Cornell University -- Assessing the Greenhouse Impact of Natural Gas

Embed Size (px)

Citation preview

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    1/38

    1

    Assessingthegreenhouseimpactof1naturalgas2L.M.Cathles,June6,20123

    Abstract4Theglobalwarmingimpactofsubstitutingnaturalgasforcoalandoiliscurrentlyin5

    debate.Weaddressthisquestionherebycomparingthereductionofgreenhousewarming6

    thatwouldresultfromsubstitutinggasforcoalandsomeoiltothereductionwhichcould7

    beachievedbyinsteadsubstitutingzerocarbonenergysources.Weshowthatsubstitution8

    ofnaturalgasreducesglobalwarmingby40%ofthatwhichcouldbeattainedbythe9

    substitutionofzerocarbonenergysources.Atmethaneleakageratesthatare~1%of10production,whichissimilartotodaysprobableleakagerateof~1.5%ofproduction,the11

    40%benefitisrealizedasgassubstitutionoccurs.Forshorttransitionstheleakagerate12

    mustbemorethan10to15%ofproductionforgassubstitutionnottoreducewarming,13

    andforlongertransitionstheleakagemustbemuchgreater.Buteveniftheleakagewasso14

    highthatthesubstitutionwasnotofimmediatebenefit,the40%ofzerocarbonbenefit15

    wouldberealizedshortlyaftermethaneemissionsceasedbecausemethaneisremoved16

    quicklyformtheatmospherewhereasCO2isnot.Thebenefitsofsubstitutionare17

    unaffectedbyheatexchangetotheocean.CO2emissionsarethekeytoanthropogenic18

    climatechange,andsubstitutinggasreducesthemby40%ofthatpossiblebyconversionto19

    zerocarbonenergysources.Gassubstitutionalsoreducestherateatwhichzerocarbon20

    energysourcesmustbeeventuallyintroduced.21

    Introduction22Inarecentcontroversialpaper,Howarthetal.(2011)suggestedthat,becausemethaneisa23

    farmorepotentgreenhousegasthancarbondioxide,theleakageofnaturalgasmakesits24

    greenhouseforcingasbadandpossiblytwiceasbadascoal,andtheyconcludedthatthis25

    underminesthepotentialbenefitofnaturalgasasatransitionfueltolowcarbonenergy26

    sources.Others(Hayhoeetal.,2009;Wigley,2011)havepointedoutthatthewarming27causedbyreducedSO2emissionsascoalelectricalfacilitiesareretiredwillcompromise28

    someofthebenefitsoftheCO2reduction.Wigley(2011)hassuggestedthatbecausethe29

    impactofgassubstitutionforcoalonglobaltemperaturesissmallandtherewouldbe30

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    2/38

    2

    somewarmingasSO2emissionsarereduced,thedecisionoffueluseshouldbebasedon31

    resourceavailabilityandeconomics,notgreenhousegasconsiderations.32

    Someofthesesuggestionshavebeenchallenged.ForexampleCathlesetal.(2012)have33

    takenissuewithHowarthetal.forcomparinggasandcoalintermsoftheheatcontentof34

    thefuelsratherthantheirelectricitygeneratingcapacity(coalisusedonlytogenerate35

    electricity),forexaggeratingthemethaneleakagebyafactorof3.6,andforusingan36

    inappropriatelyshort(20year)globalwarmingpotentialfactor(GWP).Neverthelessit37

    remainsdifficulttoseeinthepublishedliteraturepreciselywhatbenefitmightberealized38

    bysubstitutinggasforcoalandtheuseofmetricssuchasGWPfactorsseemstocomplicate39

    ratherthansimplifytheanalysis.Thispaperseekstoremedythesedeficienciesby40

    comparingthebenefitsofnaturalgassubstitutiontothoseofimmediatelysubstituting41lowcarbonenergysources.Thecomparativeanalysisgoesbacktothefundamental42

    equationanddoesnotusesimplifiedGWPmetrics.Becauseitisanullanalysisitavoids43

    thecomplicationsofSO2,carbonblack,andthecomplexitiesofCO2removalfromthe44

    atmosphere.Itshowsthatthesubstitutionofnaturalgasforcoalandsomeoilwould45

    realize~40%ofthegreenhousebenefitsthatcouldbehadbyreplacingfossilfuelswith46

    lowcarbonenergysourcessuchaswind,solar,andnuclear.Inthelongtermthisgas47

    substitutionbenefitdoesnotdependonthespeedofthetransitionorthemethaneleakage48

    rate.Ifthetransitionisfaster,greenhousewarmingisless.Iftheleakageisless,the49

    reductionofwarmingduringthesubstitutionperiodisgreater,butregardlessoftherateof50

    leakageorthespeedofsubstitution,naturalgasachieves~40%ofthebenefitsoflow51

    carbonenergysubstitutionafewdecadesaftermethaneemissionsassociatedwithgas52

    productioncease.Thebenefitofnaturalgassubstitutionisadirectresultofthedecrease53

    inCO2emissionsitcauses.54

    ThecalculationmethodsusedherefollowWigley(2011),butarecomputedusing55programsofourowndesignfromtheequationsandparametersgivenbelow.Parameters56

    aredefinedthatconvertscenariosfortheyearlyconsumptionofthefossilfuelstothe57

    yearlyproductionofCO2andCH4.Thesegreenhousegasesarethenintroducedintothe58

    atmosphereandremovedusingacceptedequations.Radiativeforcingsarecalculatedfor59

    thevolumetricgasconcentrationsastheyincrease,theequilibriumglobaltemperature60

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    3/38

    3

    changeiscomputedbymultiplyingthesumoftheseforcingsbytheequilibriumsensitivity61

    factorcurrentlyfavoredbytheIPCC,andtheincrementsofequilibriumtemperature62

    changeareconvertedtotransienttemperaturechangesusingatwolayeroceanthermal63

    mixingmodel.64

    EmissionScenarios65GreenhousewarmingisdrivenbytheincreaseintheatmosphericlevelsofCO2,CH4and66

    othergreehousegasesthatresultfromtheburningoffossilfuels.Between1970and2002,67

    worldenergyconsumptionfromallsources(coal,gas,oil,nuclear,hydroandrenewables)68

    increasedattherateof2.1%peryear.Intheyear2005sixandahalfbillionpeople69

    consumed~440EJ(EJ=exajoules=1018joules,1joule=1.055Btu;EIA,2011)ofenergy.70

    Oilandgassupplied110EJeach,coal165EJ,andothersources(hydro,nuclear,and71

    renewablessuchawindandsolar)55EJ(MiniCAMscenario,Clark,2007).In2100the72

    worldpopulationisprojectedtoplateauat~10.5billion.Iftheperpersonconsumption73

    thenisattodaysEuropeanaverageof~7kWp1,globalenergyconsumptionin210074

    wouldbe2300EJperyear(74TW).Westartwiththefuelconsumptionpatternat200575

    ADandgrowitexponentiallysothatitreaches2300EJperyearattheendofatransition76

    period.Attheendofthetransitiontheenergyissuppliedalmostentirelybylowcarbon77

    sourcesinallcases,butinthefirsthalfofthetransition,whichwecallthegrowthperiod,78

    hydrocarbonconsumptioneitherincreasesonthecurrenttrajectory(thebusinessas79

    usualscenario),increasesatthesameequivalentratewithgassubstitutedforcoalandoil80

    (asubstitutegasscenario),ordeclinesimmediately(thelowcarbonfastscenario).Coal81

    useisphasedoutatexactlythesamerateinthesubstitutegasandlowcarbonfast82

    scenarios,sothatthereductionofSO2andcarbonblackemissionsisexactlythesamein83

    thesetwoscenariosandthereforisnotafactorwhenwecomparethereductionin84

    greenhousewarmingforthesubstitutegasandthelowcarbonfastscenarios.85

    Figure1showsthethreefuelscenariosconsideredfora100yeartransition:86

    Infirsthalf(growthperiod)ofthebusinessasusualscenario(AinFigure1),fossil87fuelconsumptionincreases2.9foldfrom440EJ/yrin2005to1265EJ/yroverthe88

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    4/38

    4

    50yeargrowthperiod,andthendeclinesto205.6EJ/yrafterthefulltransition.The89

    mixofhydrocarbonsconsumedattheendofthetransitionproducesCO2emissions90

    atthesame4.13GtC/yrrateasattheendoftheotherscenarios.Thetotalenergy91

    consumptiongrowsat2.13%peryearinthegrowthperiod,andat1.2%overthe92

    declineperiod.Thegrowthperiodisashifted(tostartin2005),slightlysimplified,93

    exponentialversionoftheMiniCAMscenarioinClark(2007).Weincreasethe94

    hydrocarbonconsumptionbythesamefactorsasintheMiniCAMscenario,and95

    determinetherenewablegrowthbysubtractingthehydrocarbonenergy96

    consumptionfromthistotal.Thegrowthdeclinecombinationissimilartothebase97

    scenariousedbyWigley(2011).98

    Inthesubstitutegasscenario(BinFigure1),gasreplacescoalandnewoil99consumptionoverthegrowthperiod,andisreplacedbylowcarbonfuelsinthe100

    declineperiod.Gasreplacescoalonanequalelectricitygenerationbasis101

    (Hgas=HcoalRcoal/Rgas=234EJy1,seeTable1),andgasreplacesnewoil(165EJy1)102

    onanequalheatcontentbasis.Gasuseattheendofthegrowthperiodisthus729103

    EJy1,ratherthan330EJy1inthebusinessasusualscenario.Thegrowthof104

    renewableenergyconsumptionisgreaterthanin(A).Overtheensuingdecline105

    period,oilconsumptiondropsto75EJy1andgasto175EJy1.106

    Inthelowcarbonfastscenario(CinFigure1),lowcarbonenergysourcesreplace107coal,newgas,andnewoiloverthegrowthperiod,andgasusegrowsandoiluse108

    decreasessothattheconsumptionattheendisthesameasinthesubstitutegas109

    scenario.110

    Thesescenariosareintendedtoprovideasimplebasisforassessingthebenefitsof111

    substitutinggasforcoal;theyareintendedtobeinstructiveandrealisticenoughtobe112

    relevanttofuturesocietaldecisions.Thequestiontheyposeis:Howfarwillsubstituting113

    gasforcoalandsomeoiltakeustowardthegreenhousebenefitsofanimmediateandrapid114

    conversiontolowcarbonenergysources.115

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    5/38

    5

    0

    500

    1000

    1500

    2000

    2500

    A. Business as Usual

    0

    500

    1000

    1500

    2000

    2500

    EJpe

    ryear

    B. Subst iute Gas

    no C

    Coal

    Gas

    Oil

    0

    500

    1000

    1500

    2000

    2500

    0 25 50 75

    C. Low Carbon Fast

    100

    years af er 2005

    55

    110

    165110

    330

    330

    440

    165

    55.67575

    2094.4

    2050

    2050

    729

    371

    165175

    75

    110165

    17575

    Growth

    Period

    Decli

    nePerio

    d

    990440 EJ

    1265 EJ

    2300 EJ

    116

    Figure1Threefuelconsumptionscenarioscomparedinthispaper:(A)Fossilfueluseinthebusinessasusual117

    scenariocontinuesthepresentgrowthinfossilfuelconsumptionintheinitial50yeargrowthperiodbeforelow118

    carbonenergysourcesreplacefossilfuelsinthedeclineperiod.(B)Inthesubstitutegasscenario,gasreplaces119

    coalsuchthatthesameamountofelectricityisgenerated,andsubstitutesfornewoilonanequalheatenergy120

    basis.(C)Inthelowcarbonfastscenario,lowcarbonenergysourcesimmediatelysubstituteforcoalandnewoil121

    andgasinthegrowthperiod,andgasusedeclinesandsubstitutesforoilinthedeclineperiod.Numbersindicate122

    theconsumptionofthefuelsinEJperyearatthestart,midpoint,andendofthetransitionperiod.Thetotal123

    energyuseisthesameinallscenariosandisindicatedatthestart,midpoint,andendbytheboldblacknumbers124

    in(C).125

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    6/38

    6

    Table1.Parametersusedinthecalculations.Iistheenergycontentofthefuel,Rtheefficiencyofconversionto126

    electricity,and and thecarbonandmethaneemissionsfactors.Seetextfordiscussion.127

    I[EJGt1] R[EJeEJ1] [GtCEJ1] [GtCH4EJ1]

    Gas 55 0.6 0.015 1.8x104foraleakageof1%ofproduction

    Oil 43 0.020

    Coal 29 0.32 0.027 1.2x104for5m3/t

    128

    ComputationMethodandParameters129Table1summarizestheparametersusedinthecalculations.I[EJGt1],givestheheat130

    energyproducedwheneachfossilfuelisburnedinexajoules(1018

    joules)pergigaton(109

    131tons)ofthefuel.Thevaluesweusearefromhttp://www.natural132

    gas.com.au/about/references.html.Theenergydensityofcoalvariesfrom2537GJ/t,133

    dependingontherankofthecoal,but29GJ/tisconsideredagoodaveragevaluefor134

    calculations.135

    R[EJeEJ1]istheefficiencywithwhichgasandcoalcanbeconvertedtoelectricityin136

    exajoulesofelectricalenergyperexajouleofheat.Gascangenerateelectricitywithmuch137

    greaterefficiencythancoalbecauseitcandriveagasturbinewhoseeffluentheatcanthen138

    beusedtodriveasteamgenerator.Lookingforward,olderlowefficiencycoalplantswill139

    likelybereplacedbyhigherefficiencycombinedcyclegasplantsofthiskind.Theelectrical140

    conversionefficienciesweadoptinTable1arethoseselectedbyHayhoeetal.(2002,their141

    TableII).142

    Thecarbonemissionfactorsingigatonsofcarbonreleasedtotheatmosphereperexajoule143

    ofcombustionheat,[GtCEJ1],listedinthefourthcolumnofTable1arethefactors144

    compiledbytheEPA(2005)andusedbyWigley(2011).145

    Finally,themethaneemissionfactors,[GtCH4EJ1]inthelastcolumnofTable1are146

    computedfromthefractionofmethanethatleaksduringtheproductionanddeliveryof147

    naturalgasandthevolumeofmethanethatisreleasedtotheatmosphereduringmining148

    andtransportofcoal:149

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    7/38

    7

    ]GtEJ[]GtGt[]EJGt[-1

    burned-CH4

    -1

    burned-CH4vented-CH4

    -1

    CH4 ILgas (1a)150

    ]GtEJ[]m[]tm[]EJGt[-1

    burned-coal

    -3

    CH44CH4

    -1

    mined-coal

    3

    CH4

    -1

    CH4 ItV CHcoal . (1b)151

    Thedensityofmethanein(1b)CH4=0.71x103tonsperm3.Wetreatthemethanevented152

    totheatmosphereduringtheproductionanddistributionofnaturalgas,L,parametrically153

    inourcalculations.Thenaturalgasleakage,L,isdefinedasthemassfractionofnaturalgas154

    thatisburned.155

    Weassumeinourcalculationsthat5m3ofmethaneisreleasedpertonofcoalmined.The156

    leakageofmethaneduringcoalmininghasbeenreviewedindetailbyHowarthetal.157

    (2011)andWigley(2011).Combiningleakagesfromsurfaceanddeepmininginthe158

    proportionsthatcoalisextractedinthesetwoprocesses,theyarriveat6.26m3/tand4.88159

    m3/trespectively.Thevalueweuseliesbetweenthesetwoestimates,andappearstobea160

    reasonableestimate(e.g.,seeSaghafietal.,1997),althoughsomehaveestimatedmuch161

    highervalues(e.g,Hayhoeetal.,2002,suggest~23m3/t).162

    TheyearlydischargeofCO2(measuredintonsofcarbon)andCH4totheatmosphere,163

    QC[GtCy1]andQCH4[GtCH4y1],arerelatedtotheheatproducedinburningthefuels,H[EJy164

    1

    ]inFigure1:165

    ]EJGt[]yEJ[]yGt[ -1C-1-1

    C HQC (2a)166

    ]EJGt[]yEJ[]yGt[ -1CH4-1-1

    C4 HQCH (2b)

    167

    ThevolumefractionsofCO2andCH4addedtotheatmosphereinyeartiby(1)are:168

    tMV

    V

    W

    W

    W

    WQ

    yppmvtXatm

    air

    CO

    CO

    air

    C

    CO

    C

    iCO

    2

    2

    2151-

    C

    12

    10]yGt[

    ][ (3a)169

    tM

    V

    V

    W

    WQ

    yppbvtXatm

    air

    CH

    CH

    air

    CH

    iCH

    4

    4

    181-

    CH44

    1

    4

    10]yGt[

    ][ . (3b)170

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    8/38

    8

    HereMatm[t]=5.3x1015tonsisthemassoftheatmosphere,WCO2isthemolecularweightof171

    CO2(44g/mole),andVCO2isthemolarvolumeofCO2,etc.In(2a)thefirstmolecularweight172

    ratioconvertstheyearlymassadditionofcarbontotheyearlymassadditionofCO2,and173

    thesecondmassfractionratioconvertsthistothevolumefractionofCO2inthe174

    atmosphere.WeassumethegasesareidealandthusVCO2=Vair.175

    Eachyearlyinputofcarbondioxideandmethaneisassumedtodecaywithtimeasfollows:176

    186.151.189.1722

    222

    186.0338.0259.0217.0ttt

    CO

    COiCOiCO

    eeetf

    tftXttX

    (4a)177

    124

    444

    tCH

    CHiCHiCH

    etf

    tftXttX

    , (4b)178

    wheretistimeinyearsaftertheinputofayearlyincrementofgasatti.Thesedecayrates179

    arethoseassumedbytheIPCC(2007,Table2.14).The12yeardecaytimeformethanein180

    (4b)isaperturbationlifetimethattakesintoaccountchemicalreactionsthatincrease181

    methaneslifetimeaccordingtotheIPCC(2007,2.10.3.1).ThedecayofCO2describedby182

    (4a)doesnotaccountforchangeswithtimeinthecarbonatebicarbonateequilibrium183

    (suchasdecreasingCO2solubilityasthetemperatureoftheoceansurfacewaters184

    increases)whichbecomeimportantathigherconcentrationsofatmosphericCO2(seeNRC,185

    2011;Ebyetal.,2009).Equation(4a)thusprobablyunderstatestheamountofCO2that186

    willberetainedintheatmospherewhenwarminghasbecomesubstantial.187

    Theconcentrationofcarbondioxideandmethaneintheatmosphereasafunctionoftimeis188

    computedbysummingtheadditionseachyearandthedecayedcontributionsfromthe189

    additionsinpreviousyears:190

    1

    1

    4444

    1

    1

    2222

    i

    j

    jiCHjCHiCHiCH

    i

    j

    jiCOjCOiCOiCO

    ttftXtXtX

    ttftXtXtX

    , (5)191

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    9/38

    9

    where iCO tX 2 and iCH tX 4 arevolumetricconcentrationofCO2andCH4inppmvandppbv192

    respectively,irunsfrom1tottotwherettotisthedurationofthetransitioninyears,andthe193

    sumtermsontherighthandsidesdoesnotcontributeunlessi2.194

    Theradiativeforcingsforcarbondioxideandmethane,FCO2[Wm2]andFCO2[Wm2]are195

    computedusingthefollowingformulaegivenintheIPCC(2001,6.3.5):196

    52.11555

    4444444

    2

    4

    2

    222

    2

    31.51001.21ln47.0,

    ,0,000036.0

    0

    0ln35.5

    NMMMNMNNMf

    NXfNXtXfXXtXmWF

    tX

    tXtXmWF

    oCHoCHiCHCHCHiCHCHCH

    CO

    COiCOCO

    (6)197

    Westartourcalculationswiththeatmosphericconditionsin2005:XCO2[t=0]=379ppmv,198

    XCH4[t=0]=1774ppbv,andtheN2Oconcentration,No=319ppbv.CH4isafactorthat199

    magnifiesthedirectforcingofCH4totakeintoaccounttheindirectinteractionscausedby200

    increasesinatmosphericmethane.TheIPCC(2007)suggeststheseindirectinteractions201

    increasethedirectforcingfirstby15%andthenbyanadditional25%,withtheresultthat202

    CH4=1.43.Shindelletal.(2009)havesuggestedadditionalindirectinteractionswhich203

    increaseCH4to~1.94.ThereiscontinuingdiscussionofthevalidityofShindelletal.s204

    suggestedadditionalincrease(seeHultmanetal.,2011).WegenerallyuseCH4=1.43in205

    ourcalculations,butconsidertheimpactofCH4to~1.94whereitcouldbeimportant.206

    Theradiativeforcingofthegreenhousegasadditionsin(6)drivesglobaltemperature207

    change.Theultimatechangeinglobaltemperaturetheycauseis:208

    421

    42 CHCOSCHCO

    equil FFTTT , (7)209

    where 1S istheequilibriumclimatesensitivity.WeadopttheIPCC,2007value 8.01 S ,210

    whichisequivalenttoassumingthatadoublingofatmosphericCO2[ppmv]causesa3C211

    globaltemperatureincrease.212

    Theheatcapacityoftheoceandelaysthesurfacetemperatureresponsetogreenhouse213

    forcing.Assuming,followingSolomonetal(2011),atwolayeroceanwherethemixed214

    layerisinthermalequilibriumwiththeatmosphere:215

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    10/38

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    11/38

    11

    Itisunlikelythatthatheatwillbetransferredoutthebaseofthemixedlayermore234

    efficientlythanitisintothetopofthemixedlayerbecausethetransferwillbemostly235

    drivenbywindsandcoolingoftheoceansurface.Forthisreasontheheattransfer236

    coefficientratio 1s isalmostcertainly1andthereductionoftemperatureisgreatestfor237

    11 s .For 11 s ,theinitialtemperaturechangeinthemixedlayerwillbeabouthalf238

    thechangethatwilloccurwhentheoceanlayersarefullywarmed,andtheresponsetime239

    requiredtoreachthisequilibriumchange(thetimerequiredtoreach2/3rdsofthe240

    equilibriumvalue)willbeaboutoftheresponsetimeofthemixedlayer(e.g.,2

    11 mixe ).241

    For 11 s ,theresponsetimeofthedeeplayeristwicetheheatstoragecapacityratio242

    timestheresponsetimeofthemixedlayer: mixmixdeepCC 12 .243

    Thetransienttemperaturechangecanbecomputedfromtheequilibriumtemperature244

    changein(7)byconvolvinginafashionsimilartowhatwasdonein(5):245

    1

    111

    exp1exp1i

    j mixd

    ji

    mixm

    ji

    j

    equil

    ie

    tta

    e

    ttatTtT

    , (12)246

    whereij.Wedonotusetheapproximationsofequation(11)whenwecarryoutthe247

    convolutionin(12).Ratherwesolvefortheactualvaluesoftheeigenvaluesand248

    parameterafromthematrixin(9)ateachyearlyincrementintemperaturechange.For249

    mix=5years,Tmixwillreach0.483Tmixequilwithadecaytimeof2.5yearsandriseto250

    Tmixequilwithadecaytimeof200years.251

    Thecurrentconsensusseemstobethat 11 s andthetransientthermalresponseis252

    abouthalfthefullequilibriumforcingvalue(NRC,2011,3.3).Theratiooftheheatstorage253

    capacityofthedeeptomixedlayer,

    1

    mixdeepCC isprobablyatleast20,avalueadoptedby254

    Solomonetal.(2011).Schwartz(2007)estimatedthethermalresponsetimeofthemixed255

    layerat~5yearsfromthetemporalautocorrelationofseasurfacetemperatures.Thismay256

    bethebestestimateofthisparameter,butSchwartznotesthatestimatesrangefrom2to257

    30years.Fortunatelythemoderationoftemperaturechangebytheoceansdoesnot258

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    12/38

    12

    impactthebenefitofsubstitutinggasforcoalandoilatall.Itisofinterestindefiningthe259

    coolingthatsubstitutionwouldproduce,however.Wecalculatethetransienttemperature260

    changesforthefullrangeofoceanmoderationparameters.261

    Equations(1)to(10)plus(12),togetherwiththeparametersjustdiscusseddefine262

    completelythemethodsweusetocalculatetheglobalwarmingcausedbythefueluse263

    scenariosinFigure1.264

    0 100 200

    ConcentrationChange

    [ppmvcarbondioxide]

    0

    500 Carbon Dioxide [ppmv]

    434 ppmv

    327

    190

    Business as usual

    Substitute gas

    Low carbon fast

    Low carbon fast

    Substitutegas

    Businessasusual

    404

    470 ppbv

    120

    0 100 200

    time [years] since 2005

    ConcentrationChange

    [ppbvmethane]

    0

    500 Methane [ppbv]

    258

    194

    113

    368

    428 ppbv

    115

    397

    359

    108

    154

    115

    66

    50year

    transition

    100year

    transition

    200year

    transitionA

    B

    265

    Figure2Changesin(A)carbondioxideand(B)methaneconcentrationscomputedforthethreefuelscenarios266

    showninFigure1andthreedifferenttransitionintervals(50100and200years).Inthisandsubsequentfigures267

    thebluecurvesindicatethebusinessasusualfuelusescenario,thegreencurvesindicatethesubstitutegas268

    scenario,andtheredcurvesthelowcarbonfastscenario.Thenumbersindicatethechangeinconcentrationsof269

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    13/38

    13

    CO2andmethanefromthe379ppmvforCO2and1774ppbvforCH4levelspresentintheatmospherein2005.270

    ThecalculationisbasedonL=1%ofgasconsumptionandV=5m3methanepertonofcoalburned.271

    Results272Figure2showstheadditionsofCO2inppmvandmethaneinppbvthatoccurforthe273

    differentfuelconsumptionscenariosshowinFigure1forthethreetransitionperiods(50,274

    100and200years).Themethaneleakageisassumedtobe1%ofconsumption.Fivecubic275

    metersofmethaneareassumedtoleaktotheatmosphereforeachtonofcoalmined.The276

    atmosphericmethaneconcentrationstrackthepatternofmethanereleasequiteclosely277

    becausemethaneisremovedquicklyfromtheatmospherewithanexponentiallydecay278

    constantof12years(equation4b).Ontheotherhand,becauseonlyaportionoftheCO2279

    introducedintotheatmospherebyfuelcombustionisremovedquickly(seeequation4a),280

    CO2accumulatesacrossthetransitionperiodsand,aswewillshowbelow,persistsfora281

    longtimethereafter.282

    0 100 200

    time [years]

    RadiativeForcing[W

    m-2]

    0

    5

    Methane

    Carbon Dioxidebusiness as usual

    substitute gas

    low carbon fast

    40%

    41%

    42%

    283

    Figure3Radiative

    forcings

    calculated

    for

    the

    carbon

    dioxide

    and

    methane

    additions

    shown

    inFigure

    2using

    284equation(6)andassumingCH4=1.43.Thebluecurvesindicatethebusinessasusualscenarioforthe50,100285

    and200yeartransitionperiods,thegreenthesubstitutegasscenario,andtheredthelowcarbonfastscenario.286

    ThenumbersindicatethereductioninCO2forcingachievedbysubstituting gas,expressedasapercentageofthe287

    reductionachievedbythelowcarbonfastscenario.288

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    14/38

    14

    Figure3showstheradiativeforcingscorrespondingtotheatmosphericgasconcentrations289

    showninFigure2usingequation(6).ThemethaneforcingisafewpercentoftheCO2290

    forcing,andthusisunimportantindrivinggreenhousewarmingforagasleakagerateof291

    1%.292

    Figure4showstheglobalwarmingpredictedfromtheradiativeforcingsinFigure3for293

    variousdegreesofheatlosstotheocean.Wetaketheequilibriumclimatesensitivity 1s =294

    0.8(e.g.,adoublingofCO2causesa3Cofglobalwarming).Thefastertransitionsproduce295

    lessglobalwarmingbecausetheyputlessCO2intotheatmosphere.Thethermal296

    modulationoftheoceanscanreducethewarmingbyuptoafactoroftwo.Forexample,297

    Figure4Ashowstheglobalwarmingthatwouldresultfromthebusinessasusualscenario298

    iftherewerenoheatlossestotheoceanrangesfrom1.5Cforthe50yeartransitionto299

    3.3Cforthe200yeartransition.Figure4Cindicatesthatheatexchangetotheoceans300

    couldreducethiswarmingbyafactoroftwoforthelongtransitionsandthreeforthe50301

    yeartransition.Awarmingreductionthislargeisunlikelybecauseitassumesextreme302

    parametervalues:adeepoceanlayerwithaheatstorage50timestheshallowmixedlayer,303

    andalongmixingtimefortheshallowlayer(mix=50years).Figure4Bindicatesthemore304

    likelyoceantemperaturechangemoderationbasedonmidrangedeeplayerstorage305

    (1

    mixdeepCC =20)andmixedlayerresponsetime(mix=5years)parametervalues.306

    Theimportantmessageofthisfigureforthepurposesofthispaper,however,isnotthe307

    amountofwarmingthatmightbeproducedbythevariousfuelscenariosofFigure1,but308

    theindicationthatthereductioningreenhousewarmingfromsubstitutinggasforcoaland309

    oilisnotsignificantlyaffectedbyheatexchangewiththeoceanorbythedurationofthe310

    transitionperiod.Thesamepercentreductioninglobalwarmingfromsubstitutinggasfor311

    coalandoilisrealizedregardlessofthedurationofthetransitionperiodorthedegreeof312

    thermalmoderationbytheocean.Thebenefitofsubstitutinggasisapercentorsolessfor313

    theshorttransitions,andtheoceanmoderationreducesthebenefitbyapercentorso,but314

    thebenefitinallcircumstancesremains~38%.Heatlossintotheoceansmayreducethe315

    warmingbyafactoroftwo,butthebenefitofsubstitutinggasisnotsignificantlyaffected.316

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    15/38

    15

    317

    0

    4business as usual

    substitute gas

    low carbon fast

    1% gas leakage

    no ocean mixing

    1.5 C

    2.3 C

    3.3 C

    1.8 C

    2.7 C

    TemperatureChange[C]

    32.4 C

    2.0 C

    1.3 C1.4 C

    0.8 C

    Cd/Cm=20, mix=5 yrs

    0

    0 50 100 200

    time [years]

    3

    0150

    1.7 C

    1.4 C

    0.9 C

    1.1 C

    0.5 C

    Cd/Cm=50, mix=50 yrs

    39%

    38%

    38%

    39%

    38%

    37%

    38%

    37%

    36%1

    2

    1

    2

    1

    2

    3

    A.

    B.

    C.

    318

    Figure4.GlobalwarmingproducedbytheforcingsinFigure3computedusingequations(7,10,and12).The319

    bluecurvesindicatetemperaturechangesunderthebusinessasusualscenariofor50,100and200year320

    transitiondurations,andthegreenandredcurvesindicatethetemperaturechangesforthesubstitutegasand321

    low

    carbon

    fast

    scenarios.

    The

    colored

    numbers

    indicate

    the

    temperature

    changes,

    and

    the

    black

    numbers

    the

    322reductionintemperatureachievedbythesubstitutegasscenarioexpressedasafractionofthetemperature323

    reductionachievedbythelowcarbonfastscenario.(A)Thewarmingwhenthereisnothermalinteractionwith324

    theocean(ortheoceanlayersthermallyequilibrateveryquickly).(B)Warmingunderalikelyoceaninteraction.325

    (C)Warmingwithaveryhighoceanthermalinteraction.Theoceanmixingparametersareindicatedin(B)and326

    (C).Allcalculations assumegasleakageis1%ofconsumptionandtheIPCCmethaneclimatesensitivity.327

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    16/38

    16

    Figure5comparesthemethaneforcingofthesubstitutegasscenariototheCO2forcingof328

    thebusinessasusualscenarioforthe50and100yeartransitiondurations.Theforcing329

    forthe1%methanecurvesarethesameasinFigure3,butiscontinuedoutto200years330

    assumingthefueluseremainsthesameasattheendoftheofthetransitionperiod.331

    SimilarlythebusinessasusualcurveisthesameasinFigure3continuedoutto200years.332

    Thefigureshowsthatthemethaneforcingincreasesasthepercentmethaneleakage333

    increases,andbecomesequaltotheCO2forcinginthebusinessasusualscenariowhenthe334

    leakageis~15%ofconsumptionforthe50yeartransitionand30%ofconsumptionforthe335

    100yeartransition.Attheendofthetransitionthemethaneradiativeforcingsfalltothe336

    levelthatcanbesteadilymaintainedbytheconstantmethaneleakageassociatedwiththe337

    smallcontinuednaturalgasconsumption.TheCO2forcingunderthebusinessasusual338

    scenariofallabitandthenriseataslowsteadyrate,reflectingtheproscriptionthat26%of339

    theCO2releasedtotheatmosphereisonlyveryslowlyremovedand22%isnotremovedat340

    all(equation3a).ThisslowriseemphasizesthatevenverylowreleasesofCO2canbeof341

    concern.Themethaneintheatmospherewouldrapidlydisappearinafewdecadesifthe342

    methaneventingwerestopped,whereastheCO2curveswouldflattenbutnotdrop343

    significantly.Finally,Figure5Ashowsthatthegreatermethaneclimatesensitivity344

    proposedbyShindelletal(2009)(CH4=1.94)wouldmakea10%methaneventing345

    equivalenttoa15%ventingwithCH4=1.43(theIPCCmethaneclimatesensitivity).346

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    17/38

    17

    2.5

    0

    1%

    5%

    10%

    15%

    20% Busines

    s as Usual

    Substitute Gas

    Leakage rate

    [% of consumption]

    100 200

    time [years]

    RadiativeForcing[W

    m-2]

    2.5

    0

    0

    0.5

    1.0

    1.5

    2.0

    3.0

    0.5

    1.0

    1.5

    2.0

    50 150

    Business as Usual

    Substitute Gas

    1%

    5%

    10%

    15%

    20%

    25%

    30%

    50 year transition

    100 year transition

    A.

    B.

    347

    Figure5.RadiativeforcingsofCO2forthebusinessasusualscenario(bluecurves)andforCH4forvariousgas348

    leakageratesinthesubstitutegasscenario(greencurves).The1%methanecurvesandthebusinessasusual349

    curvesarethesameasinFigure3excepttheverticalscaleisexpandedandthecurvesareextendedfromtheend350

    of

    the

    transition

    to

    200

    years

    assuming

    the

    gas

    emissions

    are

    the

    same

    as

    at

    the

    end

    of

    the

    transition

    past

    100

    351years.Themethaneforcingsplateauatthelevelscorresponding totheatmosphericconcentrationsupportedby352

    thesteadyCH4emissions.TheCO2forcingincreasesbecauseanappreciablefractionoftheCO2emissionsare353

    removedslowlyornotatallfromtheatmosphere.ThemethaneforcingsallassumetheIPCCmethaneclimate354

    sensitivity( CH4=1.43)exceptthesingleredcurve,whichassumesthemethaneclimatesensitivitysuggestedby355

    Shindelletal.(2009)( CH4=1.94).356

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    18/38

    18

    0 50

    time [years]

    1.5

    0

    Cd/Cm=20, mix=5 yrs

    1%

    0.96 C

    5%

    1.07 C

    10%

    1.19 C

    15%

    1.30 C

    0 100

    1.5

    0

    1%

    1.60 C

    10%

    1.84 C

    20%

    2.05 C

    0 200

    1.5

    0

    2.69 C

    1%

    35%

    3.48 C

    A. 50yr Transition

    B. 100yr Transition

    C. 200 yr Transition

    40%

    1%

    40%

    21%

    5%

    -6%

    17%

    39%

    -1%

    Tem

    peratureChange[C]

    Busin

    ess

    asU

    sual

    Su

    bstitute

    Gas

    Low

    Carrb

    onFast

    357

    Figure6.Impactofmethaneleakageonglobalwarmingfortransitionperiodsof(A)50,(B)100,and(C)200358

    years.Astheleakagerate(greenpercentagenumbers)increase,thewarmingofthesubstitutegasscenario359

    (greencurves)increases,thebluebusinessasusualandgreensubstitutegascurvesapproachoneanotherand360

    thencross,andthepercentageofthewarmingreductionattainedbythefastsubstitutionoflowcarbonenergy361

    sourcesdecreaseandthenbecomenegative.Thewarmingsassumethesameexchangewiththeoceanasin362

    Figure4B.363

    Figures6illustrateshowthebenefitsofsubstitutinggasforcoalandoildisappearasthe364

    methaneleakageincreasesabove1%oftotalmethaneconsumption.Thefigureshowsthe365

    globalwarmingcalculatedfortheoceanheatexchangeshowinFigure4B.Asthemethane366

    leakageincreases,thegreensubstitutegasscenariocurvesrisetowardandthenexceedthe367

    bluebusinessasusualcurves,andthebenefitofsubstitutinggasdisappears.Thegas368

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    19/38

    19

    leakageatwhichsubstitutinggasforoilandcoalwarmstheearthmorethanthebusiness369

    asusualscenarioissmallest(L~10%)forthe50yeartransitionperiodandlargest370

    (L~35%)forthe200yeartransitionperiod.371

    Figure7summarizeshowthebenefitofgassubstitutiondependsonthegasleakagerate.372

    FortheIPCCmethaneclimatesensitivity(CH4=1.43),thebenefitofsubstitutinggasgoesto373

    zerowhenthegasleakageis44%ofconsumption(30%ofproduction)forthe200year374

    transition,24%ofconsumption(19%ofproduction)forthe100yeartransition,and13%375

    ofconsumption(12%orproduction)forthe50yeartransition.FortheShindelletal.376

    climatesensitivitycorrespondingtoCH4=1.94,thecrossoverforthe50yeartransition377

    occursatagasleakageof~9%ofconsumption,andreasonableoceanthermalmixing378

    reducesthisslightlyto~8%ofconsumption(7.4%ofproduction).Thislastis379approximatelythecrossoverdiscussedbyHowarthetal.(2011and2012).Intheirpapers380

    theysuggestamethaneleakagerateashighas8%ofproductionispossible,andtherefor381

    thatnaturalgascouldbeasbad(ifcomparedonthebasisofelectricitygeneration)ortwice382

    asbad(ifcomparedonaheatcontentbasis)ascoaloverashorttransitionperiod.As383

    discussedinthenextsection,aleakagerateashighas8%isdifficulttojustify.Figure7384

    thusshowsthesignificanceofShindellshighermethaneclimatesensitivitytoHowarths385

    proposition.Withoutit,anevenlessplausiblemethaneleakagerateof13%wouldbe386

    requiredtomakegasasbadortwiceasbadascoalintheshortterm.Overthelongerterm,387

    substitutionofgasisbeneficialevenathighleakageratesapointcompletelymissedby388

    Howarthetal.389

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    20/38

    20

    0

    10

    20

    30

    40

    50

    0 5 10 15

    %Percentlow

    C

    fast

    Leakage[%ofconsumption]

    BenefitofGasSubstitution1to2%leakage

    390

    Figure7.Thereductionofgreenhousewarmingattainedbysubstitutingnaturalgasforcoalandoil(substitute391

    gasscenario),expressedasapercentageofthereductionattainedbyimmediatelysubstitutinglowcarbonfuels392

    (lowCfastscenario),plottedasafunctionofthegasleakagerate.Atleakagerateslessthan~1%,thebenefitof393

    substituting naturalgasis>40%thatofimmediatelysubstitutinglowcarbonenergysources.Thebenefit394

    declinesmorerapidlywithleakageforshorttransitions.ThetopthreecurvesassumeanIPCCmethaneclimate395

    sensitivity( CH4=1.43).Thebottomtwoshowtheimpactofthegreatermethaneclimatesensitivitysuggestedby396

    Shindelletal(2009)( CH4=1.94).Theoceanmixingcurveaddsthesmalladditionalimpactofthermalexchange397

    withtheoceansattherateshowninFigure4Btothe CH4=1.94curveimmediatelyaboveit.398

    Whatisthegasleakagerate399Themostextensivesynthesesofdataonfugitivegasesassociatedwithunconventionalgas400

    recoveryisanindustryreporttotheEPAcommissionedbyTheDevonEnergyCorporation401

    (Harrison,2012).Itdocumentsgasleakageduringthecompletionof1578unconventional402

    (shalegasortightsand)gaswellsby8differentcompanieswithareasonable403

    representationacrossthemajorunconventionalgasdevelopmentregionsoftheU.S.Three404

    percentofthewellsinthestudyventedmethanetotheatmosphere.Ofthe1578405unconventional(shalegasortightsand)gaswellsintheDevonstudy,1475(93.5%)were406

    greencompletedthatistheywereconnectedtoapipelineinthepreinitialproduction407

    stagesotherewasnoneedforthemtobeeitherventedorflared.Ofthe6.5%ofallwells408

    thatwerenotgreencompleted,54%wereflared.Thus3%ofthe1578wellsstudied409

    ventedmethaneintotheatmosphere.410

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    21/38

    21

    Thewellsthatventedmethanetotheatmospheredidsoattherateof765411

    Mcsf/completion.Themaximumgasthatcouldbeventedfromthenongreencompleted412

    wellswasestimatedbycalculatingthesonicventingratefromthechoke(orifice)sizeand413

    sourcegastemperatureofthewell,usingaformularecommendedbytheEPA.Sincemany414

    wellsmightventatsubsonicrates,whichwouldbeless,thisisanupperboundonthe415

    ventingrate.Thetotalventedvolumewasobtainedbymultiplyingthisventingratebythe416

    knowndurationofventingduringwellcompletion.Theseventedvolumesrangedfrom417

    340to1160Mscf,withanaverageof765Mscf.Theventingfromanaverage418

    unconventionalshalegaswellindicatedbytheDevonstudyisthus~23Mscf(=0.03x765419

    Mscf),whichissimilartothe18.33McfEPA(2010)estimatesisventedduringwell420

    completionofaconventionalgaswell(halfventedandhalfflared).Sinceventingduring421

    wellcompletionandworkoverconventionalgaswellsisestimatedat0.01%ofproduction422

    (e.g.,Howarthetal.,2011),thiskindofventingisinsignificantforbothunconventionaland423

    conventionalwells.424

    TheunconventionalgasleakagerateindicatedbytheDevondataisverydifferentfromthe425

    4587MscftheEPA(2010)inferredwasventedduringwellcompletionandworkoverfor426

    unconventionalgaswellsfromtheamountofgascapturedinaverylimitednumberof427

    greencompletionsreportedtothembyindustrythroughtheirGasSTARprogram.In428

    their2010backgroundtechnicalsupportdocumenttheEPAassumedthatthiskindof429

    greencapturewasveryrare,andthatthegaswasusuallyeitherventedorflared.430

    Assumingfurtherthatthegaswasvented50%ofthetime,theEPAconcludedthat4587431

    Mscfwasventedtotheatmosphereandthatunconventionalwellsvent250times432

    (=4587/18.3)moremethaneduringwellcompletionandworkoverthanconventionalgas433

    wells.TheEPA(2010)studyisaBackgroundTechnicalSupportDocumentandnotan434

    officialreport.Itwasprobablyneverintendedtobemorethananoutlineofanapproach435

    andaninitialestimate,andtheEPAhassincecautionedthattheyhavenotreviewedtheir436

    analysisindetailandcontinuetobelievethatnaturalgasisbetterfortheenvironmentthan437

    coal(Fulton,2011).NeverthelesstheEPA(2010)reportsuggestedtomanythatthe438

    leakageduringwellcompletionandworkoverforunconventionalgaswellscouldbea439

    substantialpercentage(~2.5%)ofproduction,andmanyacceptedthissuggestionwithout440

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    22/38

    22

    furthercriticalexaminationdespitethefactthatthesafetyimplicationsofthemassive441

    ventingimpliedbytheEPAnumbersshouldhaveraisedquestions(e.g.,Cathlesetal.,442

    2012a,b).443

    Onceawellisinplace,theleakageinvolvedinroutineoperationofthewellsiteandin444

    transportingthegasfromthewelltothecustomeristhesameforanunconventionalwell445

    asitisfromaconventionalwell.WhatweknowaboutthisleakageissummarizedinTable446

    2.Routinesiteleaksoccurwhenvalvesareopenedandclosed,andleakageoccurswhen447

    thegasisprocessedtoremovingwaterandinertcomponents,duringtransportationand448

    storage,andintheprocessofdistributiontocustomers.Thefirstmajorassessmentof449

    theseleakswascarriedoutbytheGasResearchInstitute(GRI)andtheEPAin1997and450

    theresultsareshowninthesecondcolumnofTable2.AppendixAofEPA(2010)givesa451detailedandveryspecificaccountingofleaksofmanydifferentkinds.Thesenumbersare452

    summedintothesamecategoriesanddiaplayedincolumn3ofTable2.EPA(2011)found453

    similarleakagerates(column4).Skone(2011)assessedleakagefrom6classesofgas454

    wells.WeshowhisresultsforunconventionalgaswellsintheBarnettShaleincolumn5of455

    Table2.Hisotherwellclassesaresimilar.Venkatishetal(2011)carriedoutan456

    independentassessmentthatisgivenincolumn6.Therearevariationsinthese457

    assessments,butoverallaleakageof~1.5%ofproductionissuggested.Additional458

    discussionofthisdataanditscompilationcanbefoundinCathlesetal.(2012)andCathles459

    (2012).460

    Table2.Leakageofnaturalgasthatiscommontobothconventionalandunconventionalgaswellsinperentof461

    gasproduction.462

    GRIEPA

    (1997)

    EPA

    (2010)

    EPA

    (2011)

    Skone

    (2011)

    Venkatish

    eta.(2011)

    Routinesite

    leaks

    0.37% 0.40% 0.39%

    Processing 0.15% 0.12% 0.16% 0.21% 0.42%

    Transportation&storage 0.48% 0.37% 0.40% 0.40% 0.26%

    Distribution 0.32% 0.22% 0.26% 0.22%

    Totals 1.32% 1.11% 1.21%

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    23/38

    23

    463

    Basedontheabovereviewthenaturalgasleakagerateappearstobenodifferentduring464

    thedrillingandwellpreparationofunconventional(tightshalesdrilledhorizontallyand465

    hydrofractured)gaswellsthanforconventionalgaswells,andtheoverallleakagefromgas466

    wellsisprobably

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    24/38

    24

    distributedNETLpowerpointanalysisbySkone(2011).ByloweringSkonesEstimated492

    UltimateRecoveries(EUR)fortheBarnellShalefrom3Bcfto0.84Bcfwhilekeepingthe493

    sameestimateofleakageduringwellcompletionandgasdelivery,Hughesincreased494

    Skonesleakageestimatesfrom2to6%ofproductionalevelwhichfallsmidwaybetween495

    Howarthslowandhighgasleakageestimates.Howeverleakageisafractionofwell496

    production(awellthatdoesnotproducecannotemit),andthusisitbogustoreducethe497

    EUR(thedenominator)withoutalsoreducingthenumerator(theabsoluteleakageofthe498

    well).Skonesdatamustbeevaluatedonitsownterms,notsimplyadjustedtofitsomeone499

    elsesconclusions.500

    Petronetal.(2012)analyzedairsamplesatthe300mhighBolderAtmospheric501

    Observatory(BAO)towerwhenthewindwastowarditfromacrosstheDenverJulesburg502Basin(DJB).Gasesventingfromcondensate(condensedgasfromoilandwetgaswells)503

    stocktanksintheDJBarerichinpropanerelativetomethane,whereastherawnaturalgas504

    ventingfromgaswellsintheDJBcontainverylittlepropane.Fromtheintermediateratio505

    ofpropanetomethaneobservedattheBAOtowerandestimatesofleakagefromthestock506

    tanks,Petroneetal.calculatethattodilutethepropaneleakingfromthestocktankstothe507

    propane/methaneratioobservedatthetower,~4%ofmethaneproducedbygaswellsin508

    theDJBmustventintotheatmosphere.TheairsampledattheBAOtoweriscertainlynot509

    simplyamixofrawnaturalgasandstocktankemissionsfromtheDJBasPetronetal.510

    assume,however.IfthiswerethecasetherewouldbenooxygenintheairattheBAO511

    towerlocation.Thebackgroundatmospheremustcertainlymixinwiththesetwo(and512

    perhapsother)gassources.BackgroundairintheDenverareacontains~1800ppb513

    methaneandverylittlepropane.Mixingwiththebackgroundatmospherecoulddilutethe514

    stocktankemissionstothepropane/methaneratioobservedattheBAOtowerwithno515

    leakagefromgaswellsintheDJBrequiredatall.Contrarytotheirsuggestion,theBAO516

    towerdatareportedbyPetroneetal.placenoconstraintsatallonthegasleakageratesin517

    theDJBwhatsoever.MoredetailsareinCathles(2012).518

    Certainlythereismorewecouldlearnaboutnaturalgasleakagerates.Theissueis519

    complicatedbecausegasisusedinthetransmissionprocesssoshrinkageofproductdoes520

    notequatetoventing.Inadditionthereareconventionsandpracticesthatmakescientific521

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    25/38

    25

    assessmentdifficult.Despitethedifficulties,however,itappearsthattheleakagerateis522

    lessthan2%ofproduction.523

    Discussion

    524

    WehaveverifiedourcomputationsbycomparingthemtopredictionsbyWigleys(2011)525

    publicallyavailableandwidelyusedMAGICCprogram.Althoughtherearesomeinternal526

    differences,Table3showsthatthe~40%reductioningreenhousewarmingwepredictis527

    alsopredictedbyMAGICCwhenscenariossimilartotheoneweconsiderhereareinputto528

    bothMAGICCandourprograms.TheMAGICCcalculationsstartat1990ADsoweconsider529

    thetemperatureincreasesfrom2000totheendoftheperiod.Fueluseisincreasedand530

    reducedlinearlyratherthanexponentially,andthefueluseatthestart,midpoint,andend531

    ofthetransitionsimulationsareslightlydifferentthaninFigure1.Thetemperature532

    changesforthe200yearcycleagreeverywell.WigleysMAGICCtemperaturechange533

    predictionsbecomeprogressivelylowerthanoursasthetransitionintervalisshortened.534

    ThismaybebecauseMAGICCincludesasmalloceanthermalinteraction,whereasthe535

    calculationswereportinTable3donot.536

    Table3.TemperaturechangespredictedbyWiglelys(2011) MAGICCprogramforlinearchangesinfueluse537

    similartothescenariosinFigure1comparedtoequilibrium(nooceanthermalinteraction)globalwarming538

    predictionsbytheprogramdescribedandusedinthispaper.Thefirstthreerowscomparethetemperature539

    changesofthetwoprograms.Thelastrowshowsthereductioningreenhousewarmingachievableby540

    substituting naturalgasforcoalandoilasapercentageofthereductionthatwouldbeachievedbytherapid541

    substitution ofallfossilfuelswithlowcarbonenergysources.542

    200yearcycle 100yearcycle 40yearcycle

    Program MAGICC Thispaper MAGICC Thispaper MAGICC Thispaper

    Basusual 3.85 3.68 2.3 2.56 1.05 1.5

    Swapgas

    2.85 2.85 1.65 1.94 0.80 1.12LowCfast 1.7 1.70 0.85 1.09 0.38 0.58

    %reduction 42% 42% 45% 42% 37% 41%

    543

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    26/38

    26

    IncorporationoftheindirectcontributionstomethanesradiativeforcingthroughCH4in544

    equation(6)wasvalidatedbycomparingvaluesofGWPcomputedby(13)topublished545

    valuessummarizedinTable4.546

    t

    t

    COCH

    CO

    CO

    t

    t

    CHCO

    CH

    CH

    CH

    dtfMWppbvC

    F

    dtfMWppbvC

    F

    GWP

    0

    24

    2

    2

    0

    42

    4

    4

    4

    ][

    ][

    (13)547

    GWPistherelativeglobalwarmingimpactofakgofCH4comparedtoakgofCO2addedto548

    theatmosphere,whenconsideredoveraperiodoftimet.Theradiativeforcings(F)are549

    definedby(6),theremovalofthegasesfromtheatmosphere(f)by(4aandb),andMWCO2550

    isthemolecularweightofCO2.TheCH4factorof1.43inthesecondcolumnofTable4551

    combinestheindirectforcingcausedbyCH4inducedproductionofozone(25%according552

    toIPCC,2007)andwatervaporinthestratosphere(additional15%accordingtotheIPCC,553

    2007).WiththisfactortheGWPlistedinTable2.14oftheIPCC(2007)arereplicatedas554

    showninthesecondrowofTable4.TheCH4factorof1.94inthesecondcolumnwas555

    determinedbyussuchthatitapproximatelypredictstheincreasedforcingssuggestedby556

    Shindelletal.(2009)asshowninthebottomrowofTable4.WedonotuseGWPsinour557

    analysisandusethemhereonlytojustifythevaluesofCH4usedinourcalculations.558

    Table4TheGWPcalculatedfrom(6and13)forthevalueofCH4incolumn2arecomparedtoGWP(in559

    parentheses)givenbytheIPCC(2007)andShindelletal.(2009).560

    CH4 t=20years t=100years t=500years

    Directmethaneforcingfrom(6) 1 51.5 17.9 5.45

    IPCC(2007,2.10.3.1,Table2.14) 1.43 73.5(72) 25.8(25) 7.8(7.6)

    Shindelletal.(2009) 1.94 99(105) 35(33) 10.5

    561

    Themostimportantmessageofthecalculationsreportedhereisthatsubstitutingnatural562

    gasforcoalandoilisasignificantwaytoreducegreenhouseforcingregardlessofhowlong563

    (withinafeasiblerange)thesubstitutiontakes(Figure4).Formethaneleakagesof~1%of564

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    27/38

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    28/38

    28

    extramethaneemittedbylowlevelsofleakagehassuchatrivialclimateeffectthatitneed595

    notbeconsideredatall.596

    Sulfurdioxideadditionsarenotafactorinouranalysisbecausethesubstitutegasandlow597

    carbonfastscenariosreducetheburningofcoaloverthegrowthperiodinanidentical598

    fashion.ThusbothintroduceSO2identically,andthesmallwarmingeffectsoftheSO2,599

    whichwilloccurnomatterhowcoalisretired,cancelinthecomparison.Intherealworld600

    theaerosolbenefitofcoalmustberemovedeventually(unlesswearetoburncoal601

    forever),andthesooneritisremovedthebetterbothbecausethesmallwarmingits602

    removalwillcausewillhavelessimpactwhentemperaturesarecooler,and,muchmore603

    importantly,becausereplacingcoalsoonwillreduceCO2emissionsandleadtomuchless604

    globalwarminginthelongerterm.605

    Wigleys(2011)decreaseingreenhousewarmingforthenaturalgassubstitutionhe606

    definesissimilartothatwecomputehere.At0%leakage,Wigley(2011,hisFigure3)607

    calculatesa0.35Ccoolingwhichwouldbea0.45CcoolingabsentthereducedSO2608

    emissionsheconsiders.Wecalculateacoolingof~0.62Cfor0%leakage.Ourcoolingis609

    greaterthanhisatleastinpartbecauseourgassubstitutionscenarioreducestheCO2610

    emissionsmorethanhis.Fromnearlythesamestart,ourgassubstitutionreducesCO2611

    emissionsfromthebusinessasusual200yeartransitioncycleby743GtCwhereasWigley612

    reducesCO2by425GtC.613

    Thereareofcourseuncertaintiesinthekindofcalculationscarriedouthere,butthese614

    uncertaintiesareunlikelytochangetheconclusionsreached.Carbondioxideisalmost615

    certainlynotremovedfromtheatmosphereexactlyasdescribedbyequation(3).The616

    uptakeofCO2maywellslowastheclimatewarms.Carbondioxideislesssolubleinwarm617

    waterandthehalinecirculationmayslowastheseasurfacetemperatureincreases.The618

    increaseinterrestrialCO2uptakefromCO2fertilizationmaybereducedbynitrogen619

    limitations.AgooddiscussionoftheseissuesisprovidedinNRC(2011).Ebyetal.(2009)620

    havesuggestedbasedonsophisticatedcoupledglobalmodelsthat~50%oftheintroduced621

    CO2mayberemovedwithatimeconstantof130yearsand50%withanexponentialtime622

    constantof2900years.Modificationsofequation(3)thatreduceCO2uptakeastheclimate623

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    29/38

    29

    warmswillmakethebenefitsofnotputtingCO2intotheatmosphere,forexampleby624

    substitutinggasforcoal,evengreater,andtheargumentspresentedherestronger.625

    Thetransmissionofheatfromthemixedtothedeeplayeroftheoceansisanunknown626

    whichhasastrongimpactontransientglobalwarming.Forexample,ifheatenteredthe627

    deeplayerwith10%oftheeasewithwhichitentersitfromtheatmospheresothat628

    1s ~0.1,thedeeplayerwouldlargelylooseitscoolingeffectiveness(e.g.,ainequation11629

    wouldhaveavalueof0.91).ThetransientresponsetoCO2forcingwouldberapid(occur630

    at0.91mix),andtheoceanwouldreducetheequilibriumglobaltemperaturechangeby631

    only9%.Therelativeratesatwhichheatistransferredintothemixedlayerandoutofit632

    intothedeeplayerwouldappeartobeanimportantareaforfurtherinvestigation,633

    especiallybecauseitimpactsourabilitytoinferpropervaluesintheequilibriumclimate634

    forcing(seediscussioninNRC,2011).Oceanheatexchangedoesnotaffectthe635

    comparativebenefitofsubstitutinggas,souncertaintiesintheoceanheatexchangeaernot636

    ofconcerntotheconclusionswereachhere.637

    ThecalculationsmadehereavoidtheuseofGWPfactors.ThedeficienciesintheGWP638

    approacharediscussedwellbySolomonetal.(2011).Asisapparentfrom(13),theGWP639

    metricrequiresthatthetimeperiodofcomparisonbespecified.Forashorttimeperiod,a640

    shortlivedgaslikemethanehasahighGWP(e.g.,itis72timesmorepotentintermsof641

    globalwarmingthanCO2whencomparedovera20year).Thenotionthatmethane642

    emissionshave72timestheglobalwarmingimpactofCO2wouldtempteliminating643

    methaneemissionsimmediately,andworryingaboutreducingCO2emissionslater.Onthe644

    otherhandfora500yearperiod,theglobalwarmingimpactofakilogramofvented645

    methaneisonly7.6thatofakilogramofCO2(GWPCH4=7.6,seeTable4),andthislow646

    impactwouldsuggestdealingwithCO2emissionsfirstandthemethaneemissionslater,647

    perhapsevensubstitutinggasforcoalandoil.AsSolomonetal.pointouttheGWPmetric648

    speaksonlytothetimeperiodforwhichitiscalculatedandshedsnolightonthewhether649

    CO2orCH4shouldbereducedfirst.650

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    30/38

    30

    100 500

    time [years]

    200 300 400

    0.5

    1

    1.5

    2

    Tem

    peraureChange[C]

    00

    39.8%

    10%

    leakage

    n

    ofossilfuels

    Business as Usual

    Substitute Gas

    Low Carbon Fast

    Cd/Cm=20, mix=5 yrs

    CH4

    651

    Figure8.TemperaturechangeforscenariosinFigure1whenatransitionperiodis100yearsisfollowedbya400652

    yearperiodwithnoburningoffossilfuels.Methaneleakageinthetransitionis10%ofgasconsumptionand653

    Shindellsgreatermethaneforcingandheatexchangewiththeoceanareincluded.Extramethaneventinginthe654

    substitutegasscenarioproduceswarminggreaterthanthebusinessasusualscenariouptoalmosttheendof655

    thetransition,butthebenefitsofreducingcarbonemissionsbysubstitutinggasemergeveryquicklythereafter.656

    Figure8illustratesthefundamentaldilemma.Itshowsthatevenwhenmethaneleakageis657

    solarge(L=10%ofconsumption)thatsubstitutinggasforcoalandoilincreasesglobal658

    warmingintheshortterm,thebenefitofgassubstitutionreturnsinthelongterm.The659

    shorttermheatingcausedbymethaneleakagerapidlydissipatesafteremissionsofCO2660

    andCH4ceaseat100years.CH4israpidlyremovedfromtheatmosphere,butCO2isnot.661

    Theresultisthat50yearsorsoaftertheterminationofventing(beyond150yearsin662

    Figure8),thebenefitofgasemergesunscathed.Ata10%leakagerateanda100year663

    transitionperiod,thesubstitutegasscenarioproducesasmallamountmorewarmingthan664

    thebusinessasusualscenarioat70years,butafter150yearsthegassubstitutionreduces665

    globalwarmingmuchmorebecauseithasreducedtheamountofCO2ventedtothe666

    atmosphere.Figure8showshowdangerousametricsuchasGWPcanbe.Evenfor667

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    31/38

    31

    methaneemissionsof9%ofproductionandShindellsforcings,substitutinggasforcoalis668

    worthwhileinthelongterm.AnalysesthatrelyonlyonGWPfactors,suchasthatof669

    Howarthetal.(2011),missthismixofimpactscompletely,andseeonlythedamageof670

    extramethaneemissionsintheshorttermorthebenefitsofgassubstitutioninthelong671

    term,dependingontheGWPintervalselected.Fortunatelyitisveryeasytocarryoutthe672

    necessaryconvolutionintegrals(equations5and11)asdonehereandavoidGWPmetrics673

    altogether.AsstatedbySolomonetal.(2011)andotherswhotheycite,GWPfactors674

    shouldsimplynotbeusedtoevaluatefuelconsumptionscenarios.675

    Finally,framingthefuelusescenariosintermsofexponentialgrowthanddeclineaswe676

    havedonehereallowsthefeasibilityofimplementingthevariousscenariostobeexamined677

    inapreliminaryfashion.Figure9showstherateofgrowthoflowcarbonenergyresources678thatisrequiredbythefuelhistoriesinFigure1fora100yeartransition.Growthatmore679

    than5%peryearwouldbechallenging.Figure9showsthatthelowcarbonfastscenario680

    inFigure1requiresanimmediate~16%peryear(butrapidlydeclining)growthinlow681

    carbonenergysources.Thegrowthrateoflowcarbonenergysourcesattheendofthe682

    growthperiodofthebusinessasusualscenarioisanevengreater24%peryear.Because683

    thereistimetoplan,thiscouldbereducedbyphasinginlowcarbonenergysourcestoward684

    theendofthefossilfuelgrowthperiod.Thesubstitutegasscenariohasamuchlower685

    growthrequirementatthisstage,whichwouldmakethisscenariosubstantiallyeasierto686

    accommodate.687

    Anydecisiontosubstitutegasforcoalandoilofcourseinvolveseconomicandsocial688

    consideration,aswellasclimateanalysis.Naturalgascanenablethetransitiontowindor689

    solarenergybyprovidingthesurgecapacitywhenthesesourcesfluctuateandbackup690

    whenthesesourceswane.Becauseofitswideavailabilityandlowcost,economicfactors691

    willencouragegasreplacingcoalinelectricitygenerationandoilinsegmentsof692transportation.ItisafueltheU.S.andmanyothercountriesneednotimport,soits693

    developmentcouldincreaseemployment,nationalsecurity,andamorepositivebalanceof694

    payments.Ontheotherhand,cheapandavailablegasmightunderminetheeconomic695

    viabilityoflowcarbonenergysourcesanddelayatransitiontolowcarbonsources.Froma696

    greenhousepointofviewitwouldbebettertoreplacecoalelectricalfacilitieswithnuclear697

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    32/38

    32

    plants,windfarms,orsolarpanels,butreplacingthemwithnaturalgasstationswillbe698

    faster,cheaperandachieve40%ofthelowcarbonfastbenefitiftheleakageislow.How699

    thisbalanceisstruckisamatterofpoliticsandoutsidethescopeofthispaper.Whatcan700

    besaidhereisthatgasisanaturaltransitionfuelthatcouldrepresentsthebiggest701

    availablestabilizationwedgeavailabletous.702

    50 100

    time [years]

    Growthrate[%/yr]

    0

    0

    20

    24

    4

    8

    12

    16

    BusinessasUsual

    LowCarb

    onFast SubstituteGas

    Growth Rate Low Carbon Energy Sources

    703

    Figure9.ThegrowthrateoflowcarbonenergysourcesdeducedfromFigure1plottedasafunctionoftimefora704

    100yeartransition.Growthratesmorethan5%peryearsuchwillbechallengingtoachieveonaglobalbasis.705

    Conclusions706Thecomparativeapproachtakeninthispapershowsthatthebenefitofsubstituting707

    naturalgasdependsonlyonitsleakagerate.708

    1.Forleakagerates~1%orless,thesubstitutionofnaturalgasforthecoalusedin709

    electricitygenerationandfor55%oftheoilusedintransportationandheatingachieves710

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    33/38

    33

    40%ofthereductionthatcouldbeattainedbyanimmediatetransitiontolowcarbon711

    energysources.712

    2.This40%reductiondoesnotdependonthedurationofthetransition.A40%reduction713

    isattainedwhetherthetransitionisover50yearsor200years.714

    3.Forleakagerates~1%orless,thereductionofgreenhousewarmingatalltimesis715

    relateddirectlytothemassofCO2putintotheatmosphere,andthereforetoreduce716

    greenhouseforcingwemustreducethisCO2input.ComplexitiesofhowCO2isremoved717

    andreductionsinSO2emissionsandincreasesincarbonblackandthelikedonotchange718

    thissimpleimperativeandshouldnotbeallowedtoconfusethesituation.719

    4.Atlowmethaneleakagerates,substitutingnaturalgasisalwaysbeneficialfroma720greenhousewarmingperspective,evenforforcingsashighashavebeensuggestedby721

    Shindelletal.(2009)andusedbyHowarthetal.(2011).Underthefastesttransitionthatis722

    probablyfeasible(our50yeartransitionscenario),substitutionofnaturalgaswillbe723

    beneficialiftheleakagerateislessthanabout7%ofproduction.Foramorereasonable724

    transitionof100years,substitutinggaswillbebeneficialiftheleakagerateislessthan725

    ~19%ofproduction(Figure7).Thenaturalgasleakagerateappearstobepresentlyless726

    than2%ofproductionandprobably~1.5%ofproduction.727

    5.Evenifthenaturalgasleakageratewerehighenoughtoincreasegreenhousewarming728

    (e.g.,theleakagewas10%ofmethaneconsumptionor9%ofmethaneproduction),729

    substitutinggaswouldstillhavebenefitsbecausethereductionofCO2emissionswould730

    leadtoagreaterreductioningreenhousewarminglater(Figure8).731

    6.Gasisanaturaltransitionfuelbecauseitssubstitutionreducestherateatwhichlow732

    carbonenergysourcesmustbelaterintroduced(Figure9)andbecauseitcanfacilitatethe733

    introductionoflowcarbonenergysources.734

    Thepolicyimplicationsofthisanalysisare:(1)reducetheleakageofnaturalgasfrom735

    productiontoconsumptionsothatitis~1%ofproduction,(2)encouragetherapid736

    substitutionofnaturalgasforcoalandoil,and(3)encourageasrapidaconversiontolow737

    carbonsourcesofenergyaspossible.738

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    34/38

    34

    Acknowledgements739Thispaperwasgreatlyimprovedbythreeexcellentreviews,twoanonymousandoneby740

    RayPierrehumbert.Raypointedouttheimportanceofoceanmixing,suggestedcasting741

    fueluseintermsofexponentialgrowthanddecline,anddrewmyattentiontoimportant742references(asdidtheotherreviewers).Iamindebtedtomypriorcoauthorsinthis743

    subject(MiltonTaam,LarryBrown,andAndrewHunter)forcontinuingveryhelpful744

    discussions,andtomembersofthegasindustrywhopointedoutdataandhelpedme745

    understandthecomplexitiesofgasproduction.MiltonTaamdrewmyattentiontothe746

    MAGICCprogramandshowedmehoweasyitwastouse,andalsopushedpersistentlyfor747

    thebroaderviewofmethanesubstitutionshowninFigure8.Thepaperwouldnotbewhat748

    itiswithoutthecontributionoftheseindividualsandIthankthemfortheirinput.749

    References750Allen,MR,FrameDJ,HuntingforC,JonesCD,LoweJA,MeinshauseM,andMeinshausenN751

    (2009)Warmingcausedbycumulativecarbonemissionstowardsthetrillionthtonne,752

    Nature,458(7242),11631166,doi:10.1038/nature08019.753

    CathlesLM,(2012)PerspectivesontheMarcellusgasresource:Whatbenefitsandrisksare754

    associatedwithMarcellusgasdevelopment?,755

    http://blogs.cornell.edu/naturalgaswarming/756

    CathlesLM,BrownL,TaamM,HunterH(2012a)Acommentaryonthegreenhousegas757

    footprintofnaturalgasinshaleformationsbyRWHowarth,RSantoro,andAIngraffea,758

    ClimaticChange,DOI:10.1007/s1058401103330.759

    http://www.springerlink.com/content/x001g12t2332462p/760

    CathlesLM,BrownL,HunterA,andTaamM(2012b)Pressrelease:responsetoHowarthet761

    al.sreply(February29,2012),762

    http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/cathles/Natural%20Gas/Respo763

    nse%20to%20Howarth's%20Reply%20Distributed%20Feb%2030,%202012.pdf764

    ClarkeLE,EdmondsJA,JacobyHD,PitcherH,ReillyJM,RichelsR(2007)Scenariosof765

    GreenhouseGasEmissionsandAtmosphericConcentrations.Subreport2.1aof766

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    35/38

    35

    SynthesisandAssessmentProduct2.1.AReportbytheClimateChangeScienceProgram767

    andtheSubcommitteeonGlobalChangeResearch,Washington,DC,154pp768

    EbyM,ZickfeldK,MontenegroA,ArcherD,MeissnerKJ,andWeaverAJ(2009)Lifetimeof769

    anthropogenicclimatechange:millennialtimescalesofpotentialCO2andsurface770temperatureperturbations.JournalofClimate22(10):25012511,771

    DOI:10.1175/2008JCLI2554.1.772

    EIA(2011)InternationalEnergyOutlook2011,Worldtotalenergyconsumptiontables,773

    http://www.eia.gov/oiaf/aeo/tablebrowser/#release=IEO2011&subject=1774

    IEO2011&table=1IEO2011&region=00&cases=Reference0504a_1630.775

    EPA(2005)Compillationofairpollutionemissionfactors,vol.1,Stationarypointandand776

    areasources:ReportAP42,OfficeofAirandRadiation,U.S.EPA,ResearchTriangel777

    Park,NC27711.778

    EPA(2010).GreenhouseGasEmissionsReportingfromthePetroleumandNaturalGas779

    Industry.BackgroundTechnicalSupportDocument.U.S.EnvironmentalProtection780

    Agency,WashingtonDC.781

    http://www.epa.gov/climatechange/emissions/downloads10/SubpartW_TSD.pdf782

    EPA(2011)Inventoryofgreenhousegasemissionsandsinks19902009,EPA430R11783

    005,55p,http://epa.gov/climatechange/emissions/usinventoryreport.html784

    FultonM,MellquistN,KitaseiS,andBluesteinJ(2011)Comparinggreenhousegas785

    emissionsfromnaturalgasandcoal.25Aug2011.WorldwatchInstitute/DeutscheBank.786

    http://lockthegate.org.au/documents/doc305comparinglifecyclegreenhousegas787

    db.pdf788

    GRIEPA(1997)MethaneEmissionsfromthenaturalgasindustry,ProjectSummary,789

    HarrisonNR,ShiresTM,WesselsJK,andCowgillRM,EPA/600/SR96/080.790http://www.docstoc.com/docs/19963708/MethaneEmissionsfromtheNaturalGas791

    Industry.792

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    36/38

    36

    HarrisonM(2012)RevisedAttachment3:Gaswellcompletionemissionsdata,URS793

    CorporationReport(akatheURSDevonStudy),http://anga.us/media/241555/anga794

    axpc%20nsps%20memo%20revised.pdf795

    HayhoeK,KheshgiHS,JainAK,WuebblesDJ(2002)Substitutionofnaturalgasforcoal:796climaticeffectsofutilitysectoremissions.ClimaticChange54:107139.797

    HowarthR,SantoroT,andIngraffeaA(2011)Methaneandthegreenhousegasfootprintof798

    naturalgasfromshaleformations,ClimaticChange,DOI10.1007/s1058401100615.799

    http://www.springerlink.com/content/e384226wr4160653/800

    HowarthRW,SantoroR,andIngraffeaA(2011).Methaneandthegreenhousegasfootprint801

    ofnaturalgasfromshaleformations.ClimaticChangeLetters,doi:10.1007/s10584802

    01100615.http://www.springerlink.com/content/e384226wr4160653/803

    HughesD(2011)Lifecyclegreenhousegasemissionsfromshalegascomparedtocoal:an804

    analysisfromtwoconflictingstudies,PostCarbonInstitute,21p,805

    http://www.postcarbon.org/report/390308lifecyclegreenhousegasemissionsfrom.806

    HultmanN,ReboisD,ScholtenM,andRamigC(2011).Thegreenhouseimpactof807

    unconventionalgasforelectricitygeneration.Environ.Res.Lett.6:044008,808

    doi:10.1088/17489326/6/4/044008.http://iopscience.iop.org/1748809

    9326/6/4/044008/810

    IPCC(1990),HoughtonJT,JenkinsGJ,andEphraumsJJ(eds.),Reportpreparedfor811

    IntergovernmentalPanelonClimateChangebyWorkingGroupI,CambridgeUniversity812

    Press,Cambridge,GreatBritain,NewYork,NY,USAandMelbourne,Australia,410p.813

    http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml814

    IPCC(1996),HoughtonJT,MeiraFilhoLG,CallanderBA,HarrisN,KattenbergA,and815

    MaskellK,ed.,ClimateChange1995:TheScienceofClimateChange,Contributionof816

    WorkingGroupItotheSecondAssessmentReportoftheIntergovernmentalPanelon817

    ClimateChange,CambridgeUniversityPress,ISBN0521564336(pb:0521564360)818

    http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml819

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    37/38

    37

    IPCC(2001),HoughtonJT,DingY,GriggsDJ,NoguerM,vanderLindenPJ,DaiX,MaskellK,820

    andJohnsonCA,ed.,ClimateChange2001:TheScientificBasis,ContributionofWorking821

    GroupItotheThirdAssessmentReportoftheIntergovernmentalPanelonClimate822

    Change,CambridgeUniversityPress,ISBN0521807670,823

    http://www.grida.no/publications/other/ipcc%5Ftar/?src=/climate/ipcc_tar/wg1/ind824

    ex.htm(pb:0521014956).825

    http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml826

    IPCC(2007)ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorking827

    GroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimate828

    Change[Solomon,S,QinD,ManningM,ChenZ,MarquisM,AverytKB,TignorM,and829

    MillerHL(eds.)].CambridgeUniversityPress,Cambridge,UnitedKingdomandNew830York,NY,USA.831

    http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml832

    MooreB(2011),Re:Oilandnaturalgassectorconsolidatedrulemaking,DocketIDNo.833

    EPAHQQAR20100505(withattacheddatasetdocumentinggasleakagefrom834

    unconventionalgaswellsof7companies).835

    NRC(2011)Climatestabilizationtargets:Emissions,concentrations,andimpactsover836

    decadestomillennia,NationalAcadamiesPress,Washington,D.C.,285p.837

    http://www.nap.edu/catalog.php?record_id=12877838

    PetronG,FrostGJ,MillerBRand27others(2012)Hydrocarbonemissionscharacterization839

    intheColoradoFrontRangeapilotstudy,Jour.Geophys.Res.,840

    doi:10.1029/2011JD016360.841

    http://www.agu.org/journals/jd/jd1204/2011JD016360/2011JD016360.pdf842

    SaghafiA,WilliamsDJ,andLamaRD(1997)WorldwideMethaneEmissionsfrom843

    UndergroundCoalMining,Proceedingsofthe6thInternationalMineVentilation844

    CongressMay1722,Chapter69MethaneDrainage,CSIRO,p441445.845

  • 7/31/2019 Cornell University -- Assessing the Greenhouse Impact of Natural Gas

    38/38

    Schwartz,SE(2007)Heatcapacity,timeconstant,andsensitivityoftheEarthsclimate846

    system,JournalofGeophysicalResearch,112,D24S05,12p.,847

    doi:10.1029/2007JD008746848

    ShindellDT,FaluvegiG,KochDM,SchmidtGA,UngerN,BauerSE(2009)Improved849

    attributionofclimateforcingtoemissions.Science326:716718.850

    SkoneTJ(2011)LifeCycleGreenhouseGasAnalysisofNaturalGasExtraction&Delivery851

    intheUnitedStates,oralpresentationatCornellUniversity,May12,2011,852

    http://cce.cornell.edu/EnergyClimateChange/NaturalGasDev/Documents/PDFs/SKONE853

    _NG_LC_GHG_Profile_Cornell_12MAY11_Final.PDF854

    SolomonS,PierrehumbertR,MatthewsDandDanielJS(2011)Atmosphericcomposition855irreversibleclimatechangeandmitigationpolicy,WorldClimateResearchProgramme,856

    39p.,http://conference2011.wcrpclimate.org/positionpapers.html857

    VenkateshA,JaramilloP,GriffinWM,andMatthewsHS(2011)Uncertaintyinlifecycle858

    greenhousegasemissionsfromUnitedStatesnaturalgasendusersanditseffectson859

    policy,Environ.Sci.Technol.,45,81828189.860

    http://pubs.acs.org/doi/abs/10.1021/es200930h861

    WigleyTML(2011)Coaltogas:theinfluenceofmethaneleakage,ClimaticChange,DOI862

    10.1007/s1058401102173.863

    WigleyTML(2011)MAGICC/SCIGEN,http://www.cgd.ucar.edu/cas/wigley/magicc/864