31
document.xls .xls REF gvrs/ST SUMITOMO CORPORATION PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page o DOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbi DOC. NO CGPR1-100-5-011 Rev 0 Dept Struc DESIGN CALCULATIONS REFER RE 6.4.a DESIGN OF CRANE GANTRY GIRDER 11M span All b refer a) INPUT DATA :- BS 59 (Refer Appendix-E, for EOT drawing) part- Crane Capacity = 1050 kN Weight of Crab = 320 kN Weight of Crane Bridge = 780 kN Self weight of the Rail = 2 kN/m Width of Walk way = 0.6 m Dead Load of the Walkway = 1.5 kN/m² Live Load of the Walkway = 5 kN/m² Height of the Crane Rail = 65 mm Span of the Crane Girder, Lg = 11 m Centre to centre distance of , Lc = 32 m Rail (i.e. Span of Crane Bridge) Mini. approach of crane hook to the g = 1.800 m No. of Wheels = 4 Wheel Spacing1 = 1.40 m Wheel Spacing2 = 4.70 m C.G of loading from left load = 3.75 m 1.40 4.70 Impact Factor : Vertical = 30 % Horizontal = 10 % (Transverse to rail) Deflection Factor Vertical = 600 Table Horizontal = 500 Load Factor : = 1.6 = 1.6 = 1.4 Design strength of steel, py = 265.0 Table Imposed load vertic Imposed load Horiz. Dead load gdf N/mm 2

crain load

Embed Size (px)

DESCRIPTION

crain load

Citation preview

Page 1: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

6.4.a DESIGN OF CRANE GANTRY GIRDER 11M span All below references are

a) INPUT DATA :- BS 5950,(Refer Appendix-E, for EOT drawing) part-1, UNO

Crane Capacity = 1050 kN

Weight of Crab = 320 kN

Weight of Crane Bridge = 780 kN

Self weight of the Rail = 2 kN/m

Width of Walk way = 0.6 m

Dead Load of the Walkway = 1.5 kN/m²Live Load of the Walkway = 5 kN/m²

Height of the Crane Rail = 65 mm

Span of the Crane Girder, Lg = 11 m

Centre to centre distance of , Lc = 32 mRail (i.e. Span of Crane Bridge)

Mini. approach of crane hook to the gantry = 1.800 m

No. of Wheels = 4Wheel Spacing1 = 1.40 mWheel Spacing2 = 4.70 mC.G of loading from left load = 3.75 m 1.40 4.70 1.40

Impact Factor : Vertical = 30 %

Horizontal = 10 %(Transverse to rail)

Deflection Factor Vertical = 600 Table:5Horizontal = 500

Load Factor : = 1.6= 1.6= 1.4

Design strength of steel, py = 265.0 Table:6

Imposed load vertical -Imposed load Horiz.gIhfDead load gdf

N/mm2

Page 2: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Maximum unsupported length Top Flange = 2.60 m

Depth of the surge girder = 0.60 mMaximum unsupported length Bottom Flange = 2.60 m

1.80m (1050+320)kN 780 kN

Kicker

32.00m

RL = (1370 x 30.20 + 780 x 32.00/2)/32.00= 1682.938 kN

Wheel Load by calculation 420.73 kN/wheel

b) LOAD CALCULATIONS:

b.1) Vertical Loadsb.1.a) Conc. Loads

Max. static Wheel Load = 421 kN875.7 875.7

Load due to Impact = 0.30 x 421 = 126.3 kN

Total load = 547 kN

Factored Load 1.60 x 547. = 875.68 kN 1.40 4.70 1.40

b.1.b) Uniform Dirstributed LoadSelf weight of rail = 2.00 kN/mWalkway Dead Load = 0.45 kN/mWalkway Live Load = 1.50 kN/mSelf weight of girder = 4.66 kN/m

8.61 kN/m

Factored load 1.40 x 8.61 12.06 kN/m

b.2) Horizontal Loads

Maximum lateral load per wheel is equal to 10% Static vertical wheel load,= 0.1 from Fig-1

Max. Lateral load 0.10(421*4) = 168.4 kN BS:2573,part-1

4 wheels are resisting the total lateral load

RL RR

say Wm

Wmf =

Wdf =

l

WH =

Page 3: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Factored lateral load 1.60 x 168.40 / 4 67.36 kN/wheel

c) MAXIMUM BENDING MOMENT AND SHEAR FORCE:

c.1) For vertical loads

c.1.a) Bending Moment :-

The maximum Bending moment under moving loads occurs when line ofaction of one load and centre of gravity of the loads are at equal distancefrom the centre of span.

875.68kN 875.68kN 875.68kN 875.68kN

12.06kN/m

C

11.00m

Reactions :-

Ra = 4x875.68x(11 - 11*0.5 - 0.25*4.7) = 1443.525 kN+ 12.06 x 11 /2

Rb = 4x875.68+12.06x11- 1,443.525 = 2191.834 kN

Maximum Bending moment occurs at C. =

Mux1 = (1443.53 x 4.33) -875.68 x 1.4 - (12.06 x 4.33²/2)= 4904.517 kN.m

c.1.b) Shear Force:-

875.68kN 875.68kN 12.06kN/m

11.00m

Reactions:

RA = 4 x 875.7 x [11.0-3.8] /11+ (12.1 x 11.0/2) 2374.930 kN

RB = (4 x 875.7) + (12.1 x 11.0) - 2374.93 1260.428 kN

Wdf =

RA RB

RA

CG. OF LOADS

Mid Span of Crane Girder

==

CG. OF GANTRY

Page 4: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Max. Reaction = 2374.930 kN

c.2) For Horizontal loads :-

67.36kN

C

c.2.a) Local Bending Moment at C,

Crane Girder is laterally bending between Node points of surge Girder

67.360 x 2.6 /4 43.784 kN.m

c.2.b) Axial Force:

Because of Lateral force, the Crane Girder is subjected to axial force.

Max lateral bending Moment 4904.5 x 67.36 / 875.68 377.27 kN-m

F=Axial force in the surge girder 377.27 / 0.6 628.78 kN

c.2.c) Shear force :-

67.36kN 67.36kN

RA 3.75m 11.00m RB

Reactions :-

RA = 4x 67.4[11.0 - 3.8]11.00 = 177.585 kN

RB = 4 x 67.360 - 177.585 = 91.855 kN

= 177.585 kN

Muy =

Max. Horzontal reaction RH

Page 5: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

d) DESIGN OF GANTRY GIRDER: y

Depth 1250 mm

Width 450 mm 20

20 mm x x 1250

40 mm

40

450

Properties :-Depth of the section, D = 1250 mmWidth of the section, B = 450 mmThickness of web, t = 20 mmThickness of flange, T = 40 mmEffective depth of web, d = 1170 mm

= 1.59E+10= 6.08E+08= 101.19 mm= 2.54E+07= 2.70E+06= 2.96E+07= 4.28E+06

Buckling parameter, u = 1 conservativelyTorsional index, x : D/T = 31.25Sectional Area, A = 59400 mm2Flange Area on one side, Ag = 18000 mm2Out stand width of panel, b = 215 mm

= 1.02

Outstand element of compression flange, b/T = 5.38 Plastic Cl.3.5.2 and Web slenderness, d/t = 58.50 Plastic Table:7

d.1) Shear Capacity

Web slenderness, d/t = 58.50 < 63*1.02 Cl.4.4.4.1Satisfactory

Shear area parallel to the web, Avx=t*d = 23400 mm2 Cl.4.2.3,

t =

T =

Second moment of inertia, Ixx mm4

Second moment of inertia, Iyy mm4

rmin

Section modulus, Zxx mm3

Section modulus, Zyy mm3

Plastic modulus, Sxx mm3

Plastic modulus, Syy mm3

as per Cl.4.3.7.5

Constant, e, = sqrt(275/py)

Page 6: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Critical Shear strength, qcr for t/d =58.50 = 159 N/mm2 Table:21,

Shear Capacity, Vcr=qcr*Avx = 3720.6 kN Cl.4.4.5.3>2,374.93 kN Satisfactory

d.2) Moment capacity, Mb

d.2.a) Lateral-torsional buckling moment, Mb: ( as per clause 4.3.7.3 of BS 5950, part-1)

Effective length factor = 1.00 Table:9( Destabilizing condition)(As per table:9,BS 5950,part-1: Beam partial restrained against rotation)

= 2.60 m

= 25.69

= Cl.4.3.7.5

Slenderness correction factor, n = 1.0 conservativelyUniform moment factor, m = 1.0 conservativelyBuckling parameter, u = 1.000

= 0.822N = 0.50

= 1.00 Table:14

= 25.69pb = 265.00 N/mm2 Table:12

Buckling resistance, Mb = pb*Sxx= 7843.23 kN.m Satisfactory

>4904.52 kN.m Cl.4.3.7.2> m*Mux1

e) CHECK FOR COMBINED BENDING COMPRESSIVE STRESSIN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL)

e.1) Compressive strength pc :-

= 25.69Reduced design strength, py = 245.00 N/mm2 Cl.4.7.5pc = 240.00 N/mm2 Table:27c

e.2) Overall buckling check

Effective length, LE

Slenderness, l = LE/rmin

Equivalent slenderness, lLT nunl

l/x

Slenderness factor, n

lLT

Slenderness, l = LE/rmin

Page 7: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

(As per Clause 4.8.3.3.1, BS 5950: part-1)

F/Ag*pc + mMux1/Mb + mMuy/py*Zyy = 0.832 Satisfactory< 1.000

f) CHECK FOR LONGITUDINAL STRESS:

Height of rail = 65 mm

5% of the static wheel load = 5/100 x4x 875.7 175.14 kN

Bending moment in the longitudinal direction is equal to Longitudinal Force intoCrane Rail Depth plus half of Crane Girder depth

Mux2 = 175136 x (65 + 625.0) 120.84 kN.m

CHECK FOR COMBINED BENDING COMPRESSIVE STRESSIN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL)

F/Ag*pc + m(Mux1+Mux2)/Mb = 0.681 Satisfactory

g) CHECK FOR DEFLECTION:Allowable deflection for vertical loads

= Span / 600 =11,000.0 / 600.0 = 18.33 mm

Allowable deflection for horizontal loads= Span / 500 = 11,000.0 /500 = 22.00 mm

Vertical Deflection:-

3.151.75

547.3kN 547.3kN 8.61kN/m

c11.00

=

d lim, v

d lim, h

RA RB

d v 5384

×WL4

EI+ PL

3

48EI×[3a1L −4 (a1L )

3]+ PL348EI×[3a2L −4 (a2L )

3]

CG. OF GANTRY

CG OF LOADS

==

Page 8: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

= ((5/384)(8.61 x 11000^4)/( 205000 x 1.59E+10))+{( 2 x 547300 x 11000³)/( 48 x 205000 x 1.59E+10)} x {[3 x 1.75/11 - 4 x (1.75/11)³] + [3 x 3.15/11 - 4 x (3.15/11)³]}

= 11.960 mm

11.960 < 18.3 HENCE SAFE

h) Crane Girder Welding CalculationTop Flange & Web is welded by full Penetration Butt weld.

Bottom Flange Weld.

A- Area of the Bottom Flange = 18000

y - C.G of flange Plate from C.G of section = 605 mm

Ixx of the section = 1.59E+10

Maximum vertical shear = 2374.930 kN

Horizontal Shear 2,374.9 x 1000 x 18000x605 / 1585105 1631.626 N/mm

Size of the weld on each side 1,631.6/ ( 2 x 215x 0.707) 5.421 mm

Provide weld as = 12 mm

i) DESIGN OF BEARING STIFFENER

Bearing check:

Minimum area of stiffener in contact with the flange = 0.8*Fx/pys Cl.4.5.4.2Fx = External reactionpys = Design strength of stiffener

Minimum Area of stiffener required = 7169.60 mm2

= 25.00 mm

Width of the stiffener, bs = 450.00 mm

Area of the stiffener = 11250.00 mm2 Satisfactory

Check for outstands

CHECK dv < Allowable Deflection

Horizontal Shear = FAy/ Ixx

mm2

mm4

Conside Thk. Of Stiffener , ts

5384

×WL4

EI+ PL

3

48EI×[3a1L −4 (a1L )

3]+ PL348EI×[3a2L −4 (a2L )

3]

Page 9: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Outstand from the face of the web = bs/2-web thickness= 215.00 mm

Outstand of web stiffeners, as per Cl.4.5.1.2 of BS5950: Limits:

= 483.88 mm

= 331.08 mm Satisfactory

Bearing resistance of the stiffener

Bearing Stress in member = 211.10< 265 N/mm2 Satisfactory

Buckling resistance of the stiffner(as per Cl.4.5.1.5 of BS5950,part-1)

Design strength of the stiffner in buckling = py-20 Cl.4.5.1.5= 245.0 N/mm2

Buckling resistance check as a column:

Area of combined section 450 x25 + 20 x 20 x 20 19250.00

Ixx = 1.90E+08= 99.38 mm

=1250x 1000 / 99.4 = 12.58

Compressive strength, pc = 245.00 N/mm2 Tb.27c,

Buckling resistance of the stiffener = 4716.25 kN > 2374.93 kN Satistactory

Weld between Stiffener & web

Vetical Height avilable for Welding = 1170.00 mm

Thk. of weld reqd =2,374.9 x1000/(1170x2x0.7*215) 6.74 mm

Provide weld thickness = 12.00 mm

j) Shear buckling of Web under Wheel load

19tse

13tse

N/mm2

mm2

mm4

l = l / Rmin

Rmin=√ I /A

Page 10: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Web bearing under wheel load(as per Cl.4.11.4,BS 5950, part-1)

Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange)= 210 mm

Bearing Capacity = lw*py*t = 1113 kN > 875.68 kN Satisfactory

Web buckling under wheel load(as per Cl.4.5.2.1, BS 5950,part-1)

b1 = Stiff bearing length = 2(Height of the crane rail)= 130.00 mm

n1 = Dispersion at 45degrees through half the depth of the section= (depth of the web + 2*thickness of the flange)= 1250 mm

d = Depth of the web= 1170 mm

= 2.5*depth of the web/thickness of the web Cl.4.5.2.1= 146.25

Compressive resistance, pc = 70 N/mm2 Table 27c

Buckling resistance, Pw = (b1+n1)*t*pc= 1932.00 kN

> 875.68 kN Satisfactory

k) Connection for Longitudinal Force

Longitudinal Force = 175.14 kN

Dia of bolt provided = 24.00 mmNo. of bolts provided = 4.00

Stress in Bolts = 96.78< 160 N/mm2

l) Design of Surge Girder

Design of bracing members

Web slenderness, l

N/mm2

Page 11: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Maximum Horizontal force = 177.585 kNMax Force in diagonal = 335.1 kN

Angles provided = 100X100X8 RSC

Area of the Section = 15.60Rmin of the section = 3.07 cmLength of diagonal = 1.50 mInclination of diagonal w.r.t Horizontal = 32.00

Stress in member = 214.82 (No.bays arenot to count inthe sketch)

Allowable Stress in memberl=1.5 *100 / 3.07 = 48.86

Compressive stress, pc = 225.00 N/mm2 Table 27c> 214.82 Satisfactory

Design of bottom chord member(as surge may come on either direction, bottom chord members are designedfor compression)

Member size provided = 300X150X32 MS profile

Area of the Section = 40.80Rmin of the section = 3.29 cmUnsupported length = 2.60 m

Maximum axial force, F = 628.78 kN

Stress in member = 154.11

Allowable Stress in memberl=2.6 *100 / 3.29 = 79.03Compressive stress, pc = 161.00 N/mm2 Table 27c

> 154.11 Satisfactory

j) Design of Crane Girder Bracket

Depth of the bracket, Db = 1200 mmWidth of the flange plate, Wb = 600.00 mmThickness of the flange plate, Tb = 32.00 mmThickness of the web plate, tb = 25.00 mmEccetricity of Crane girder from grid = 1.00 mMaximum Vertical force = 2374.93 kN

Design for MomentMoment due to eccentricity, Me = 2374.93 kN.m

cm2

N/mm2

cm2

N/mm2

Page 12: crain load

document.xls .xls REF gvrs/ST

SUMITOMO CORPORATION

PROJECT : SKS, Prai - 350MW CCGT Power Plant Checked By Page ofDOC.TITLE: Design of Super structure-Design of Crane-girder Area: Turbine build.DOC. NO : CGPR1-100-5-011 Rev 0 Dept Structural

DESIGN CALCULATIONS REFERENCES /

REMARKS

Axial Force in Top flange, Ab=Me/Db = 1979.11 kN

Stress in top flange=Ab/Wb*Tb = 10.3078569 N/mm2< 265.0 N/mm2 Satisfactory

Design for shearWeb slenderness = 45.44 < 63*1.02 Cl.4.4.4.1

SatisfactoryShear area parallel to the web = 28400 mm2 Cl.4.2.3,Critical Shear strength = 159 N/mm2 Cl.4.2.3

Shear Capacity, = 4515.6 kN>2,374.93 kN Satisfactory

Page 13: crain load

document.xls .xls REF gvrs/ST

references are

Page 14: crain load

document.xls .xls REF gvrs/ST

BS:2573,part-1

Page 15: crain load

04/18/2023 08:25:49

document.xls Page 15 of 21 ISMC

Name Depth Breadth wt/m Tf Tw Cyy G Ixx Iyy Rxx Ryy Zxx Zyy Area

mm mm kN/m mm mm mm mm mm mm

ISMC 75 75 40 0.0681 7.30 4.40 13.10 21 760000 126000 29.60 12.10 20300 4700 867

ISMC 100 100 50 0.0918 7.50 4.70 15.30 28 1867000 259000 40.00 14.90 37300 7500 1170

ISMC 125 125 65 0.1271 8.10 5.00 19.40 35 4164000 599000 50.70 19.20 66600 13100 1619

ISMC 150 150 75 0.1639 9.00 5.40 22.20 40 7794000 1023000 61.10 22.10 103900 19400 2088

ISMC 175 175 75 0.1914 10.20 5.70 22.00 40 12233000 1210000 70.80 22.30 139800 22800 2438

ISMC 200 200 75 0.2214 11.40 6.10 21.70 40 18193000 1404000 80.30 22.30 181900 26300 2821

ISMC 225 225 80 0.2591 12.40 6.40 23.00 45 26946000 1872000 90.30 23.80 239500 32800 3301

ISMC 250 250 80 0.3036 14.10 7.10 23.00 45 38168000 2191000 99.40 23.80 305300 38400 3867

ISMC 300 300 90 0.3583 13.00 7.60 23.60 50 63626000 3108000 118.10 26.10 424200 46800 4564

ISMC 350 350 100 0.4212 13.50 8.10 24.40 60 100080000 4306000 136.60 28.30 571900 57000 5366

ISMC 400 400 100 0.4940 15.30 8.60 24.20 60 150828000 5048000 154.80 28.30 754100 66600 6293

mm4 mm4 mm3 mm3 mm2

Page 16: crain load

04/18/2023 08:25:49

document.xls Page 16 of 21 ISMB

Section H B wt/m A Tf Tw R1 R2 H1 H2 G Ixx Iyy Rxx Ryy Zxx Zyy

mm mm kN/m mm mm mm mm mm mm mm mm mm

ISMB100 100 75 0.115 1460 7.2 4.0 9.0 4.5 65.0 17.50 35 2575000 408000 42.0 16.7 51500 10880

ISMB125 125 75 0.130 1660 7.6 4.4 9.0 4.5 89.2 17.90 35 4490000 437000 52.0 16.2 71840 11653

ISMB150 150 80 0.149 1900 7.6 4.8 9.0 4.5 113.9 18.05 40 7264000 526000 61.8 16.6 96853 13150

ISMB175 175 90 0.193 2462 8.6 5.5 10.0 5.0 134.5 20.25 50 12720000 850000 71.9 18.6 145371 18889

ISMB200 200 100 0.254 3233 10.8 5.7 11.0 5.5 152.7 23.65 55 22354000 1500000 83.2 21.5 223540 30000

ISMB225 225 110 0.312 3972 11.8 6.5 12.0 6.0 173.3 25.85 60 34418000 2183000 93.1 23.4 305938 39691

ISMB250 250 125 0.373 4755 12.5 6.9 13.0 6.5 194.1 27.95 65 51314000 3345000 103.9 26.5 410512 53520

ISMB300 300 140 0.442 5626 12.4 7.5 14.0 7.0 241.6 29.25 80 86034000 4539000 123.7 28.4 573560 64843

ISMB350 350 140 0.524 6671 14.2 8.1 14.0 7.0 288.0 31.00 80 136303000 5377000 142.9 28.4 778874 76814

ISMB400 400 140 0.616 7846 16.0 8.9 14.0 7.0 334.4 32.80 80 204584000 6221000 161.5 28.2 1022920 88871

ISMB450 450 150 0.724 9227 17.4 9.4 15.0 7.5 379.2 35.40 90 303908000 8340000 181.5 30.1 1350702 111200

ISMB500 500 180 0.869 11074 17.2 10.2 17.0 8.5 424.1 37.95 100 452183000 13698000 202.1 35.2 1808732 152200

ISMB600 600 210 1.226 15621 20.8 12.0 20.0 10.0 509.7 45.15 140 918130000 26510000 242.4 41.2 3060433 252476

mm2 mm4 mm4 mm3 mm3

Page 17: crain load

DESIGN OF CRANE GANTRY GIRDER

Project : PRAI POWER 350 MW CCGT POWER PLANT PROJECTBuilding : CW PUMPHOUSE ( INTERNAL)Girder Type : EXISTING CRANE BEAM - DESIGN CHECK

1) INPUT DATA(Refer Appendix-A, for EOT drawing) All below

references are Crane Capacity = 100 kN BS 5950,

part-1,Weight of Crab = 0 kN

Weight of Crane Bridge = 0 kN

Self weight of the Rail = 1 kN/m

Height of the Crane Rail = 70 mm

Span of the Crane Girder, Lg = 8.7 m

Mini. approach of crane hook to the gantry = 1.000 m

No. of Wheels = 2Wheel Spacing1 = 0.60 mC.G of loading from left load = 0.30 m

Impact Factor : Vertical = 30 %

Horizontal = 10 %(Transverse to rail)On Stopper = 16 kN

Deflection Factor Vertical = 1000 Table:5Horizontal = 1000

Load Factor : = 1.6= 1.6= 1.4

Design strength of steel, py = 275 Table:6

Maximum unsupported length Top Flange = 8.70 m

Maximum unsupported length Bottom Flange = 8.70 m

2) LOAD CALCULATIONS

Wheel load calculation

Wheel Load by Vendor = 50.00 kN/wheel

2.a) Vertical Loadsi) Conc. Loads

Average static Wheel Load = 50.0 kN104.0 104.0

Load due to Impact = 0.30 x 50 = 15.00 kN

Total load = 65 kN

Factored Load 1.60 x 65.00 = 104.00 kN 0.60 ### 0.60

ii) Uniform Dirstributed LoadSelf weight of rail = 1.00 kN/mSelf weight of girder = 1.49 kN/m

2.49 kN/m

Factored load 1.40 x 2.49 = 3.49 kN/m

2.b) Horizontal LoadsMaximum lateral load per wheel is equal to 10% Static vertical wheel load,

= 0.1 from Fig-1

Max. Lateral load 0.10(50*2) = 10.0 kN BS:2573,part-1

2 wheels are resisting the total lateral load

Imposed load vertical -gIvfImposed load Horiz.gIhfDead load gdf

N/mm2

say Wm

Wmf =

Wdf =

l

WH =

Page 18: crain load

Factored lateral load 1.60 x 10.00 / 2 = 8.00 kN/wheel

2.c) Stopper Loads

Factored lateral load 1.60 x 16.00 = 25.6 kN/stopper

3) MAXIMUM BENDING MOMENT AND SHEAR FORCE

3.a) For vertical loads

i) Bending MomentThe maximum Bending moment under moving loads occurs when line ofaction of one load and centre of gravity of the loads are at equal distancefrom the centre of span. ( refer diagram at deflection check)

Reactions :-

Ra = 104x(1 + 0.60/2/8.7) +3.49x8.70/2 = 122.76 kN

Rb = 2x104+3.49x8.7- 122.759 = 115.59 kN

Maximum Bending Moment

Mux1 = (122.76 x 4.35) -104 x 0.45 - (3.49 x 4.35²/2)= 355.20 kN.m

ii) Shear Force:-

Reactions:

RA = 2 x 104.0 x [8.7-0.3] /8.7+ (3.5 x 8.7/2) = 216.00 kN

RB = (2 x 104.0) + (3.5 x 8.7) - 216.00 = 22.35 kN

Max. Reaction = 216.00 kN

3.b) For Horizontal loads

i) Local Bending Moment at C,

Crane Girder is laterally bending between points of restrained at support

8.000 x 8.7 /4 = 17.40 kN.m

ii) Shear force

Reactions :-

RA = 2x 8.0[8.7 - 0.3]8.70 = 15.448 kN

RB = 2 x 8.000 - 15.448 = 0.552 kN

= 15.448 kN

4) DESIGN OF GANTRY BEAM

Properties :-Depth of the section, D = 609.9 mm UB610X305X149kg/mWidth of the section, B = 304.8 mmThickness of web, t = 11.9 mmThickness of flange, T = 19.7 mmEffective depth of web, d = 537.2 mm

= 1.25E+09

= 9.30E+07

= 69.90 mm

= 4.09E+06

= 6.10E+05

= 4.57E+06

= 9.37E+05Buckling parameter, u = 0.886Torsional index, x : D/T = 32.5Sectional Area, A = 19000 mm2Flange Area on one side, Ag = 6005 mm2

Wdf =

Wsp =

Muy =

Max. Horzontal reaction RH

Second moment of inertia, Ixx mm4

Second moment of inertia, Iyy mm4

rmin

Section modulus, Zxx mm3

Section modulus, Zyy mm3

Plastic modulus, Sxx mm3

Plastic modulus, Syy mm3

Page 19: crain load

Out stand width of panel, b = 146.45 mm= 1.00

Outstand element of compression flange, b/T = 7.43 Plastic Cl.3.5.2 and Web slenderness, d/t = 45.14 Plastic Table:7

4.a) Shear Capacity

Web slenderness, d/t = 45.14 < 63*1.00 Cl.4.4.4.1Satisfactory

Shear area parallel to the web, Avx=t*d = 6392.68 mm2 Cl.4.2.3,

Critical Shear strength, qcr for d/t =45.14 = 165 N/mm2 Table:21,

Shear Capacity, Vcr=qcr*Avx = 1054.79 kN Cl.4.4.5.3> 216 kN Satisfactory

4.b) Moment capacity, Mb

i) Lateral-torsional buckling moment, Mb: ( as per clause 4.3.7.3 of BS 5950, part-1)

Effective length factor = 1.20 Table:9( Destabilizing condition)(As per table:9,BS 5950,part-1: Beam partial restrained against rotation)

= 10.44 m

= 149.36

= Cl.4.3.7.5

Slenderness correction factor, n = 1.0 conservativelyUniform moment factor, m = 1.0 conservativelyBuckling parameter, u = 0.886

= 4.596N = 0.50

= 0.82 Table:14

= 108.51pb = 109.00 N/mm2 Table:11

Buckling resistance, Mb = pb*Sxx= 498.13 kN.m Satisfactory

>355.20 kN.m Cl.4.3.7.2> m*Mux1

5) CHECK FOR COMBINED BENDING COMPRESSIVE STRESSIN EXTREME FIBRE (FOR VERTICAL PLUS LATERAL)

5.a) Compressive strength pc

= 149.36

pc = 81 N/mm2 Table 27c

5.b) Overall buckling check(As per Clause 4.8.3.3.1, BS 5950: part-1)

mMux1/Mb + mMuy/py*Zyy = 0.817 Satisfactory< 1.000

6) CHECK FOR LONGITUDINAL STRESS

Height of rail = 70 mm

5% of the static wheel load = 5/100 x2x 104.0 10.40 kN

Bending moment in the longitudinal direction is equal to Longitudinal Force intoCrane Rail Depth plus half of Crane Girder depth

Mux2 = 10400 x (70 + 305.0) = 3.90 kN.m

CHECK FOR COMBINED BENDING COMPRESSIVE STRESSIN EXTREME FIBRE (FOR VERTICAL PLUS LONGITUDINAL)

Constant, e, = sqrt(275/py)

Effective length, LE

Slenderness, l = LE/rmin

Equivalent slenderness, lLT nunl

l/x

Slenderness factor, n

lLT

Slenderness, l = LE/rmin

Page 20: crain load

F/Ag*pc + m(Mux1+Mux2)/Mb = 0.742 Satisfactory

7) CHECK FOR DEFLECTIONAllowable deflection for vertical loads

= Span / 1000 =8,700.0 / 1,000.0 = 8.70 mm

Allowable deflection for horizontal loads= Span / 1000 = 8,700.0 /1,000 = 8.70 mm

Vertical Deflection:-

4.5 4.2

3.90 65kN 65kN 2.49kN/m

c 8.70

=

= ((5/384)(2.49 x 8700^4)/( 205000 x 1.25E+09))+{( 65000 x 8700³)/( 48 x 205000 x 1.25E+09)} x {[3 x 3.90/9 - 4 x (3.90/9)³] + [3 x 4.20/9 - 4 x (4.20/9)³]}

= 7.625 mm

7.625 < 8.7 HENCE SAFE

8) SHEAR BUCKING OF WEB UNDER WHEEL LOAD

8.a) Web bearing under wheel load(as per Cl.4.11.4,BS 5950, part-1)

Load dispersion under wheel,lw= 2(Height of the wheel + Thickness of the flange)= 179.4 mm

Bearing Capacity = lw*py*t = 587.0865 kN > 104.00 kN Satisfactory

8.b) Web buckling under wheel load(as per Cl.4.5.2.1, BS 5950,part-1)

b1 = Stiff bearing length = 2(Height of the crane rail)= 140.00 mm

n1 = Dispersion at 45degrees through half the depth of the section= (depth of the web + 2*thickness of the flange)= 609.9 mm

d = Depth of the web = 570.5 mm

= 2.5*depth of the web/thickness of the web Cl.4.5.2.1= 119.85

Compressive resistance, pc = 97 N/mm2 Table 27c

Buckling resistance, Pw = (b1+n1)*t*pc= 865.61 kN= > 104.00 kN Satisfactory

9) CONNECTION FOR LONGITUDINAL LOAD

Longitudinal Force = 10.40 kN

Dia of bolt provided = 16 mmNo. of bolts provided = 2

Stress in Bolts = 25.86< 160 N/mm2

10) DESIGN OF STOPPER BRACKET

d lim, v

d lim, h

RA RB

d v

d v

CHECK dv < Allowable Deflection

Web slenderness, l

N/mm2

5384

×WL4

EI+ PL

3

48EI×[3a1L −4 (a1L )

3]+ PL348EI×[3a2L −4 (a2L )

3]

CG. OF GANTRY

CG OF LOADS

==

Page 21: crain load

Depth of the bracket, Dsp = 250 mmWidth of the bracket, Wsp = 102 mmThickness of the bracket plate, Tsp = 6 mmThickness of stiffener plate, Ts = 6 mmNo of stiffener plate, Ns = 1 nosDistance between Stopper and flange of Crane girder = 0.20 mMaximum Stopper force = 16.0 kNMaximum ultimate Stopper force, S = 25.6 kN

10.a) Design for MomentMoment due to eccentricity, Mc = 5.12 kN.m

Combined plate C.G., x = 91.2 mm

Combined plate Ixx = 1.40E+07

Distance of compression edge = 158.8 mm

Combined plate Zxx = 88189

Moment capacity, Mc = PypZxx = 24.25 kNm Cl.4.13.2.4> 5.12 kNm Satisfactory

10.b) Weld between Bracket and flange of Crane Girder

Design strength of fillet weld, pw = 215 Tb.36, BS5950

Weld thickness = 6 mm

Effective length of flange weld = 400 mm

Max.bending tension in bracket, T = M/x = 56.2 kN

Capacity of bracket weld under tension = 361.2 kN> 56.2 kN Satisfactory O.K.

mm4

mm3

N/mm2