5
Crack Spacing of Overlay Crack Spacing of Overlay Strengthened RC Beam Strengthened RC Beam Zhang Dawei (PD) Zhang Dawei (PD) Lab of Engineering for Maintenance System Lab of Engineering for Maintenance System 20100804 20100804 2 1. Research Background 3. Problem with Current Standard Specifications 4. Analytical approach for Crack spacing 2. Average Crack Spacing 5. Next research plan 3 Research Background Deterioration problems of highways or bridges Deterioration problems of highways or bridges Continuous increase in traffic amount Insufficient slab thickness in the past design Repair or strengthening of deteriorated concrete structures are necessary FRP Bonding Steel Plate bonding Traffic Safety Overlay Strengthening 4 Overlay Strengthening Strengthening RC beam overlay A A Section A-A h t lR lE Typical view of overlay strengthening method Overlay materials Cover materials Reinforcement materials PCM HPFRCC Steel bars FRP Grid

Crack Spacing of Overlay Strengthened RC Beam · 2014. 8. 25. · k1= 2/3 (CEB-FIP 1990) 18 Verification 0 50 100 150 200 0 50 100 150 200 Scal (mm) Sexp (mm) New Model Scal=Sexp

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Crack Spacing of Overlay Crack Spacing of Overlay Strengthened RC Beam Strengthened RC Beam

    Zhang Dawei (PD)Zhang Dawei (PD)Lab of Engineering for Maintenance SystemLab of Engineering for Maintenance System

    2010080420100804 2

    1. Research Background

    3. Problem with Current Standard Specifications

    4. Analytical approach for Crack spacing

    2. Average Crack Spacing

    5. Next research plan

    3

    Research Background

    Deterioration problems of highways or bridgesDeterioration problems of highways or bridges

    Continuous increase in traffic amount

    Insufficient slab thickness in the past design

    Repair or strengthening of deteriorated concrete structures are necessary

    FRP BondingSteel Plate bonding

    Traffic Safety

    Overlay Strengthening4

    Overlay StrengtheningStrengthening

    RC beam

    overlay

    A

    ASection A-A

    h

    tlRlE

    Typical view of overlay strengthening method

    Overlay materials

    Cover materials Reinforcement materials

    PCM HPFRCC Steel bars FRP Grid

  • 5

    Crack Spacing

    Serviceability and durability

    Pre-mature failure

    Shear, tensile and bending stiffnessEnergy absorption capacityDuctilityCorrosion resistance

    Transferred shear stress-----IC or end zone debonding

    Transferred normal stress-----Concrete cover separation

    Prediction of Average Crack

    Spacing

    Prediction of Average Crack

    Width

    Scr Scr Scr Scr Scr Scr ScrScr ScrScr

    6

    Current prediction equations

    hh

    t

    Overlay strengthened beam Multiplayer reinforced beam

    PredictionPredictionequationsequations

    BB

    EE

    CC

    DD

    AACSA S474 2004

    NS 3473 E 1992

    Eurocode EC2

    JSCE, 2007 CEB-FIP 1990

    7

    Current prediction equations

    CEB-FIP 1990

    JSCE, 2007

    Eurocode EC2

    NS 3473 E 1992

    C: concrete cover (mm)

    S: bar spacing (mm)Ф: Bar diamater

    (mm) (External layer)

    Ast: Bar area (mm2)Act: Effective

    concrete tension area (mm2)

    CSA S474 2004

    MainParameters

    EquationCode

    ( ) tNscr kkSCS ρφ /.. 211002 ++=

    ( ) tNscr kkSCS ρφ /.. 211002 ++=

    st

    ctcr A

    AkkCS

    φ212 +=

    efscrS

    ,. ρφ

    45=

    ( ){ }φ−+= SckkkScr 70411 321 ..

    ctsttNs AA /=ρ

    8

    Comparison-1

    Scal/Sexp

    Mean: 0.79

    Standard Deviation: 0.17

    Scal/Sexp

    Mean: 0.78

    Standard Deviation: 0.18

    28 Overlay Strengthened Beams

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal(mm)

    Sexp

    (mm

    )

    CSA

    Scal=Sexp0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sexp

    (mm

    )

    NS

    Scal=Sexp

  • 9

    Comparison-2

    Scal/Sexp

    Mean: 0.79

    Standard Deviation: 0.22

    Scal/Sexp

    Mean: 0.87

    Standard Deviation: 0.32

    28 Overlay Strengthened Beams

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sexp

    (mm

    )

    EC2Scal=Sexp

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)Se

    xp (m

    m)

    CEB-FIPScal=Sexp

    10

    Comparison-328 Overlay Strengthened Beams

    Scal/Sexp

    Mean: 1.22

    Standard Deviation: 0.30

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sexp

    (mm

    )

    JSCE 2007Scal=Sexp

    The current design specifications can not

    predict the crack spacing of overlay strengthened

    beam satisfactorily

    11

    Initiation of Crack

    Arc

    ArAs

    hodr

    b

    ds

    ε’cc

    εtc

    xgdrc

    hc

    εto

    tcgc

    ccc fxh

    IM−

    =

    ( ) togoc

    o

    cco fxh

    IEEM

    −=

    Crack at substrate concrete

    Crack at overlay material

    ( )

    ( )( ) togcc

    tcgoo

    togo

    c

    o

    c

    tcgc

    c

    co

    ccc fxhE

    fxhE

    fxh

    IEE

    fxh

    I

    MM

    R−

    −=

    −==

    Crack always initiates from substrate concreteCrack always initiates near the bottomRc Max:0.52 Min: 0.33 Mean: 0.45Rc>1

    Overlay strengthened RC beamMultilayer reinforced concrete beam

    12

    Comparison-1'

    Scal/Sexp

    Mean: 0.98

    Standard Deviation: 0.13

    Scal/Sexp

    Mean: 0.98

    Standard Deviation: 0.13

    Ф and S of Internal bars

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sex

    p (m

    m)

    NS (RC)

    Scal=Sexp0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sexp

    (mm

    )CSA (RC)Scal=Sexp

  • 13

    Comparison-2'

    Scal/Sexp

    Mean: 1.07

    Standard Deviation: 0.13

    Scal/Sexp

    Mean: 1.35

    Standard Deviation: 0.24

    Ф and S of Internal bars

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sexp

    (mm

    )

    CEB-FIP (RC)Scal=Sexp

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sexp

    (mm

    )

    CE2 (RC)Sexp=Scal

    14

    Comparison-3'

    Scal/Sexp

    Mean: 1.34

    Standard Deviation: 0.33

    The properties of reinforcementnearest to the initiation locationof flexure crack predominantly

    control the crack spacing of overlay strengthened beam

    Ф and S of Internal bars

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sexp

    (mm

    )

    Scal=SexpJSCE (RC)

    Mechanism is not clear

    15

    Analytical Approach -1

    SssjAσ

    rriAσ

    ssiAσ

    rrjAσx

    Concrete

    Overlay dx

    bcτ

    bpτ

    bcτ

    bpτ

    Overlay

    P P

    S S

    Concrete

    FdFF +

    bcτ

    Overlay

    dx

    boτb

    b

    t

    ch

    ( )

    ( )⎪⎪⎪

    ⎪⎪⎪

    +−=+

    +−=

    +++=

    ∑∑

    ∑∑∑∑

    bosbcroto

    ctc

    bosbcr

    bosbcr

    OOAdx

    dAdx

    d

    OOdxdF

    dxOdxOdFFF

    ττσσ

    ττ

    ττ

    16

    Analytical Approach -2

    SssjAσ

    rriAσ

    ssiAσ

    rrjAσx

    Concrete

    Overlay dx

    bcτ

    bpτ

    bcτ

    bpτ

    bobc ττ or

    0

    0

    oc σσ or

    o

    o

    c

    co EE

    maxmax σσε ==

    ( )( )

    ( )

    ( )o

    oto

    cct

    bosbcro

    t

    c

    ootct

    bosbcrc

    bosbcr

    S bosbcrotoctc

    fA

    EE

    A

    OOS

    f

    EE

    AA

    OOS

    OOS

    dxOOAA

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+

    +=

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+

    +=

    +=

    +−=+

    ∑∑

    ∑∑

    ∑∑∫ ∑∑

    2

    2

    2

    0

    2

    ττσ

    ττσ

    ττ

    ττσσ

    max

    max

    /maxmax

    MIN

    Zero-slip point

  • 17

    Analytical Approach -2

    ( )bosbcrc

    ootctt

    c OOEE

    AAfS

    ττ ∑∑ +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+

    =

    2

    max

    ( )bosbcrot

    o

    ccto

    o OO

    AEE

    AfS

    ττ ∑∑ +⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+

    =2

    max

    ),min( maxmaxmax oc SSS =

    ),min( maxmaxmax oc SSkkS 21=

    ε1

    ε2hc+t

    ho

    xc

    Maximum crack spacing of substrate concrete layer

    Maximum crack spacing of overlay layer

    Uniaxial tension load

    Stabilized cracking under flexure load

    k2= (ε1 + ε2)/2ε1 (CSA 2004, NS 1992)

    k1= 2/3 (CEB-FIP 1990)

    18

    Verification

    0

    50

    100

    150

    200

    0 50 100 150 200

    Scal (mm)

    Sexp

    (mm

    )

    New ModelScal=Sexp

    Scal/Sexp

    Mean: 1.03

    Standard Deviation: 0.14

    The proposed analytical approach can predict the crack spacing of overlay strengthened beam satisfactorily

    19

    Next PlanNext PlanDesign procedure of overlay strengthened RC members under fatigue loading

    1

    Visiting Scholar at Technical University of Munich and Technical University of Braunschweig

    3

    Design procedure of overlay strengthened damaged RC members

    2

    Dynamic behavior of strengthening measuresOct, 15-Nov,09TU Braunschweig

    1. Strengthening of RC structures with CFK laminates

    2. Concrete to concrete bond3. Joining of ultra-high performance concrete

    (HUPC) by göuing.

    Sep,19-Oct,14TU Munich

    20