47
Summary of analysis for T12 cross flow turbine Name of plant: Dharadi MHP VDC: Chinnebas District: Gross head in m: 10.00 Net head at design flow in 9.44 Design flow in liter/sec: 105 Penstock length in 20 Penstock diameter in mm: 250 Min. plate thickness in mm: 1.98 Generator RPM 1500 Max generator kVA per kW: 1.32 Max generator efficiency in %: 81.5% Input data for turbine are entered in the sheet "Proposed turbine" Data entry is restricted to yellow fields only, as other fields contains formulas. Specific Speed n11 RPM 35 38 41 45 36.92 Design RPM 355 385 416 416 378 Runner diameter D (mm) 300 300 300 300 300 Runner width W (mm) 189 183 178 169 160 Max efficiency (%) 68.97 70.73 71.74 70.70 70.15 Efficiency at design flow (% 68.91 70.70 71.60 70.55 71.02 Efficiency at 50 % design fl 61.06 60.79 59.68 56.88 62.08 Design flow in % of max turb 70.00 72.00 74.30 78.00 73.37 Design Flow Qdesign (l/s) ### 120.45 ### ### ### Maximum turbine Qmax (l/s) ### 160.95 ### ### ### Turbine output at Qdesign (k 7.54 7.73 7.83 7.72 6.90 Turbine output at Qmax (kW) 8.41 8.36 8.29 8.14 7.55 Generator output at Qdesign 6.13 6.30 6.38 6.29 5.40 Maximum generator kW 0.07 0.07 0.07 0.06 5.88 Minimum generator size (kVA) 9.06 9.00 8.92 8.75 8.08 Generator size Qmax=>Qdesign (kVA) 8.07 8.29 8.40 10.00 7.11 *)Limiting max opening to Qdesign may reduce generator size and load controller size! 34 36 38 40 42 4 68 69 70 71 72 Turbine efficiency at optimum flow Efficiency Specific Speed n11 RPM % 34 36 38 40 42 44 46 0.00 100.00 200.00 Design & maximum flow Design flow Linear (Design flow) Max flow Polynomial (Max flow) Specific speed n11 RPM m3/s 34 36 38 40 42 44 46 7.00 7.50 8.00 8.50 Turbine kW kW at Qdesign Polynomial (kW at Qdesign) Specific speed n11 RPM kW 34 36 38 40 42 44 46 0 100 200 300 400 Runner width & diameter Runner width Polynomial (Runner width) Specific speed n11 RPM mm 20 40 60 80 100 120 140 160 180 0 1 2 3 4 5 6 7 8 9 n11=41 turbine kW Actual turbine kW 41 Gen kW Flow in l/s Turbine & Generator kW

CrossFlow Design Selele Suryakunda PHP

Embed Size (px)

DESCRIPTION

Cross Flow design sheet of MHP

Citation preview

Page 1: CrossFlow Design Selele Suryakunda PHP

Summary of analysis for T12 cross flow turbineName of plant: Dharadi MHP VDC: Chinnebas District: Gross head in m: 10.00 Net head at design flow in m: 9.44 Design flow in liter/sec: 105Penstock length in m 20 Penstock diameter in mm: 250 Min. plate thickness in mm: 1.98Generator RPM 1500 Max generator kVA per kW: 1.32 Max generator efficiency in %: 81.5%Input data for turbine are entered in the sheet "Proposed turbine" Data entry is restricted to yellow fields only, as other fields contains formulas.

Specific Speed n11 RPM 35 38 41 45 36.92Design RPM 355 385 416 416 378Runner diameter D (mm) 300 300 300 300 300Runner width W (mm) 189 183 178 169 160Max efficiency (%) 68.97 70.73 71.74 70.70 70.15Efficiency at design flow (%) 68.91 70.70 71.60 70.55 71.02Efficiency at 50 % design flow (%) 61.06 60.79 59.68 56.88 62.08Design flow in % of max turbine Q 70.00 72.00 74.30 78.00 73.37Design Flow Qdesign (l/s) 120.45 120.45 120.45 120.45 105.00Maximum turbine Qmax (l/s) 164.74 160.95 156.76 149.32 143.11Turbine output at Qdesign (kW) 7.54 7.73 7.83 7.72 6.90Turbine output at Qmax (kW) 8.41 8.36 8.29 8.14 7.55Generator output at Qdesign (kW) 6.13 6.30 6.38 6.29 5.40Maximum generator kW 0.07 0.07 0.07 0.06 5.88Minimum generator size (kVA) *) 9.06 9.00 8.92 8.75 8.08Generator size Qmax=>Qdesign (kVA) *) 8.07 8.29 8.40 10.00 7.11*)Limiting max opening to Qdesign may reduce generator size and load controller size!

34 36 38 40 42 44 46

68.00

69.00

70.00

71.00

72.00

Turbine efficiency at optimum flow

Efficiency Polynomial (Efficiency)Actual

Specific Speed n11 RPM

%

34 36 38 40 42 44 46

0.00

100.00

200.00

Design & maximum flow

Design flow Linear (Design flow)

Max flow Polynomial (Max flow)

Specific speed n11 RPM

m3/

s

34 36 38 40 42 44 46

7.00

7.20

7.40

7.60

7.80

8.00

8.20

8.40

8.60

Turbine kW

kW at Qdesign Polynomial (kW at Qdesign)

kW at Pmax Polynomial (kW at Pmax)

Specific speed n11 RPM

kW

34 36 38 40 42 44 46

0

100

200

300

400

Runner width & diameter

Runner width Polynomial (Runner width)

Runner diameter Polynomial (Runner diameter)

Specific speed n11 RPM

mm

20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

7

8

9

n11=41 turbine kW Actual turbine kW 41 Gen kW Actual Gen kW

Flow in l/s

Tu

rbin

e &

Ge

ne

rato

r k

W

Page 2: CrossFlow Design Selele Suryakunda PHP

34 36 38 40 42 44 46

0

100

200

300

400

Runner width & diameter

Runner width Polynomial (Runner width)

Runner diameter Polynomial (Runner diameter)

Specific speed n11 RPM

mm

20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

7

8

9

n11=41 turbine kW Actual turbine kW 41 Gen kW Actual Gen kW

Flow in l/s

Tu

rbin

e &

Ge

ne

rato

r k

W

Page 3: CrossFlow Design Selele Suryakunda PHP

34 36 38 40 42 44 46

68.00

69.00

70.00

71.00

72.00

Turbine efficiency at optimum flow

Efficiency Polynomial (Efficiency)Actual

Specific Speed n11 RPM

%

Page 4: CrossFlow Design Selele Suryakunda PHP

Output Verification of Cross Flow Turbine Date: 11 September 2013

Actual specification & measures of plant installed Data in yellow fields to be entered by user!

Name of plant: selele surya Kunda pico-hydro Aayo VDC: Ghyangphedi District: Nuwakot Data in blue fields are output design data

Available minimum flow 11 months per year 141.71 l/s Data in pale blue fields are reference data

Design flow (85% of min flow) 105 l/s

10 m

20 m Practical steel pipe diameters from steel plate dimensions:

250 mm 4' wide plate=> 390 mm, 8/3' plate=> 260 mm, 2' plate=>195 mm

Max design pressure/wall thickn. 31 m 2.0 mm plate thickness at 1.5 mm corrosion loss using welded steel pipes (gradual closing)

2.140 m/s0.100 mm 140.4 75 50 25 % Dia. of belt drives

0.01570 0.01570 0.01570 0.01570 0.01570 Turb. 256 mm

0.284 m 0.559 0.160 0.071 0.018 m Gen. 100 mmTurbulence losses counted as sum of K factors 1.200 1.200 1.200 1.200 1.200 Transmission 3.0%

0.280 m 0.552 0.158 0.070 0.018 m Belt slip 0.8%

5.64 % or 0.564 m 1.111 0.317 0.141 0.035 m

9.436 m 8.889 9.683 9.859 9.965 m For generator kVA analysis FactorTurbine RPM 378 1/min Ambient temperature 25 1.09

300.0 mm Altitude 1.05160.0 mm ELC factor 0.83 0.83

143 l/s Power factor 0.8 0.86.90 kW T12 Unit turbine Generator kVA = Generator kW / 0.759948

Maximum turbine output 7.55 kW Runner Diameter 1000 mmGenerator RPM 960 1/min Net head 1 mTransmission factor 2.56 Runner width 1000 mmGenerator efficiency at design load 81.4% Water flow, maximum 1000 l/s

5.40 kW Water flow optimum 712.48 l/s8.08 kVA RPM Specific n11 36.92 1/min

Actual rated generator size 10.00 kVA Efficiency optimum 70.15 %

0.86292 8 0.813570.94363 8 0.81368

Gross head in meters hgross

Lenght of penstock Lpipe

Diameter of penstock dpen

Water velocity in penstock vpen Hnet calculation for part load in %

Roughness value k for penstock after 5 - 15 years

Approximate friction factor fWall friction loss hwall loss

Turbine entrance loss hturb loss

Total friction loss hfric

Turbine head Hnet

Runner diameter DRunner lenght LMaximum flow Qmax

Turbine output at Qdesign

Generator output at Qdesign

Minimum generator size for Pmax

20 40 60 80 100 120 1400

1

2

3

4

5

6

7

8

Turbine & generator output versus flow

Est. Turb kW Est. Gen kW

Flow through turbine (l/s)

Tu

rbin

e &

ge

ne

rato

r o

utp

ut

in k

W

20 40 60 80 100 120 140

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ P/Q

Water flow through turbine Q (l/s)

kW

/(l/s

)

20.00 40.00 60.00 80.00 100.00 120.00 140.00

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

Turbine Efficiency

Expected

Discharge

Page 5: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 1400

1

2

3

4

5

6

7

8

Turbine & generator output versus flow

Est. Turb kW Est. Gen kW

Flow through turbine (l/s)

Tu

rbin

e &

ge

ne

rato

r o

utp

ut

in k

W

20 40 60 80 100 120 140

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ P/Q

Water flow through turbine Q (l/s)

kW

/(l/s

)

Page 6: CrossFlow Design Selele Suryakunda PHP

Comparison of theoretical expectations and measured field dataOutput Verification of Cross Flow Turbine - T12Name of plant: selele surya Kunda pico-hydro Aayo VDC: Ghyangphedi District: Nuwakot

Project design capacity l/s 25Flow % of Q Opening Output Overall Hydrological capacity

l/s design % kW Efficiency Verified 11 month flow 32

7.5 30.00% 30% 1.251 170.03% 85% of verified flow 27.2

10 40.00% 40% 1.693 172.58% Hydrology is OK!12.5 50.00% 50% 2.561 208.85%

15 60.00% 60% 3.047 207.07% Plant capacity at design flow17.5 70.00% 70% 3.417 199.04% Project design capacity 4.00 kW

20 80.00% 80% 3.955 201.58% Plant capacity at design flow 4 kW

22.5 90.00% 90% 3.961 179.45% Plant capacity is ok at design flow!25 100.00% 100% 4 163.10%

20 40 60 80 100 120 140

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ P/Q

Water flow through turbine Q (l/s)

kW

/(l/s

)

20.00 40.00 60.00 80.00 100.00 120.00 140.00

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

Turbine Efficiency

Expected

Discharge

20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120%0

1

2

3

4

Generator output versus flow

Measured Gen kW Estimated Gen kW

Flow through turbine (l/s)

Tu

rbin

e &

ge

ne

rato

r o

utp

ut

in k

W

20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120%0%

50%

100%

150%

200%

250%

Estimated overall efficiency Measured overall efficiency

Discharge as % of design load

Ov

era

ll e

ffic

ien

cy

Page 7: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ P/Q

Water flow through turbine Q (l/s)

kW

/(l/s

)

20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120%0%

50%

100%

150%

200%

250%

Estimated overall efficiency Measured overall efficiency

Discharge as % of design load

Ov

era

ll e

ffic

ien

cy

Page 8: CrossFlow Design Selele Suryakunda PHP

Design of Cross Flow Turbine Date: 28/5-2003 Based on T12 with improved runnerAnalysis of dimensions of cross flow turbine suitable for the plant Data in yellow fields to be entered by user!

Name of plant: Dharadi MHP VDC: Chinnebas District: Data in blue fields are output design data

Available minimum flow as per the hydrological anal 141.71 l/s Data in pale blue fields are reference data

Design flow (85% of min flow) 120.4535 l/s

10 m

20 m Practical steel pipe diameters from steel plate dimensions:

250 mm 4' wide plate=> 390 mm, 8/3' plate=> 260 mm, 2' plate=>195 mm

Max design pressure/wall thic 31 m 2.0 mm plate thickness at 1.5 mm corrosion loss using welded steel pipes (gradual closing)

2.455 m/s0.100 mm 142.9 75 50 25 %

0.01570 0.01570 0.01570 0.01570 0.01570 Belt transmision loss 3.0%

0.373 m 0.762 0.210 0.093 0.023 mTurbulence losses counted as sum of K factors 1.200 1.200 1.200 1.200 1.200

0.369 m 0.752 0.207 0.092 0.023 m

7.42 % or 0.742 m 1.514 0.417 0.185 0.046 m For generator kVA analysis Factor

9.258 m 8.486 9.583 9.815 9.954 m Ambient temperature 25 1.09Design RPM 355 1/min Altitude 0 1.05

300.0 mm ELC factor 0.83 0.83188.5 mm T12 Unit turbine Power factor 0.8 0.8

165 l/s Runner Diameter 1000 mm Generator kVA = Generator kW / 0.759957.54 kW Net head 1 m

Maximum turbine output 8.41 kW Runner width 1000 mmGenerator RPM 1500 1/min Water flow, maximu 1000 l/sTransmission factor 4.23 Water flow optimum 700 l/sGenerator efficiency at design load 81.3% % RPM Specific n11 35 1/min

6.13 kW Efficiency optimum 68.97 %9.06 kVA8.07 kVA

0.94994 7.935702 0.813260.94994 8.853693 0.81846

Gross head in meters hgross

Lenght of penstock Lpipe

Diameter of penstock dpen

Water velocity in penstock vpen Hnet calculation for part load in %

Roughness value k for penstock after 5 - 15 years

Approximate friction factor fWall friction loss hwall loss

Turbine entrance loss hturb loss

Total friction loss hfric

Turbine head Hnet

Runner diameter DRunner width WMaximum flow Qmax

Turbine output at Qdesign Pdesignturb

Generator output at Qdesign

Minimum generator size for PmaxMinimum generator size for Qmax=Qdesign

20 40 60 80 100 120 140 160 1800

1

2

3

4

5

6

7

8

9

Turbine & generator output versus flow

Turbine kW Generator kWFlow through turbine (l/s)

Tu

rbin

e &

gen

erat

or

ou

tpu

t in

kW

20 40 60 80 100 120 140 160 180

45%

50%

55%

60%

65%

70%

75%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20 40 60 80 100 120 140 160 180

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

dP

/dQ

an

d P

/Q in

kW

/(l/s)

Page 9: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 1800

1

2

3

4

5

6

7

8

9

Turbine & generator output versus flow

Turbine kW Generator kWFlow through turbine (l/s)

Tu

rbin

e &

gen

erat

or

ou

tpu

t in

kW

20 40 60 80 100 120 140 160 180

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

dP

/dQ

an

d P

/Q in

kW

/(l/s)

Page 10: CrossFlow Design Selele Suryakunda PHP

76 92.85685

20 40 60 80 100 120 140 160 180

45%

50%

55%

60%

65%

70%

75%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

Page 11: CrossFlow Design Selele Suryakunda PHP

Design of Cross Flow Turbine Date: 28/5-2003 Based on T12 with improved runnerAnalysis of dimensions of cross flow turbine suitable for the plant Data in yellow fields to be entered by user!

Name of plant: Dharadi MHP VDC: Chinnebas District: Data in blue fields are output design data

Available minimum flow as per the hydrological analys 141.71 l/s Data in pale blue fields are reference data

Design flow (85% of min flow) 120.4535 l/s

10 m

20 m Practical steel pipe diameters from steel plate dimensions:

250 mm 4' wide plate=> 390 mm, 8/3' plate=> 260 mm, 2' plate=>195 mm

Max design pressure/wall thic 31 m 2.0 mm plate thickness at 1.5 mm corrosion loss using welded steel pipes (gradual closing)

2.455 m/s0.100 mm 138.9 75 50 25 %

0.01570 0.01570 0.01570 0.01570 0.01570 Belt transmision loss

0.373 m 0.720 0.210 0.093 0.023 mTurbulence losses counted as sum of K factors 1.200 1.200 1.200 1.200 1.200

0.369 m 0.711 0.207 0.092 0.023 m

7.42 % or 0.742 m 1.431 0.417 0.185 0.046 m For generator kVA analysis

9.258 m 8.569 9.583 9.815 9.954 m Ambient temperature

Design RPM 385 1/min Altitude300.0 mm ELC factor183.3 mm T12 Unit turbine Power factor

161 l/s Runner Diameter 1000 mm Generator kVA = Generator kW /

7.73 kW Net head 1 mMaximum turbine output 8.36 kW Runner width 1000 mmGenerator RPM 1500 1/min Water flow, maximum 1000 l/sTransmission factor 3.89 Water flow optimum 720 l/sGenerator efficiency at design load 81.4% % RPM Specific n11 38 1/min

6.30 kW Efficiency optimum 70.73 %9.00 kVA8.29 kVA

0.94994 8.141586 0.814481716950.94994 8.799508 0.81817003492

Gross head in meters hgross

Lenght of penstock Lpipe

Diameter of penstock dpen

Water velocity in penstock vpen Hnet calculation for part load in %

Roughness value k for penstock after 5 - 15 years

Approximate friction factor fWall friction loss hwall loss

Turbine entrance loss hturb loss

Total friction loss hfric

Turbine head Hnet

Runner diameter DRunner width WMaximum flow Qmax

Turbine output at Qdesign

Generator output at Qdesign

Minimum generator size for PmaxMinimum generator size for Qmax=Qdesign

20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

7

8

9

Turbine & generator output versus Q

Turbine kW Generator kW

Flow through turbine

Tu

rbin

e &

ge

ne

rato

r o

utp

ut

in k

W

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

50%

55%

60%

65%

70%

75%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

nc

y

20 40 60 80 100 120 140 160 180

0

0.05

0.1

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW

/(l/s

)

Page 12: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

7

8

9

Turbine & generator output versus Q

Turbine kW Generator kW

Flow through turbine

Tu

rbin

e &

ge

ne

rato

r o

utp

ut

in k

W

20 40 60 80 100 120 140 160 180

0

0.05

0.1

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW

/(l/s

)

Page 13: CrossFlow Design Selele Suryakunda PHP

Belt transmision loss 3.0%

For generator kVA analysis Factor

Ambient temperature 25 1.09Altitude 0 1.05ELC factor 0.83 0.83Power factor 0.8 0.8Generator kVA = Generator kW / 0.7599

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

50%

55%

60%

65%

70%

75%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

nc

y

20 40 60 80 100 120 140 160 180

0

0.05

0.1

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW

/(l/s

)

Page 14: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 180

0

0.05

0.1

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW

/(l/s

)

Page 15: CrossFlow Design Selele Suryakunda PHP

Output Verification of Cross Flow Turbine Date: 28/5-2003

Analysis of dimensions of cross flow turbine suitable for the plant Data in yellow fields to be entered by user!

Name of plant: Dharadi MHP VDC: Chinnebas District: Syangja Data in blue fields are output design data

Available minimum flow 11 months per year 141.71 l/s Data in pale blue fields are reference data

Design flow (85% of min flow) 120.4535 l/s

10 m

20 m Practical steel pipe diameters from steel plate dimensions:

250 mm 4' wide plate=> 390 mm, 8/3' plate=> 260 mm, 2' plate=>195 mm

Max design pressure/wall thickn. 31 m 2.0 mm plate thickness at 1.5 mm corrosion loss using welded steel pipes (gradual closing)

2.455 m/s0.100 mm 134.6 75 50 25 %

0.01570 0.01570 0.01570 0.01570 0.01570 Belt transmision loss 3.0%

0.373 m 0.676 0.210 0.093 0.023 mTurbulence losses counted as sum of K factors 1.200 1.200 1.200 1.200 1.200

0.369 m 0.668 0.207 0.092 0.023 m

7.42 % or 0.742 m 1.344 0.417 0.185 0.046 m For generator kVA analysis Factor

9.258 m 8.656 9.583 9.815 9.954 m Ambient temperature 25 1.09Design RPM 416 1/min Altitude 0 1.05

300.0 mm ELC factor 0.83 0.83177.6 mm T12 Unit turbine Power factor 0.8 0.8

156.76 l/s Runner Diameter 1000 mm Generator kVA = Generator kW / 0.767.83 kW Net head 1 m

Maximum turbine output 8.29 kW Runner width 1000 mmGenerator RPM 1500 1/min Water flow, maximum 1000 l/sTransmission factor 3.61 Water flow optimum 743 l/sGenerator efficiency at design load 81.5% % RPM Specific n11 41 1/min

6.38 kW Efficiency optimum 71.74 %8.92 kVA8.40 kVA

3 jet pelton design 1 2 3 0.949935 8.245628 0.81509Q 0 40.15117 80.302 120.454 0.949935 8.727221 0.81778Hnet 9.917 9.6698 9.258Pturbine 0 3.476516 6.8558 9.95522

0.028337 0.0559 0.08114Pgenerator 2.500519 5.6504 8.1944

Gross head in meters hgross

Lenght of penstock Lpipe

Diameter of penstock dpen

Water velocity in penstock vpen Hnet calculation for part load in %

Roughness value k for penstock after 5 - 15 years

Approximate friction factor fWall friction loss hwall loss

Turbine entrance loss hturb loss

Total friction loss hfric

Turbine head Hnet

Runner diameter DRunner width WMaximum flow Qmax

Turbine output at Qdesign

Generator output at Qdesign

Minimum generator size for PmaxMinimum generator size for Qmax=Qdesign

20 40 60 80 100 120 140 160 180

45%

50%

55%

60%

65%

70%

75%

Efficiency versus flow

Flow through turbine (l/s)

Eff

icie

ncy

20 40 60 80 100 120 140 160 180

0.000

0.050

0.100

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQP/Q

Water flow through turbine Q (l/s)

Incre

ase in

Po

wer

dP

/dQ

(kW

/(l/s))

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.000.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Turbine & generator output versus Q

Turbine kW Generator kWFlow through turbine

Tu

rbin

e &

gen

erat

or

ou

tpu

t in

kW

Page 16: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 180

0.000

0.050

0.100

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQP/Q

Water flow through turbine Q (l/s)

Incre

ase in

Po

wer

dP

/dQ

(kW

/(l/s))

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.000.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Turbine & generator output versus Q

Turbine kW Generator kWFlow through turbine

Tu

rbin

e &

gen

erat

or

ou

tpu

t in

kW

Page 17: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 180

0.000

0.050

0.100

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQP/Q

Water flow through turbine Q (l/s)

Incre

ase in

Po

wer

dP

/dQ

(kW

/(l/s))

Page 18: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 180

0.000

0.050

0.100

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQP/Q

Water flow through turbine Q (l/s)

Incre

ase in

Po

wer

dP

/dQ

(kW

/(l/s))

Page 19: CrossFlow Design Selele Suryakunda PHP

Output Verification of Cross Flow Turbine Date: 28/5-2003

Analysis of dimensions of cross flow turbine suitable for the plant Data in yellow fields to be entered by user!

Name of plant: Dharadi MHP VDC: Chinnebas District: Syangja Data in blue fields are output design data

Available minimum flow 11 months per year 141.71 l/s Data in pale blue fields are reference data

Design flow (85% of min flow) 120.4535 l/s

10 m

20 m Practical steel pipe diameters from steel plate dimensions:

250 mm 4' wide plate=> 390 mm, 8/3' plate=> 260 mm, 2' plate=>195 mm

Max design pressure/wall thickn. 31 m 2.0 mm plate thickness at 1.5 mm corrosion loss using welded steel pipes (gradual closing)

2.455 m/s0.100 mm 134.6 75 50 25 %

0.01570 0.01570 0.01570 0.01570 0.01570 Belt transmision loss 3.0%

0.373 m 0.676 0.210 0.093 0.023 mTurbulence losses counted as sum of K factors 1.200 1.200 1.200 1.200 1.200

0.369 m 0.668 0.207 0.092 0.023 m

7.42 % or 0.742 m 1.344 0.417 0.185 0.046 m For generator kVA analysis Factor

9.258 m 8.656 9.583 9.815 9.954 m Ambient temperature 25 1.09Design RPM 416 1/min Altitude 0 1.05

300.0 mm ELC factor 0.83 0.83169.2 mm T12 Unit turbine Power factor 0.8 0.8

149.32 l/s Runner Diameter 1000 mm Generator kVA = Generator kW / 0.767.72 kW Net head 1 m

Maximum turbine output 8.14 kW Runner width 1000 mmGenerator RPM 1500 1/min Water flow, maximum 1000 l/sTransmission factor 3.61 Water flow optimum 780 l/sGenerator efficiency at design load 81.4% % RPM Specific n11 41 1/min

6.29 kW Efficiency optimum 70.7 %8.75 kVA8.27 kVA

3 jet pelton design 1 2 3 0.949935 8.125058 0.81438Q 0 40.15117 80.302 120.454 0.949935 8.568552 0.81691Hnet 9.917 9.6698 9.258Pturbine 0 3.476516 6.8558 9.95522

0.028312 0.0558 0.08107Pgenerator 2.500519 5.6504 8.1944

Gross head in meters hgross

Lenght of penstock Lpipe

Diameter of penstock dpen

Water velocity in penstock vpen Hnet calculation for part load in %

Roughness value k for penstock after 5 - 15 years

Approximate friction factor fWall friction loss hwall loss

Turbine entrance loss hturb loss

Total friction loss hfric

Turbine head Hnet

Runner diameter DRunner width WMaximum flow Qmax

Turbine output at Qdesign

Generator output at Qdesign

Minimum generator size for PmaxMinimum generator size for Qmax=Qdesign

20 40 60 80 100 120 140 160 180

45%

50%

55%

60%

65%

70%

75%

Efficiency versus flow

Flow through turbine (l/s)

Eff

icie

ncy

20 40 60 80 100 120 140 160 180

0.000

0.050

0.100

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQP/Q

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.000.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Turbine & generator output versus Q

Turbine kW Generator kWFlow through turbine

Tu

rbin

e &

gen

erat

or

ou

tpu

t in

kW

Page 20: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 180

0.000

0.050

0.100

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQP/Q

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.000.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Turbine & generator output versus Q

Turbine kW Generator kWFlow through turbine

Tu

rbin

e &

gen

erat

or

ou

tpu

t in

kW

Page 21: CrossFlow Design Selele Suryakunda PHP

MH designcapacity

l/s25

Percentage Average Overall Generator Generator Generator Generator Pturb/ % of T12 Turbineof design q11 Efficiency H Q P dP/dQ kW per Efficency P Efficiency kVA Load PturbDesign project Turbine efficiency = a*q11^3 + b*q11^2+c*q11+d Optimum q11

load 1000 l/s % m l/s kW l/s kW 0.8 %kVA design cap n11 a b c d efficiency optimum25 0.1834 51.42% 9.961 27.05 1.36 0.06351 0.050246 15.73% 0.417 0.319134 0.52 6.52% 0.1981 1.0820 0.052174 35 -0.0622 -0.6614 0.9720 0.3541 68.97 700.0030 0.2201 53.76% 9.944 32.43 1.70 0.067132 0.052447 27.94% 0.889 0.543093 1.11 13.89% 0.2479 1.2973 38 -0.6411 0.2559 0.5804 0.3957 70.73 720.0035 0.2568 56.01% 9.924 37.80 2.06 0.070304 0.054532 35.46% 1.315 0.662938 1.64 20.55% 0.3004 1.5120 41 -1.0853 0.9033 0.3627 0.3930 71.74 743.0040 0.2935 58.16% 9.901 43.15 2.44 0.072971 0.056487 40.38% 1.709 0.728741 2.14 26.71% 0.3552 1.7260 45 -1.0257 0.6512 0.6333 0.2962 70.70 780.0045 0.3302 60.18% 9.874 48.48 2.83 0.075082 0.058299 43.77% 2.082 0.7655 2.60 32.53% 0.4119 1.9392 36.92 -0.4250 -0.0674 0.7184 0.3873 70.15 712.4850 0.3668 62.08% 9.845 53.79 3.22 0.076583 0.059955 46.24% 2.440 0.786321 3.05 38.12% 0.4699 2.151455 0.4035 63.83% 9.812 59.07 3.63 0.077425 0.061442 48.11% 2.788 0.798277 3.48 43.56% 0.5289 2.362760 0.4402 65.42% 9.777 64.32 4.04 0.077558 0.062747 49.56% 3.127 0.80524 3.91 48.86% 0.5881 2.572865 0.4769 66.85% 9.738 69.54 4.44 0.076932 0.063859 50.70% 3.458 0.809339 4.32 54.04% 0.6471 2.781670 0.5136 68.09% 9.696 74.73 4.84 0.0755 0.064767 51.57% 3.780 0.811734 4.73 59.07% 0.7053 2.989275 0.5503 69.14% 9.651 79.88 5.23 0.073217 0.065459 52.20% 4.091 0.813057 5.11 63.92% 0.7620 3.195280 0.5870 69.98% 9.603 84.99 5.60 0.070037 0.065926 52.61% 4.387 0.813653 5.48 68.55% 0.8165 3.399785 0.6236 70.60% 9.552 90.06 5.96 0.065917 0.066157 52.80% 4.665 0.813723 5.83 72.90% 0.8683 3.602690 0.6603 70.99% 9.498 95.09 6.29 0.060815 0.066144 52.77% 4.923 0.813397 6.15 76.92% 0.9166 3.803795 0.6970 71.14% 9.440 100.07 6.59 0.05469 0.065879 52.52% 5.156 0.812784 6.45 80.56% 0.9607 4.0028

100 0.7337 71.02% 9.380 105.00 6.86 0.047503 0.065354 52.05% 5.362 0.811984 6.70 83.77% 1.0000 4.2000105 0.7704 70.64% 9.316 109.88 7.09 0.039215 0.064562 51.36% 5.537 0.811105 6.92 86.51% 1.0338 4.3950110 0.8071 69.98% 9.250 114.70 7.28 0.029791 0.063497 50.46% 5.678 0.810252 7.10 88.72% 1.0613 4.5878115 0.8437 69.02% 9.180 119.46 7.42 0.019194 0.062154 49.35% 5.783 0.809531 7.23 90.37% 1.0820 4.7782120 0.8804 67.75% 9.107 124.15 7.51 0.007389 0.060528 48.03% 5.850 0.809036 7.31 91.41% 1.0951 4.9662125 0.9171 66.16% 9.031 128.79 7.55 -0.003194 0.058616 46.50% 5.875 0.808841 7.34 91.80% 1.1001 5.1515

128.2 0.9406 64.97% 8.981 131.72 7.54 -0.010068 0.057242 45.42% 5.868 0.808895 7.34 91.70% 1.0987 5.2686130 0.9538 64.24% 8.952 133.35 7.52 0.056417 44.77% 5.856 0.808989 7.32 91.51% 1.0963

Qmax/Qdesign = 136.30% Pmax = 7.55 kW Generator size = 8.000 kW PgenMax= 5.875

20.00 40.00 60.00 80.00 100.00 120.00 140.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Turbine output versus Q

Flow through turbine

Ou

tpu

t in

kW

20.00 40.00 60.00 80.00 100.00 120.00 140.00

60.00%61.00%62.00%63.00%64.00%65.00%66.00%67.00%68.00%69.00%70.00%71.00%72.00%73.00%74.00%75.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20 40 60 80 100 120 140

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW

/(l/

s)

Page 22: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

Turbine output versus Q

Flow through turbine

Ou

tpu

t in

kW

20 40 60 80 100 120 140

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW

/(l/

s)

Page 23: CrossFlow Design Selele Suryakunda PHP

1.492537Specific Speed 35 RPM => Efficiencyy = -0.0622x3 - 0.6614x2 + 0.972x + 0.3541

Percentage Average Generatorof design q11 Efficiency H Q P dP/dQ kW per P

load 1000 l/s % m l/s kW l/s kW25 0.1750 50.36% 9.954 31.22 1.54 0.06318 0.049175 0.84930 0.2100 52.85% 9.933 37.43 1.93 0.066483 0.051497 1.30335 0.2450 55.16% 9.909 43.62 2.34 0.069179 0.053622 1.71140 0.2800 57.30% 9.881 49.78 2.76 0.071257 0.055548 2.09345 0.3150 59.27% 9.850 55.91 3.20 0.072708 0.057271 2.46250 0.3500 61.06% 9.815 62.01 3.65 0.073524 0.05879 2.82455 0.3850 62.67% 9.776 68.08 4.09 0.073697 0.060103 3.18260 0.4200 64.11% 9.733 74.10 4.54 0.073221 0.061208 3.53365 0.4550 65.36% 9.687 80.09 4.97 0.07209 0.062106 3.87670 0.4900 66.43% 9.636 86.02 5.40 0.070299 0.062795 4.20675 0.5250 67.31% 9.583 91.91 5.82 0.067844 0.063275 4.52080 0.5600 68.01% 9.525 97.74 6.21 0.064724 0.063548 4.81385 0.5950 68.52% 9.464 103.52 6.59 0.060934 0.063614 5.08390 0.6300 68.84% 9.399 109.23 6.93 0.056473 0.063473 5.32695 0.6650 68.97% 9.330 114.88 7.25 0.051341 0.063129 5.542

100 0.7000 68.91% 9.258 120.45 7.54 0.045535 0.062584 5.729105 0.7350 68.65% 9.182 125.96 7.79 0.039057 0.061839 5.887110 0.7700 68.20% 9.102 131.38 8.00 0.031904 0.060898 6.016115 0.8050 67.55% 9.019 136.72 8.17 0.024078 0.059766 6.116120 0.8400 66.70% 8.932 141.97 8.30 0.015575 0.058445 6.189125 0.8750 65.66% 8.841 147.13 8.38 0.006395 0.056941 6.234130 0.9100 64.40% 8.746 152.20 8.41 -0.003466 0.05526 6.252135 0.9450 62.95% 8.648 157.16 8.39 -0.014012 0.053405 6.242140 0.9800 61.29% 8.546 162.02 8.33 -0.022784 0.051384 6.204

142.86 1.0000 60.25% 8.486 164.75 8.26 -0.028592 0.050156 6.169145 1.0150 59.43% 8.440 166.76 8.21 0.049203 6.136

Pmax = 8.41 kW Generator size =

142.8571

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

Page 24: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Increment in power production by increasing flow (dP/dQ)

Water flow through turbine Q (l/s)

Incre

ase i

n P

ow

er

dP

/dQ

(kW

/(l/

s))

Page 25: CrossFlow Design Selele Suryakunda PHP

Generator Generator Generator Pturb/Efficiency kVA Load PturbDesign

0.8 %kVA0.5702 1.06 16.45% 0.20370.6967 1.63 25.23% 0.25570.7540 2.14 33.13% 0.31020.7804 2.62 40.54% 0.36680.7927 3.08 47.69% 0.42480.7987 3.53 54.70% 0.48360.8017 3.98 61.62% 0.54280.8030 4.42 68.43% 0.60170.8033 4.84 75.06% 0.65980.8027 5.26 81.46% 0.71660.8012 5.65 87.54% 0.77150.7988 6.02 93.22% 0.82400.7957 6.35 98.44% 0.87350.7920 6.66 103.16% 0.91970.7878 6.93 107.34% 0.96200.7835 7.16 110.96% 1.0000 1.00000.7792 7.36 114.02% 1.03320.7751 7.52 116.51% 1.06130.7716 7.65 118.46% 1.08390.7689 7.74 119.86% 1.10070.7671 7.79 120.74% 1.11140.7663 7.81 121.09% 1.11570.7667 7.80 120.91% 1.11340.7683 7.76 120.17% 1.10440.7697 7.71 119.48% 1.09610.7709 7.67 118.84% 1.0885

6.454 kW20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Turbine output versus Q

Flow through turbine

Ou

tpu

t in

kW

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

Page 26: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Increment in power production by increasing flow (dP/dQ)

Water flow through turbine Q (l/s)

Incre

ase i

n P

ow

er

dP

/dQ

(kW

/(l/

s))

Page 27: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.000.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Turbine output versus Q

Flow through turbine

Ou

tpu

t in

kW

Page 28: CrossFlow Design Selele Suryakunda PHP

1.492537Specific Speed 35 RPM => Efficiencyy = -0.6411x3 + 0.2559x2 + 0.5804x + 0.3957

Percentage Average Generatorof design q11 Efficiency H Q P dP/dQ kW per P

load 1000 l/s % m l/s kW l/s kW25 0.1800 50.47% 9.952 31.26 1.54 0.061473 0.049277 0.83530 0.2160 52.65% 9.931 37.47 1.92 0.065068 0.051299 1.28335 0.2520 54.80% 9.906 43.66 2.33 0.068308 0.053251 1.68940 0.2880 56.88% 9.878 49.83 2.75 0.071117 0.055114 2.07245 0.3240 58.88% 9.845 55.96 3.18 0.073418 0.056869 2.44550 0.3600 60.79% 9.809 62.07 3.63 0.075139 0.058496 2.81455 0.3960 62.59% 9.769 68.13 4.09 0.076205 0.059978 3.18160 0.4320 64.25% 9.725 74.16 4.55 0.076544 0.061297 3.54665 0.4680 65.77% 9.677 80.14 5.00 0.076085 0.062435 3.90570 0.5040 67.11% 9.626 86.08 5.46 0.07476 0.063376 4.25575 0.5400 68.28% 9.571 91.96 5.89 0.0725 0.064104 4.59080 0.5760 69.24% 9.511 97.79 6.32 0.06924 0.064605 4.90585 0.6120 69.98% 9.448 103.55 6.72 0.064916 0.064863 5.19590 0.6480 70.48% 9.382 109.26 7.09 0.059466 0.064866 5.45595 0.6840 70.73% 9.311 114.89 7.42 0.052828 0.064601 5.683

100 0.7200 70.70% 9.236 120.45 7.72 0.044943 0.064057 5.876105 0.7560 70.37% 9.158 125.94 7.96 0.035754 0.063225 6.032110 0.7920 69.74% 9.076 131.34 8.16 0.025204 0.062094 6.151115 0.8280 68.78% 8.990 136.66 8.29 0.013237 0.060659 6.232120 0.8640 67.47% 8.900 141.89 8.36 -0.000202 0.058911 6.272125 0.9000 65.80% 8.807 147.02 8.36 -0.015171 0.056847 6.272130 0.9360 63.74% 8.710 152.06 8.28 -0.031724 0.054463 6.227135 0.9720 61.29% 8.608 156.99 8.13 -0.070413 0.051757 6.133

138.89 1.0000 59.09% 8.486 160.36 7.89 -0.053618 0.04919 5.985143 1.0296 56.48% 8.417 164.43 7.67 0.046641 5.846

Pmax = 8.36 kW Generator size =

138.8889

20 40 60 80 100 120 140 160 1800

1

2

3

4

5

6

7

8

9

Turbine output versus Q

Flow through turbine

Ou

tpu

t in

kW

0 100 200

40%

50%

60%

70%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20 40 60 80 100 120 140 160 180

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW/(

l/s)

Page 29: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 1800

1

2

3

4

5

6

7

8

9

Turbine output versus Q

Flow through turbine

Ou

tpu

t in

kW

20 40 60 80 100 120 140 160 180

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW/(

l/s)

Page 30: CrossFlow Design Selele Suryakunda PHP

Generator Generator Generator Pturb/Efficiency kVA Load PturbDesign

0.8 %kVA55.90% 1.04 15.75% 0.199668.80% 1.60 24.18% 0.249174.89% 2.11 31.84% 0.301377.80% 2.59 39.06% 0.355979.21% 3.06 46.09% 0.412579.90% 3.52 53.04% 0.470580.25% 3.98 59.96% 0.529680.42% 4.43 66.84% 0.589180.46% 4.88 73.62% 0.648580.41% 5.32 80.21% 0.707080.27% 5.74 86.52% 0.764080.04% 6.13 92.46% 0.818879.73% 6.49 97.92% 0.870579.35% 6.82 102.83% 0.918578.93% 7.10 107.12% 0.961978.51% 7.34 110.76% 1.000078.10% 7.54 113.71% 1.032077.75% 7.69 115.95% 1.057077.50% 7.79 117.47% 1.074477.36% 7.84 118.24% 1.083377.36% 7.84 118.22% 1.083277.51% 7.78 117.37% 1.073377.81% 7.67 115.60% 1.053078.23% 7.48 112.83% 1.022378.58% 7.31 110.19% 0.9940

6.631 kW

0 100 200

40%

50%

60%

70%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20 40 60 80 100 120 140 160 180

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW/(

l/s)

Page 31: CrossFlow Design Selele Suryakunda PHP

20 40 60 80 100 120 140 160 180

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Increment in power production by increasing flow (dP/dQ) compared to P/Q

Water flow through turbine Q (l/s)

kW/(

l/s)

Page 32: CrossFlow Design Selele Suryakunda PHP

Specific Speed 41 RPM => Efficiencyy = -1.0853x3 + 0.9033x2 + 0.3627x + 0.393

Percentage Average Generator Generator Generator Generator Pturb/of design q11 Efficiency H Q P dP/dQ kW per P Efficiency kVA Load PturbDesign

load 1000 l/s % m l/s kW l/s kW 0.8 %kVA25 0.1858 48.46% 9.95 31.22 1.48 0.060 0.047 0.742 0.5180 0.93 13.81% 0.188630 0.2229 50.67% 9.933 37.43 1.85 0.064 0.049 1.194 0.6660 1.49 22.21% 0.236035 0.2601 52.93% 9.909 43.62 2.24 0.068 0.051 1.606 0.7378 2.01 29.87% 0.286540 0.2972 55.21% 9.881 49.78 2.66 0.072 0.054 1.997 0.7728 2.50 37.14% 0.340145 0.3344 57.47% 9.850 55.91 3.10 0.075 0.056 2.379 0.7899 2.97 44.24% 0.396450 0.3715 59.68% 9.81 62.01 3.56 0.078 0.057 2.759 0.7984 3.45 51.32% 0.454955 0.4087 61.80% 9.776 68.08 4.03 0.080 0.059 3.141 0.8026 3.93 58.42% 0.515160 0.4458 63.81% 9.733 74.10 4.51 0.081 0.061 3.523 0.8046 4.40 65.53% 0.576365 0.4830 65.66% 9.687 80.09 5.00 0.081 0.062 3.903 0.8053 4.88 72.59% 0.637970 0.5201 67.33% 9.636 86.02 5.48 0.079 0.064 4.275 0.8049 5.34 79.51% 0.699075 0.5573 68.78% 9.58 91.91 5.94 0.077 0.065 4.632 0.8035 5.79 86.14% 0.758780 0.5944 69.98% 9.525 97.74 6.39 0.073 0.065 4.966 0.8011 6.21 92.37% 0.816085 0.6316 70.90% 9.464 103.52 6.81 0.068 0.066 5.273 0.7978 6.59 98.07% 0.869990 0.6687 71.49% 9.399 109.23 7.20 0.061 0.066 5.545 0.7939 6.93 103.13% 0.919395 0.7059 71.74% 9.330 114.88 7.54 0.052 0.066 5.778 0.7896 7.22 107.46% 0.9630

100 0.7430 71.60% 9.26 120.45 7.83 0.041 0.065 5.968 0.7854 7.46 110.99% 1.0000105 0.7802 71.04% 9.182 125.96 8.06 0.029 0.064 6.112 0.7817 7.64 113.67% 1.0290110 0.8173 70.03% 9.102 131.38 8.22 0.014 0.063 6.208 0.7790 7.76 115.46% 1.0489115 0.8545 68.54% 9.019 136.72 8.29 -0.003 0.061 6.254 0.7777 7.82 116.31% 1.0584120 0.8916 66.52% 8.932 141.97 8.28 -0.022 0.058 6.244 0.7779 7.81 116.14% 1.0565125 0.9288 63.96% 8.841 147.13 8.16 -0.044 0.055 6.175 0.7800 7.72 114.84% 1.0419130 0.9659 60.81% 8.746 152.20 7.94 -0.067 0.052 6.036 0.7837 7.55 112.27% 1.0137

134.5895 1.0000 57.37% 8.66 156.76 7.64 -0.080 0.049 5.840 0.7883 7.30 108.61% 0.9750135 1.0031 57.04% 8.648 157.16 7.60 0.048 5.818 0.7888 7.27 108.21% 0.9709

Pmax = 8.29 Kw Generator size = 6.721 kW

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

40.00%

50.00%

60.00%

70.00%

80.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ Polynomial (dP/dQ) P/QPolynomial (P/Q)

Water flow through turbine Q (l/s)

kW/(

l/s)

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Turbine & Generator Output

Turbine kW Generator kWDischarge l/s

kW

Page 33: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ Polynomial (dP/dQ) P/QPolynomial (P/Q)

Water flow through turbine Q (l/s)

kW/(

l/s)

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Turbine & Generator Output

Turbine kW Generator kWDischarge l/s

kW

Page 34: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

40.00%

50.00%

60.00%

70.00%

80.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ Polynomial (dP/dQ) P/QPolynomial (P/Q)

Water flow through turbine Q (l/s)

kW/(

l/s)

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

Generator Efficiency

Turbine kW

Eff

icie

nc

y

Page 35: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ Polynomial (dP/dQ) P/QPolynomial (P/Q)

Water flow through turbine Q (l/s)

kW/(

l/s)

Page 36: CrossFlow Design Selele Suryakunda PHP

Specific Speed 41 RPM => Efficiencyy = -1.0257x3 + 0.6512x2 + 0.6333x + 0.2962

Percentage Average Generator Generatorof design q11 Efficiency H Q P dP/dQ kW per P Efficiency

load 1000 l/s % m l/s kW l/s kW25 0.1858 42.97% 9.95 31.22 1.31 0.058 0.042 0.520 0.409330 0.2229 45.84% 9.933 37.43 1.67 0.063 0.045 1.000 0.616635 0.2601 48.69% 9.909 43.62 2.06 0.068 0.047 1.433 0.715640 0.2972 51.50% 9.881 49.78 2.48 0.073 0.050 1.839 0.762945 0.3344 54.24% 9.850 55.91 2.93 0.076 0.052 2.232 0.785350 0.3715 56.88% 9.815 62.01 3.40 0.079 0.055 2.622 0.796055 0.4087 59.37% 9.776 68.08 3.88 0.081 0.057 3.012 0.801160 0.4458 61.71% 9.733 74.10 4.37 0.082 0.059 3.403 0.803665 0.4830 63.84% 9.687 80.09 4.86 0.082 0.061 3.791 0.804570 0.5201 65.74% 9.636 86.02 5.35 0.081 0.062 4.171 0.804275 0.5573 67.38% 9.583 91.91 5.82 0.078 0.063 4.534 0.802980 0.5944 68.73% 9.525 97.74 6.28 0.074 0.064 4.874 0.800585 0.6316 69.75% 9.464 103.52 6.70 0.068 0.065 5.184 0.797290 0.6687 70.42% 9.399 109.23 7.09 0.060 0.065 5.457 0.793295 0.7059 70.69% 9.330 114.88 7.43 0.051 0.065 5.688 0.7889

100 0.7430 70.55% 9.258 120.45 7.72 0.040 0.064 5.875 0.7847105 0.7802 69.96% 9.182 125.96 7.94 0.026 0.063 6.013 0.7811110 0.8173 68.88% 9.102 131.38 8.08 0.011 0.062 6.102 0.7785115 0.8545 67.29% 9.019 136.72 8.14 -0.007 0.060 6.138 0.7774120 0.8916 65.15% 8.932 141.97 8.10 -0.027 0.057 6.117 0.7781125 0.9288 62.44% 8.841 147.13 7.97 -0.049 0.054 6.032 0.7805130 0.9659 59.11% 8.746 152.20 7.72 -0.073 0.051 5.875 0.7847

134.5895 1.0000 55.50% 8.656 156.76 7.39 -0.086 0.047 5.658 0.7895135 1.0031 55.15% 8.648 157.16 7.35 0.047 5.634 0.7900

Pmax = 8.14 Kw Generator size = 6.617

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

40.00%

50.00%

60.00%

70.00%

80.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

-0.100-0.080-0.060-0.040-0.0200.0000.0200.0400.0600.0800.100

Increment in power production by increasing flow (dP/dQ) compared to P/Q

dP/dQ Polynomial (dP/dQ) P/Q

Water flow through turbine Q (l/s)

kW/(

l/s)

Page 37: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

40.00%

50.00%

60.00%

70.00%

80.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

Page 38: CrossFlow Design Selele Suryakunda PHP

Generator Generator Pturb/kVA Load PturbDesign0.8 %kVA

0.65 9.83% 0.16981.25 18.89% 0.21661.79 27.07% 0.26752.30 34.74% 0.32202.79 42.17% 0.37963.28 49.53% 0.44003.77 56.90% 0.50224.25 64.29% 0.56574.74 71.62% 0.62955.21 78.79% 0.69275.67 85.65% 0.75436.09 92.08% 0.81336.48 97.93% 0.86866.82 103.08% 0.91897.11 107.46% 0.96317.34 110.98% 1.00007.52 113.60% 1.02847.63 115.27% 1.04707.67 115.95% 1.05467.65 115.55% 1.05017.54 113.96% 1.03237.34 110.99% 1.00027.07 106.88% 0.95727.04 106.44% 0.9527

kW

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

40.00%

50.00%

60.00%

70.00%

80.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

Page 39: CrossFlow Design Selele Suryakunda PHP

20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

40.00%

50.00%

60.00%

70.00%

80.00%

Efficiency versus flow

Flow through turbine l/s

Eff

icie

ncy

Page 40: CrossFlow Design Selele Suryakunda PHP

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

Generator Efficiency

Turbine kW

Eff

icie

nc

y

Page 41: CrossFlow Design Selele Suryakunda PHP

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

0.8500

Generator Efficiency

Turbine kW

Eff

icie

nc

y