32
Correction of systematic disturbances in latent-variable calibration models Paman Gujral, Michael Amrhein, Barry M. Wise, Enrique Guzman, Davyd Chivala and Dominique Bonvin Laboratoire d’Automatique Ecole Polytechnique F´ ed´ erale de Lausanne ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Gujral (LA-EPFL) SSC11 2009 08/06/2009 1 / 15

Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Correction of systematic disturbances in latent-variable

calibration models

Paman Gujral, Michael Amrhein, Barry M. Wise, Enrique Guzman,

Davyd Chivala and Dominique Bonvin

Laboratoire d’AutomatiqueEcole Polytechnique Federale de Lausanne

ÉCOLE POLYTECHNIQUEFÉDÉRALE DE LAUSANNE

Gujral (LA-EPFL) SSC11 2009 08/06/2009 1 / 15

Page 2: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Agenda

Introduction

Calibration and predictionConstituents of prediction error

Unifying framework for different correction methodologies

Illustrative examples

Simulation exampleTwo real data examples

Gujral (LA-EPFL) SSC11 2009 08/06/2009 2 / 15

Page 3: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Introduction

Background

Calibration: {Xc , yc} → b Prediction: yp = Xpb

Gujral (LA-EPFL) SSC11 2009 08/06/2009 3 / 15

Page 4: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Introduction

Background

Calibration: {Xc , yc} → b Prediction: yp = Xpb

xT

c = ycsT + (spectra from other species) + noisec

Gujral (LA-EPFL) SSC11 2009 08/06/2009 3 / 15

Page 5: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Introduction

Background

Calibration: {Xc , yc} → b Prediction: yp = Xpb

xT

c = ycsT + (spectra from other species) + noisec

but

xT

p = ypsT + (spectra from other species) + dT + noisep

Gujral (LA-EPFL) SSC11 2009 08/06/2009 3 / 15

Page 6: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Introduction

Constituents of prediction error

yp = xT

p b

= (ypsT + spectra from other species)b + dTb + (noise) b

Prediction error (yp − yp) has three constituents:

1 due to noise (variance)

2 due to systematic disturbance (bias)

3 due to the PCR/PLSR modeling error (bias)

Gujral (LA-EPFL) SSC11 2009 08/06/2009 4 / 15

Page 7: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Unifying frameworkEXPLICIT CORRECTION METHODS USING ADDITIONAL MEASUREMENTS

CC: component correction, 2000

IIR: independent interference reduction, 2001

GLSW: generalized least squares weighting, 2003

EPO: external parameter orthogonalization, 2003

TOP: calibration transfer by orthogonal projection, 2004

DCPS: difference correction of prediction samples, 2005

DOP: dynamic orthogonal projection, 2006

EROS: error removal by orthogonal subtraction, 2008

Gujral (LA-EPFL) SSC11 2009 08/06/2009 5 / 15

Page 8: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Unifying frameworkSTEP 1: ESTIMATION OF DRIFT SPACE

nτ replicate measurements nτ reference measurements

Matched y-values Non-matched y-values (e.g. uncontrolledonline measurements)

D approximated as

D = Xτ,2|{z}

slave

− Xτ,1|{z}

master

D approximated as

D = Xτ|{z}

slave

−AXc| {z }

master

GLSW & TOP (calibration transfer),EPO, DCPS & EROS (temperaturechanges), IIR (unknown variation), CC(unknown drift)

DOP (unknown drift)

Gujral (LA-EPFL) SSC11 2009 08/06/2009 6 / 15

Page 9: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Unifying frameworkSTEP 2: DRIFT-CORRECTION

Shrinking Orthogonal projection Subtraction

GLSW CC, IIR, EPO, DOP, TOP,

EROS

DCPS

Calibrate with {XcW, yc},where

W =

DTD

nτ − 1+ α

2I

!−

12

Calibrate with {XcN, yc}

D = TPT + E

N = (I − PPT)

Calibrate with {Xc , yc}Assuming one drift factor, d,correct the prediction sample:

xp∗ = xp − β d

β optimized to minimize the2-norm ||xp∗||.

r

Gujral (LA-EPFL) SSC11 2009 08/06/2009 7 / 15

Page 10: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Unifying frameworkSTEP 2: DRIFT-CORRECTION

Shrinking Orthogonal projection Subtraction

GLSW CC, IIR, EPO, DOP, TOP,

EROS

DCPS

Calibrate with {XcW, yc},where

W =

DTD

nτ − 1+ α

2I

!−

12

Calibrate with {XcN, yc}

D = TPT + E

N = (I − PPT)

Calibrate with {Xc , yc}Assuming one drift factor, d,correct the prediction sample:

xp∗ = xp − β d

β optimized to minimize the2-norm ||xp∗||.

r

ANALYTICALRESULTS

{(i) Equivalent for

one drift component

Gujral (LA-EPFL) SSC11 2009 08/06/2009 7 / 15

Page 11: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Unifying frameworkSTEP 2: DRIFT-CORRECTION

Shrinking Orthogonal projection Subtraction

GLSW CC, IIR, EPO, DOP, TOP,

EROS

DCPS

Calibrate with {XcW, yc},where

W =

DTD

nτ − 1+ α

2I

!−

12

Calibrate with {XcN, yc}

D = TPT + E

N = (I − PPT)

Calibrate with {Xc , yc}Assuming one drift factor, d,correct the prediction sample:

xp∗ = xp − β d

β optimized to minimize the2-norm ||xp∗||.

r

ANALYTICALRESULTS

{(i) Equivalent for

one drift component

{(ii) Equivalent when

r = nτ and α → 0

Gujral (LA-EPFL) SSC11 2009 08/06/2009 7 / 15

Page 12: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Drift correctionCHOICE OF META-PARAMETERS (α, r)

More complex than determining pseudo-rank of D

Wilks’ f test, Malinowski’s F-test, Faber-Kowalski F-testResults based on random matrix theory and perturbation theory (Nadler et al.)

Gujral (LA-EPFL) SSC11 2009 08/06/2009 8 / 15

Page 13: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Drift correctionCHOICE OF META-PARAMETERS (α, r)

More complex than determining pseudo-rank of D

Wilks’ f test, Malinowski’s F-test, Faber-Kowalski F-testResults based on random matrix theory and perturbation theory (Nadler et al.)

Constituents of prediction error

yp = xT

p b

= (ypsT + spectra from other species)b + dTb + (noise)p b

Gujral (LA-EPFL) SSC11 2009 08/06/2009 8 / 15

Page 14: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Drift correctionCHOICE OF META-PARAMETERS (α, r)

More complex than determining pseudo-rank of D

Wilks’ f test, Malinowski’s F-test, Faber-Kowalski F-testResults based on random matrix theory and perturbation theory (Nadler et al.)

Constituents of prediction error

yp = xT

p b

= (ypsT + spectra from other species)b + dTb + (noise)p b

Prediction error constituents after drift correctionb ⊥ estimated drift-space bias due to drift |dTb| ↓ ✔

Gujral (LA-EPFL) SSC11 2009 08/06/2009 8 / 15

Page 15: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Drift correctionCHOICE OF META-PARAMETERS (α, r)

More complex than determining pseudo-rank of D

Wilks’ f test, Malinowski’s F-test, Faber-Kowalski F-testResults based on random matrix theory and perturbation theory (Nadler et al.)

Constituents of prediction error

yp = xT

p b

= (ypsT + spectra from other species)b + dTb + (noise)p b

Prediction error constituents after drift correctionb ⊥ estimated drift-space

RMSECV ↑

bias due to drift |dTb| ↓

bias in PCR/PLSR ↑

Gujral (LA-EPFL) SSC11 2009 08/06/2009 8 / 15

Page 16: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Drift correctionCHOICE OF META-PARAMETERS (α, r)

More complex than determining pseudo-rank of D

Wilks’ f test, Malinowski’s F-test, Faber-Kowalski F-testResults based on random matrix theory and perturbation theory (Nadler et al.)

Constituents of prediction error

yp = xT

p b

= (ypsT + spectra from other species)b + dTb + (noise)p b

Prediction error constituents after drift correctionb ⊥ estimated drift-space

RMSECV ↑

||b||2 ↑

bias due to drift |dTb| ↓

bias in PCR/PLSR ↑

variance due to noise ↑

Gujral (LA-EPFL) SSC11 2009 08/06/2009 8 / 15

Page 17: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

Data generation

Using Beer’s law and known pure component spectra of 4 speciesDrift in 7-dimensional loading space S(Pd), overlapping with signal loadingspace S(Ps)

Gujral (LA-EPFL) SSC11 2009 08/06/2009 9 / 15

Page 18: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

Data generation

Using Beer’s law and known pure component spectra of 4 speciesDrift in 7-dimensional loading space S(Pd), overlapping with signal loadingspace S(Ps)

Estimated drift-space for one (out of 5) reference sample

dT = σdT

pT

d,1

pT

d,2

pT

d,3

...pT

d,7

+

Gujral (LA-EPFL) SSC11 2009 08/06/2009 9 / 15

Page 19: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

Data generation

Using Beer’s law and known pure component spectra of 4 speciesDrift in 7-dimensional loading space S(Pd), overlapping with signal loadingspace S(Ps)

Estimated drift-space for one (out of 5) reference sample

dT = σdT

pT

d,1

pT

d,2

pT

d,3

...pT

d,7

+ σsT

pT

s,1

...pT

s,4

+

Gujral (LA-EPFL) SSC11 2009 08/06/2009 9 / 15

Page 20: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

Data generation

Using Beer’s law and known pure component spectra of 4 speciesDrift in 7-dimensional loading space S(Pd), overlapping with signal loadingspace S(Ps)

Estimated drift-space for one (out of 5) reference sample

dT = σdT

pT

d,1

pT

d,2

pT

d,3

...pT

d,7

+ σsT

pT

s,1

...pT

s,4

+ σn randn(1, L)

Gujral (LA-EPFL) SSC11 2009 08/06/2009 9 / 15

Page 21: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

Data generation

Using Beer’s law and known pure component spectra of 4 speciesDrift in 7-dimensional loading space S(Pd), overlapping with signal loadingspace S(Ps)

Estimated drift-space for one (out of 5) reference sample

dT = σdT

pT

d,1

pT

d,2

pT

d,3

...pT

d,7

+ σsT

pT

s,1

...pT

s,4

+ σn randn(1, L)

σdT = [1 × randn(1, 2) 0.1 × randn(1, 5)]

σsT = [0.3 × randn(1, 4)]

σn = 0.1

Gujral (LA-EPFL) SSC11 2009 08/06/2009 9 / 15

Page 22: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

−6 −4 −2 0

−6 −4 −2 0

0.04

0.06

0.08

0.1

log( α )

RR

MS

EP

Without correction

With shrinkage

With OP r = 1

r = 2,3,4,5

Gujral (LA-EPFL) SSC11 2009 08/06/2009 10 / 15

Page 23: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

−6 −4 −2 0

−6 −4 −2 0

log( α)

RR

MS

EP

High Signal (σ = 3)

Low Noise (σ = 0.1)

Medium Signal (σ = 2)

Low Noise (σ = 0.1)

Low Signal (σ = 0.3)

Low Noise (σ = 0.1)

Medium Signal (σ = 2)

High Noise (σ = 0.3)

High Signal (σ = 3)

High Noise (σ = 0.3)

s

n

s

s

s

s

Low Signal (σ = 0.3)

High Noise (σ = 0.3)s

n

n

n

n

n

Gujral (LA-EPFL) SSC11 2009 08/06/2009 11 / 15

Page 24: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

−6 −4 −2 0

−6 −4 −2 0

log( α)

RR

MS

EP

High Signal (σ = 3)

Low Noise (σ = 0.1)

Medium Signal (σ = 2)

Low Noise (σ = 0.1)

Low Signal (σ = 0.3)

Low Noise (σ = 0.1)

Medium Signal (σ = 2)

High Noise (σ = 0.3)

High Signal (σ = 3)

High Noise (σ = 0.3)

s

n

s

s

s

s

Low Signal (σ = 0.3)

High Noise (σ = 0.3)s

n

n

n

n

n

Gujral (LA-EPFL) SSC11 2009 08/06/2009 11 / 15

Page 25: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

−6 −4 −2 0

−6 −4 −2 0

log( α)

RR

MS

EP

High Signal (σ = 3)

Low Noise (σ = 0.1)

Medium Signal (σ = 2)

Low Noise (σ = 0.1)

Low Signal (σ = 0.3)

Low Noise (σ = 0.1)

Medium Signal (σ = 2)

High Noise (σ = 0.3)

High Signal (σ = 3)

High Noise (σ = 0.3)

s

n

s

s

s

s

Low Signal (σ = 0.3)

High Noise (σ = 0.3)s

n

n

n

n

n

Gujral (LA-EPFL) SSC11 2009 08/06/2009 11 / 15

Page 26: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 1: SIMULATION

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

0.04

0.06

0.08

0.1

−6 −4 −2 0

−6 −4 −2 0

−6 −4 −2 0

log( α)

RR

MS

EP

High Signal (σ = 3)

Low Noise (σ = 0.1)

Medium Signal (σ = 2)

Low Noise (σ = 0.1)

Low Signal (σ = 0.3)

Low Noise (σ = 0.1)

Medium Signal (σ = 2)

High Noise (σ = 0.3)

High Signal (σ = 3)

High Noise (σ = 0.3)

s

n

s

s

s

s

Low Signal (σ = 0.3)

High Noise (σ = 0.3)s

n

n

n

n

n

Gujral (LA-EPFL) SSC11 2009 08/06/2009 11 / 15

Page 27: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 2: REAL DATA WITH TEMPERATURE EFFECTS

NIR, 3 species

11 x 2 = 22@ 30, 40 C

11 x 3 = 33@ 50, 60, 70 C

Monte Carlo5 reference samples

Calibration

Predictionο

ο

−10 −8 −6 −4 −2 0 20.02

0.03

0.04

0.05

0.06

r = 1

r = 2 r = 3

r = 4 r = 5

log(α)

RR

MS

EP

Without correctionWith shrinkageWith OP

Gujral (LA-EPFL) SSC11 2009 08/06/2009 12 / 15

Page 28: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Step 2: Shrinkage vs orthogonal projectionEXAMPLE 3: REAL DATA FOR CALIBRATION TRANSFER

NIR, 4 measured properties

40on Instrument 1

40on Instrument 2

Monte Carlo5 reference samples

Calibration

Prediction

−8 −6 −4 −2 0 20.1

0.11

0.12

0.13

0.14

r = 1

log(α)

RR

MS

EP

r = 2

r = 4 r = 5

r = 3

Without correctionWith shrinkageWith OP

Gujral (LA-EPFL) SSC11 2009 08/06/2009 13 / 15

Page 29: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Summary

Unifying framework

Many drift-correction methods proceed in two steps: (i) drift estimation, (ii)drift correction

Gujral (LA-EPFL) SSC11 2009 08/06/2009 14 / 15

Page 30: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Summary

Unifying framework

Many drift-correction methods proceed in two steps: (i) drift estimation, (ii)drift correction

Illustrative examples

Shrinkage performs better than orthogonal projection typically whensignificant signal present in estimated drift

Gujral (LA-EPFL) SSC11 2009 08/06/2009 14 / 15

Page 31: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Summary

Unifying framework

Many drift-correction methods proceed in two steps: (i) drift estimation, (ii)drift correction

Illustrative examples

Shrinkage performs better than orthogonal projection typically whensignificant signal present in estimated drift

Open issues

Statistically sound approach to choose meta-parameters

Gujral (LA-EPFL) SSC11 2009 08/06/2009 14 / 15

Page 32: Correction of systematic disturbances in latent-variable ... · STEP 2: DRIFT-CORRECTION Shrinking Orthogonal projection Subtraction GLSW CC, IIR, EPO, DOP, TOP, EROS DCPS Calibrate

Summary

Unifying framework

Many drift-correction methods proceed in two steps: (i) drift estimation, (ii)drift correction

Illustrative examples

Shrinkage performs better than orthogonal projection typically whensignificant signal present in estimated drift

Open issues

Statistically sound approach to choose meta-parametersMulti shrinkage parameters {α1, α2, . . . }

Gujral (LA-EPFL) SSC11 2009 08/06/2009 14 / 15