5
1 Lecturer: Puan Nursyamsyila Mat Hadzir (STAR Complex; Room: F007) Syllabus Content CHM 580 (Group AS225 and AS202) 1.0 An Introduction to Spectrometric Methods 1.1 General Properties of Electromagnetic Radiation 1.1.1 Wave and Quantum-Mechanical Properties of Electromagnetic Radiation 1.1.2 The Electromagnetic Spectrum 1.1.3 Energy States of Chemical Species 1.1.4 Interaction of Radiation and Matter; absorption, emission, luminesc scattering 1.2 Quantitative Aspects of Spectrochemical Measurements 1.2.1 Transmittance 1.2.2 Absorbance 1.2.3 Beer’s Law 2.0 Components of Optical Instruments 2.1 General Designs of Optical Instruments. 2.2 Sources of Radiation; Continuous, Line and Laser sources 2.3 Wavelengths Selectors; grating monochromators 2.4 Sample Containers 2.5 Radiation Transducers 2.5.1 Properties of Ideal transducer 2.5.2 Types of Transducers 2.5.2.1 Photon Transducers; Phototubes, Photomultiplier Tubes, Silicon Photodiodes and Photodiode Arrays 2.5.2.2 Thermal Transducers; Thermocouples, Bolometers and Pyroelectric Transducers 2.6 Signal Processors and Readouts 3.0 Atomic Absorption (AA) Spectroscopy 3.1 Fundamental Principles 3.1.1 Energy Level diagrams 3.1.2 Atomic Emission Spectra 3.1.3 Atomic Absorption Spectra 3.1.4 Atomic Line Widths 3.1.4.1 Doppler Broadening 3.1.4.2 Pressure Broadening 3.1.4.3 The Effect of Temperature on Atomic Spectra 3.2 Sample Atomization techniques 3.2.1 Flame Atomization 3.2.1.1Types of Flame 3.2.1.2 Flame Structure 3.2.1.3 Flame Atomizers 3.2.1.4 Performance Characteristics of Flame Atomizers

Course Outline CHM580

Embed Size (px)

DESCRIPTION

kimia

Citation preview

Lecturer: Puan Nursyamsyila Mat Hadzir (STAR Complex; Room: F007)Syllabus Content CHM 580 (Group AS225 and AS202)1.0 An Introduction to Spectrometric Methods 1.1 General Properties of Electromagnetic Radiation1.1.1 Wave and Quantum-Mechanical Properties of Electromagnetic Radiation1.1.2 The Electromagnetic Spectrum1.1.3 Energy States of Chemical Species1.1.4 Interaction of Radiation and Matter; absorption, emission, luminescence and scattering1.2 Quantitative Aspects of Spectrochemical Measurements1.2.1 Transmittance1.2.2 Absorbance 1.2.3 Beers Law

2.0 Components of Optical Instruments2.1 General Designs of Optical Instruments.2.2 Sources of Radiation; Continuous, Line and Laser sources2.3 Wavelengths Selectors; grating monochromators2.4 Sample Containers2.5 Radiation Transducers2.5.1 Properties of Ideal transducer2.5.2 Types of Transducers 2.5.2.1 Photon Transducers; Phototubes, Photomultiplier Tubes, Silicon Photodiodes and Photodiode Arrays2.5.2.2 Thermal Transducers; Thermocouples, Bolometers and Pyroelectric Transducers2.6 Signal Processors and Readouts

3.0 Atomic Absorption (AA) Spectroscopy3.1 Fundamental Principles3.1.1Energy Level diagrams3.1.2 Atomic Emission Spectra3.1.3 Atomic Absorption Spectra3.1.4 Atomic Line Widths 3.1.4.1 Doppler Broadening 3.1.4.2 Pressure Broadening3.1.4.3 The Effect of Temperature on Atomic Spectra3.2 Sample Atomization techniques 3.2.1Flame Atomization 3.2.1.1 Types of Flame3.2.1.2 Flame Structure 3.2.1.3 Flame Atomizers 3.2.1.4 Performance Characteristics of Flame Atomizers

3.2.2. Electrothermal Atomization3.2.2.1 Electrothermal Atomizers3.2.2.2 Output Signals3.2.2.3 Performance Characteristics of Electrothermal Atomizers3.2.2.4 Analysis of Solids 3.3Atomic Absorption (AA) Spectroscopy 3.3.1 Sample Introduction Methods3.3.2 Introduction of Solution Samples 3.2.1.1 Nebulization 3.2.1.3 Electrothermal Vaporizer3.3.3 Introduction of Solid Samples; Direct-sample Insertion, Electrothermal Vaporizer, Laser ablation 3.3.3.1 Electrothermal Vaporizer 3.3.4 Radiation Sources 3.3.4.1 Hollow Cathode Lamps 3.3.4.2 Electrodeless Discharge Lamps 3.3.5 Source Modulation3.4Interferences3.4.1 Spectral Interferences3.4.2 Chemical Interferences 3.4.2.1 Formation of Low Volatility Compounds 3.4.2.2 Dissociation Equilibria 3.4.2.3 Ionization Equilibria3.5Sample Preparation.3.6Quantitative Analysis; Standard Calibration Curve and Standard Addition Method.3.7Application of AAS, Detection Limits and Accuracy

4.0 Atomic Emission (AE) Spectrometry 4.1 Fundamental Principles4.2 AES based on Inductively Coupled Plasma (ICP) Source4.3 Application of ICP-OES; Sample Preparation, Elements Determined, Line Selection, Calibration Curves, Interferences and Detection limits.

5.0 Ultraviolet/Visible Molecular Absorption Spectrometry5.1 Measurement of Transmittance and Absorbance5.2 Beers Law5.3 Limitations to Beers Law; Real, Chemical and Instrumental Deviations.5.4 Instrumentation6.4.1 Radiation Sources; Deuterium and Hydrogen Lamps, Tungsten Halogen Lamps6.4.2 Sample Containers6.4.3 Types of Instrument; Single-Beam and Double-Beam Instruments5.5 Absorbing species; Organic Compounds, Inorganic Species and Charge Transfer Complexes.5.6 Quantitative Applications

6.0 Molecular Fluorescence Spectrometry6.1 Theory of Fluorescence6 7 7.1 6.1.1 Excited States Producing Fluorescence6.1.2 Electron Spin6.1.3 Singlet and Triplet Excited States6.2 Energy-level diagrams 6.3 Variables affecting fluorescence6.3.1Quantum yield6.3.2 Transition types in fluorescence6.3.3 Fluorescence and structure6.3.4 Effect of structural rigidity 6.3.5 Temperature effects6.3.6 Effect of concentration on fluorescence Intensity 6.4 Components of spectrofluorometers; radiation sources, monochromators, transducers, cell and cell compartment 6.5 Applications of fluorescence spectrometry

7.0 Infrared Spectrometry7.1 Theory of IR absorption7.2 IR Instrumentation; dispersive and FTIR7.3 Application: Mid-IR absorption spectrometry7.4 Sample handling7.5 Correlation charts and tables7.6 Interpretation of IR spectra of simple organic compounds (alkanes, alkenes, alkynes, alcohols, aldehydes, ketones, carboxylic acids, esters, ethers, aromatic hydrocarbons, amines and amides).

8.0 Raman spectroscopy 8.1 Theory of Raman spectroscopy8.2 Energy-level diagrams8.3 Instrumentation 8.4 Applications

9.0 Nuclear Magnetic Resonance (NMR) Spectroscopy 9.1 Theory of NMR 9.1.1Quantum Description of NMR 9.1.2Energy Levels in a Magnetic Field 9.1.3 Precession of Nuclei in a Field 9.2 Instrumentation; Continuous Wave and FT NMR 9.2.1Components of FT NMR spectrometers 9.2.1.1 Magnets: locking the Magnetic Field, Shimming, Sample Spinning 9.2.1.2 The sample probe 9.2.1.3 Detector and Data-processing System 9.2.2 Sample Handling 9.3 Chemical Shift and its Measurement9.4 Factors influencing Chemical Shift9.5 Proton NMR Spectroscopy9.5.1 Solvents Used in NMR9.5.2Integrals in Proton NMR Spectra9.5.3Spin-Spin Coupling/Spin-Spin Splitting9.5.4n+1 Rule 9.5.5 Correlation Charts and Tables for Proton NMR9.5.6 Interpretation of Proton NMR Spectra of Simple Organic Compounds 9.6 Carbon-13 NMR Spectroscopy9.6.1 Natural Abundance C-13 NMR Spectra 9.6.2 Proton Decoupling 9.6.3 Structural Applications of C-13 NMR9.6.4 Correlation Data and Tables for C-13 NMR Spectra9.6.5 Interpretation of C-13 NMR spectra9.7 Structure Elucidation of Simple Organic Compounds from IR and NMR spectra

10.0 Molecular Mass Spectroscopy10.1 Basic Principles10.2 Instrumentation10.2.1 Types of Ionization Sources; Gas phase (CI, EI and FI) and Desorption (ESI and FAB) 10.2.2 Types of Mass Analyzers; Magnetic Sector, Double-Focusing, Quadrupole, Time-of-Flight10.3 Mass Spectra10.3.1 Isotope Abundances10.3.2 The Molecular Ion and Base Peak10.3.3 Fragment ions10.4 Applications of Molecular Mass Spectrometry; 10.4.1 Structural Analysis and Fragmentation Patterns: alkanes, alkenes, alkynes, ketones, alkyl chlorides and alkyl bromides10.4.2 Molecular Mass DeterminationPracticals:1 UV-Vis spectrometer; quantitative analysis2 Spectrofluorometer; quantitative analysis3 FTIR; qualitative analysis4 AAS; wet digestion, quantitative analysis5 AAS; microwave digestion, quantitative analysis6 Demonstration; NMR/ICP-OES

Teaching Methodology:i. Active engagement via lecture-discussionii. Scientific investigation via laboratories experiences

Assessment:Course Work:

Tests 30% Quizzes 10%

Practical Skills 10 %

Lab reports 10%

60%

Final exam : 40%

Recommended TextSkoog, D.A., Holler, F.J. and S.R. Crouch. 6th Edition. 2007. Principles of Instrumental Analysis. Thomson Brooks/Cole 2007.

Pavia, D.L., Lampman, G.M., Kriz, G.S.and J.R. Vyvyan 4th Ed, 2009 Introduction toSpectroscopy, A guide for Students of Organic Chemistry, Brooks/Cole

ReferencesSkoog, D.A., West, D.M., Holler, F.J. and S.R. Crouch , 8th edition, 2004 Fundamentals of Analytical Chemistry, Thomson, Brooks/ColeZumdahl, Chemistry, (6th Ed.) Houghton Mifflin Company, 2003.Whitten, Davis, Peck & Stanley, General Chemistry, (7th Ed.), Thomson Learning, 2004Pavia, D.L., Lampman, G.M., Kriz, G.S.and J.R. Vyvyan 4th Ed, 2009 Introduction to Spectroscopy, A guide for Students of Organic Chemistry, Brooks/ColeHikolai V. Tkachenko. Optical Spectroscopy: Methods and Instrumentation. Elsevier, The Netherlands, 2006. Yong Cheng Ning and Richard R. Ernst. Structural Identification of Organic Compounds with Spectroscopic Techniques. Wiley-VCH Weinheim 2005.3