Liquide IHI-Linde

CO

P [W

@R

T / W

@1.

8K]

4.5 K refrigerator part 1.8 K refrigeration unit part

Carnot Limit

L. Tavian

Page 78: Cryogenics for particle accelerators · 2018. 11. 17. · Cryogenics for particle accelerators Ph. Lebrun. CAS Course in General Accelerator Physics. Divonne-les-Bains, 23-27 February

SomeSome

referencesreferences

K. Mendelssohn, The quest for absolute zero, McGraw

Hill (1966)•

R.B. Scott, Cryogenic engineering, Van Nostrand, Princeton (1959)•

G.G. Haselden, Cryogenic fundamentals, Academic

Press, London (1971)•

R.A. Barron, Cryogenic systems, Oxford University

Press, New York (1985)•

B.A. Hands, Cryogenic engineering, Academic

Press, London (1986)•

S.W. van Sciver, Helium cryogenics, Plenum Press, New York (1986)•

K.D. Timmerhaus

& T.M. Flynn, Cryogenic process engineering, Plenum Press, New York (1989)

Ph. Lebrun, An introduction to cryogenics, CERN-AT-2007-01 (2007) http://cdsweb.cern.ch/record/1012032?ln=en

Proceedings

of CAS School on Superconductivity and Cryogenics for Particle

Accelerators and Detectors, Erice (2002)–

U. Wagner, Refrigeration–

G. Vandoni, Heat transfer–

Ph. Lebrun, Design of a cryostat for superconducting accelerator magnet–

Ph. Lebrun & L. Tavian, The technology of superfluid heliumhttp://cdsweb.cern.ch/record/503603?ln=en

Proceedings

of ICEC and CEC/ICMC conferences