31
Cooperation in microbial biotechnology 1 1 2 Cooperation in microbial communities and their biotechnological applications 3 4 Matteo Cavaliere 1 , Song Feng 2 , Orkun Soyer 3 and Jose I. Jimenez 4 * 5 6 1 School of Informatics, BBSRC/EPSRC/MRC Synthetic Biology Research Centre, University of 7 Edinburgh 8 2 Center for Nonlinear Studies, Theoretical Division (T-6), Los Alamos National Laboratory 9 3 School of Life Sciences, BBSRC/EPSRC Warwick Integrative Synthetic Biology Centre, University of 10 Warwick 11 4 Faculty of Health and Medical Sciences, University of Surrey 12 13 *To whom correspondence should be addressed: 14 Faculty of Health and Medical Sciences 15 University of Surrey 16 Guildford, GU2 7XH 17 United Kingdom 18 Email: [email protected] 19 Phone: +44 01483 68 4557 20 21 Statement of significance: 22 In this review we summarise advances in the field of Evolutionary Dynamics applied to microbial 23 communities and their applications in biotechnology. We discuss different kinds of cooperative 24 interactions, their potential mechanistic origins and the factors that contribute to their stability. We 25 also analyse the advantages of cooperative behaviours in microbial populations and evaluate their 26 possible use to develop robust biotechnological applications. 27 28

Cooperation in microbial biotechnology 2 - … ·  · 2017-04-12Cooperation in microbial biotechnology 1 1 ... 23 This situation may confront the intuitive idea that ‘evolution

  • Upload
    lamnga

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Cooperationinmicrobialbiotechnology

1

1

2

Cooperationinmicrobialcommunitiesandtheirbiotechnologicalapplications3

4

MatteoCavaliere1,SongFeng2,OrkunSoyer3andJoseI.Jimenez4*5

6

1SchoolofInformatics,BBSRC/EPSRC/MRCSyntheticBiologyResearchCentre,Universityof7Edinburgh8

2CenterforNonlinearStudies,TheoreticalDivision(T-6),LosAlamosNationalLaboratory9

3SchoolofLifeSciences,BBSRC/EPSRCWarwickIntegrativeSyntheticBiologyCentre,Universityof10Warwick11

4FacultyofHealthandMedicalSciences,UniversityofSurrey12

13

*Towhomcorrespondenceshouldbeaddressed:14

FacultyofHealthandMedicalSciences15

UniversityofSurrey16

Guildford,GU27XH17

UnitedKingdom18

Email:[email protected]

Phone:+440148368455720

21

Statementofsignificance:22

InthisreviewwesummariseadvancesinthefieldofEvolutionaryDynamicsappliedtomicrobial23

communitiesandtheirapplicationsinbiotechnology.Wediscussdifferentkindsofcooperative24

interactions,theirpotentialmechanisticoriginsandthefactorsthatcontributetotheirstability.We25

alsoanalysetheadvantagesofcooperativebehavioursinmicrobialpopulationsandevaluatetheir26

possibleusetodeveloprobustbiotechnologicalapplications.27

28

Cooperationinmicrobialbiotechnology

2

Abstract1

Microbialcommunitiesareincreasinglyutilisedinbiotechnology.Efficiencyandproductivityinmany2

oftheseapplicationsdependsonthepresenceofcooperativeinteractionsbetweenmembersofthe3

community.Twokeyprocessesunderlyingtheseinteractionsaretheproductionofpublicgoodsand4

metaboliccrossfeeding,whichcanbeunderstoodinthegeneralframeworkofecologicaland5

evolutionary(eco-evo)dynamics.Inthisreviewweillustratetherelevanceofcooperative6

interactionsinmicrobialbiotechnologicalprocesses,discusstheirmechanisticorigins,andanalyse7

theirevolutionaryresilience.Cooperativebehaviourscanbedamagedbytheemergenceof8

‘cheating’cellsthatbenefitfromthecooperativeinteractionsbutdonotcontributetothem.Despite9

this,cooperativeinteractionscanbestabilizedbyspatialsegregation,bythepresenceoffeedbacks10

betweentheevolutionarydynamicsandtheecologyofthecommunity,bytheroleofregulatory11

systemscoupledtotheenvironmentalconditionsandbytheactionofhorizontalgenetransfer.12

Cooperativeinteractionsenrichmicrobialcommunitieswithahigherdegreeofrobustnessagainst13

environmentalstressandcanfacilitatetheevolutionofmorecomplextraits.Therefore,the14

evolutionaryresilienceofmicrobialcommunitiesandtheirabilitytoconstraintdetrimentalmutants15

shouldbeconsideredinordertodesignrobustbiotechnologicalapplications.16

17

Cooperationinmicrobialbiotechnology

3

Evolutionarydynamicsandcooperationinmicrobialpopulations1

Thedesignandoptimizationofmicroorganismsforbiotechnologicalpurposesoftenconsiderscells2

inisolation.Whilethisreductionistapproachaimstothriveforsimplicityintheprocess,itcreatesa3

situationthatrarelytakesplaceinNature.Intheirnaturalenvironmentmicroorganismsthrivein4

complexcommunitiesinwhichthefitnessofasinglecelldependsontheinteractionswithother5

cellsinthepopulation(Westetal.,2006).Thisscenarioalsoappliestobioprocessesinwhichthe6

efficiencyoftheprocessiscoupledtotheproductionofshared(public)goodsthatallowcellsto7

performtasksina‘cooperative’manner(Lindemannetal.,2016):agoodexampleofsharedgoods8

arethecellulasessecretedintheproductionofcellulosicethanol(ZomorrodiandSegrè,2016).9

Thepresenceofcooperativeinteractionshasasignificantimpactontheevolutionary10

dynamicsofmicrobialcommunities,representedbythechangeinthefrequenciesofcellsand11

speciesthatimplementdifferentphysiologicalstrategies(suchasproductionofpublicgoodsvs.12

not).Thus,cooperativetraitsneedtobetakenintoaccountwhenusinganevolutionaryapproach13

foroptimisingagivenbioprocess.Itispossiblethatsimpleselectionschemestargetingabioprocess-14

relatedtrait(e.g.growthrate)willnotalignwiththeselectionforthecooperativetrait(e.g.15

productionofcostlyextracellularenzymes)ultimatelyresultinginthelossofthetrait.Indeed,16

tradeoffsbetweentheoptimizationofso-calledhigh-rateandhigh-yieldarefrequentlyobservedin17

controlledevolutionaryexperiments(Bachmannetal.,2013).Thus,weadvocateconsideringthe18

interactionsbetweenthecellsandthefunctioningofcooperativetraitswhendesigningevolutionary19

optimisationandstabilisationofbioprocesses.Achievingthiswouldrequireconsideringhow‘social’20

interactionsshapemicrobialprocesses,ratherthansimplyfocusingsolelyonindividualistictraits21

suchasgrowthrate.22

Thissituationmayconfronttheintuitiveideathat‘evolutionimpliesimprovement’(i.e.the23

averagefitnessofthecommunityisexpectedtoincreaseovergenerationsasitwouldbeexpected24

formonocultures).Thekeypointisthatthepresenceofinteractionsbetweenthespeciesgivesrise25

toamorecomplicatedevolutionarypictureinwhichthefitnessofacelldependsnotonlyonits26

phenotypebutalsoontheoverallcompositionofthepopulation.Thespreadingofagiven27

phenotypictraitmaythuschangethefitnessofothermembersofthecommunityandthesechanges28

mayinturnfeedbackonthefitnessoftheindividualcells(Westetal.,2006).Theseintertwined29

selectionmechanismsareexpectedtooperateinanymicrobialpopulationwherethereispossibility30

ofdifferentcellsimplementingdifferentstrategieswithrespecttotheirphysiology,asisthecaseof31

phenotypicheterogeneity.32

Phenotypicheterogeneityariseseveninmonoculturesandsimplebioprocessesdueto33

differentreasons,suchastheuseofnon-homogenouscultureconditions,stochasticityingene34

Cooperationinmicrobialbiotechnology

4

expressionanddifferentialepigeneticcontrol(Enforsetal.,2001;Avery,2006;Mülleretal.,2010).1

Suchheterogeneitydoesnotrepresentastaticpicture–cellscommunicate,competeandcooperate2

andthesuccessofatraitmaybeconsequenceoftheinteractionwiththeothertraitsandofthe3

specificecologicalcontext(Carlquistetal.,2012).Therefore,itisnotsufficientforatraittobe4

successfulinonespecificsettingbutrather,itneedstobesuccessfulgiventhepresenceofother5

traitsandtheassociatedecologicalcontext.Moreover,thedilutionofatraitmayleadtochangesin6

thecommunity(bothecologicaland/orinthefrequencyofothertraits)thatcouldfeedbackonthe7

evolutionarydynamicsofthetraititself.Forinstance,atraitmaybefavouredbynaturalselection8

onlywhenrareinacomplexpopulation,becomingdisfavouredwhenitismorefrequent.These9

complexevolutionaryandecologicaldynamics,whereessentiallythesuccessofatraitdependson10

thecompositionofthecommunity,canbemathematicallyanalysedwithevolutionarygametheory11

(NowakandSigmund,2004;Frey,2010).12

Evolutionarygametheoryisamathematicalframeworkthatcomesfromclassicalgame13

theoryusedtodescribethebehaviourofrationalplayers.Classicalgametheorytriestoanalysethe14

behaviourinconflictsineconomicandsocialsettingsinwhichthesuccessofanindividualstrategy15

dependsonthestrategiesemployedbytheotherplayers.Awell-studiedexampleingametheoryis16

theprisoner’sdilemmainwhichthechoicestoeitherconfessorremainsilentdeterminewhether17

twosuspectsareconsideredguilty(Axelrod,1990).Inevolutionarygametheory,thestrategiesare18

notassociatedtorationalandcognitivechoices,butaretraitsencodedintoinheritedprogramsthat19

canbepassedtotheoffspring(forthisreason,thetermstraitandstrategiesareusedinan20

indistinguishablemanner).Traitssuchastheusageofmetabolicpathwaysortheexpressionof21

certainenzymescanbethenregardedasstrategiesandasuccessfulstrategyisthenselectedfor.22

Inamicrobialcommunitycomposedofspeciesthatcompeteusingdifferentstrategies,each23

oftheindividualcellspossessesafitnessthatdependsonitsstrategyandonthestrategyofthe24

individualswithwhomitinteracts.Individualsthatusemoresuccessfulstrategieshavehigher25

chancestopropagateandtheirfrequencyinthecommunitywillincrease.Althoughthedynamicsof26

anevolutionarygametheorymodelcanbestudiedanalyticallywhenthesetofstrategiesissmall,27

duetothelargenumberofinteractionstakingplaceinmicrobialcommunitiesmanyauthorsprefer28

tosimulatethedynamicsofthecommunityusingagent-basedmodelling.Inthesemodels,the29

replicationanddeathofindividualcells(agents)areexplicitlysimulatedusingasystemupdatedbya30

seriesofdiscreteevents(Adamietal.,2016).Thesetypesofmodelsalsoincludethepossibilityof31

addingmutationsthatcanintroducenovelstrategiesnotyetpresentinthespecies,whichcanbe32

usedtosimulaterandomevolutionofmembersofthecommunity(ErikssonandLindgren,2005).33

Cooperationinmicrobialbiotechnology

5

Incellularpopulations,acooperativetraitisoftencharacterisedbythepresenceofashared1

publicgood,whichisafiniteresource,producedbycooperativecellsandthatisfreelyavailableto2

allothercells.Thepresenceofapublicgoodisalwaysassociatedwiththeriskofcheatingcells,3

whichexploitthepublicgoodwithoutprovidinganycontributiontoitandwhichcanspreadinthe4

population–duetotheirimprovedfitnessarisingfromnotinvestingthecostsassociatedwithpublic5

goodproduction.Althoughinthisreviewwefocusonmicrobialpopulations,thisisaverygeneral6

issueinthesustainabilityofmanyorganismsatdifferentscalesincludinghumans,justifyingwhythe7

evolution(andresilience)ofcooperationisconsideredoneofthemajoropenquestionsinbiology8

(Pennisi,2009).9

Evolutionaryconflictsbetweencooperativeandcheatingcellshavebeenstudiedinavariety10

ofmicrobialscenarios,includingtheconversionofsucroseintoglucosebytheyeastSaccharomyces11

cerevisiae(Goreetal.,2009),theproductionoftheshareableiron-scavengingsiderophore12

pyoverdineinPseudomonasaeruginosa(Kümmerlietal.,2009)andtheformationoffruitingbodies13

inMyxobacteria(VelicerandVos,2009).Giventhepotentialsimilaritieswithcelluloseandother14

polymersbiodegradation,theexamplefromyeastisworthexplainingfurther.Inthiscase,15

cooperativeandcheatingcellsonlydifferbytheproductionoftheenzymeinvertasethatconverts16

sucroseintoglucoseandfructose.Bothmonosaccharidescaneventuallydiffuseawayfromthe17

producingcellandbecomeavailabletoneighbouringcells.Inotherwords,theybecomepublic18

goods:cooperators—thecellsthat‘feed’themselvesandtheirneighboursattheexpenseof19

expressingtheenzyme—canbeexploitedbycheaters,cellsthatdonotexpresstheenzymeand20

relyoncooperatorstomakefood(Fig.1A).Inascenariolikethis,itwouldbeexpectedthatcheaters21

couldtakeoverthepopulation.However,thefitnessofthecellsisanon-linearfunctionofthe22

glucoseconcentrationand,forcertainvaluesofglucoseuptakeandmetaboliccostofenzyme23

production,itispossibletoobservetheco-existenceofthetwospeciesasanticipatedbyan24

evolutionarygametheorymodel(Goreetal.,2009).Infact,inacomplexcommunitycomposedof25

multitudeofspeciesitislikelythatsuchmechanisticpropertiesrelatingtotheimplementationof26

thedifferentstrategies,suchasregulatorymechanismscontrollingtheproductionofapublicgood,27

willaffecttheevolutionaryandecologicaldynamicsofthestrategiesandthusthewholecommunity.28

Beforediscussingfurtherthesepotentialmechanismsthatcanstabilisecooperativeinteractions,we29

willfirstdescribetypesofcooperativeinteractionsinmicrobialpopulations.30

31

Microbialcooperationsbasedonpublicgoods32

Shared(public)goodsaremoleculesproducedbycertainindividualsandcanbenefittheentire33

population(Westetal.,2007).Asexplainedabove,thesemoleculesaresynthesisedatacostand,34

Cooperationinmicrobialbiotechnology

6

therefore,aresusceptibletobeexploitedbycheatercellsthatcanbenefitfromthembutdonot1

contributetotheirproduction–henceacquiringafitnessadvantageovercooperators.Thistypeof2

cooperationisbasedonalargevarietyofsharedmolecules:siderophores,enzymes,biosurfactants,3

componentsofbiofilmmatrix,quorumsensingmolecules,bacteriocins(proteinssecretedbyone4

straintoinhibitthegrowthofacloselyrelatedstrain)andtoxinsassummarizedin(Westetal.,5

2007).Giventheirinterestinmicrobialbiotechnology,inthisreviewwewillfocusonsecretionof6

degradatoryenzymes.7

Microorganismsdigestlargemacromolecules,whicharepoorlysoluble,throughthe8

secretionofextracellularenzymes.Themacromoleculesaretypicallypolymersofbiologicalor9

syntheticorigin,suchasstarch,celluloseandpolyesters,whichconstituteanabundantsourceof10

nutrientsforbacteria,fungiandothereukaryoticmicroorganisms(Allison,2005;Richardsand11

Talbot,2013).Thesepolymersalsoconstituteaveryinterestingsubstrateforindustrialbioprocesses,12

astheyareinexpensive,biodegradableatsomeextentandoftenobtainedfromrenewablesources13

(GrossandKalra,2002).Theenzymessecretedbymicroorganismsactbydegradingthe14

macromoleculesintosimplerandsmallercomponentsthatcanthenbeassimilatedbythemicrobial15

community(Burns,2010).Inthisscenario,thedynamicsofthecooperatingandcheating16

populationsdependonparameterssuchasthecostofproducingtheenzymesandtheirdiffusibility17

(Allison,2005).18

Cellulasesandoxidativeenzymessecretedtocleavecellulosesuchascellobiase19

dehydrogenasescanbeconsideredasinstancesof‘publicgoods’(Dimarogonaetal.,2012)andare20

foundinthegenomeofmostwood-degradingmicrobialcommunities(Zamockyetal.,2006).Similar21

tocellulases,amylasescapableofdegradingtheglycosidiclinkagesofstarchesalsoplayan22

importantroleaspublicgoodsandhavebeenidentifiedinmanybacteriaandfungi,suchasBacillus23

subtilis(ColemanandElliott,1962),Thermomyceslanuginosus(Arnesenetal.,1998),Penicillium24

expansum(Doyleetal.,1998),andseveralspeciesofStreptomyces(El-Fallaletal.,2012).Similarly,25

enzymesresponsibleforthedigestionofothermacromoleculessuchasextracellularlipasesand26

proteasesarealsoexamplesofpublicgoods,andtheirproductioninacomplexmicrobialcommunity27

isinfluencedbytheinteractionsbetweenitsmembers(WillseyandWargo,2015).Collectively28

producedenzymesarealsoresponsibleforthedegradationofoil-derivedplasticpolymerssuchas29

poly-ethylenterephthalate(PET).Theidentificationofbacterialspeciesproducingenzymescapable30

ofPETdepolymerisation,thereforegeneratingmoleculesthatcanthenbeassimilatedbythe31

microbialcommunityinthatniche(Chenetal.,2010;Yoshidaetal.,2016)pavesthewayforthe32

remediationofPETwasteanditsuseasabioprocessingsubstrate(Wierckxetal.,2015).33

34

Cooperationinmicrobialbiotechnology

7

Microbialcooperationsbasedonmetabolicinteractions1

Metabolicexchangeisanotherwayinwhichmicroorganismscaninteractcooperatively.Metabolic2

interactionsarewidespreadinnaturalmicrobialcommunitiesandarisefrommetabolitesfromone3

speciesbeingusedasenergysourcesorbuildingblocksbyotherspecies(Pacziaetal.,2012;Cooper4

andSmith,2015;Fioreetal.,2015).Theformerscenarioleadstocross-feeding,whereasthelatter5

canleadtoemergenceofauxotrophies(anorganismfullyrelyingontheenvironmentalprovisionof6

certaincompoundsrequiredforitsgrowth)(Fig1B).Themetabolitesreleasedintotheenvironment7

canbeexplainedbyeitherpassiveoractivemeans,i.e.organismsnotbeingabletomaintaincertain8

compoundsduetoleakageissuesoractivelysecretingthosecompoundsduetosomefunctional9

benefits.Whiletheformerexplanationcouldariseduetosomefundamentalbiophysicallimitations10

onbiologicalmembranes,thesecond(functional)explanationisdifficulttorationwithinasimplistic11

viewoforganismalfitness.Onecouldnaivelyarguethatsinceotherorganismsusethesecreted12

metabolitesasaresource,evolutionshouldhaveallowedthe‘secretingorganism’alsotoinnovate13

thatcapacityofusingthismetabolite(asanenergysourceorbuildingblock)ratherthansecretingit.14

Thisnaïveview,however,ignoreslimitationsarisingfromcellulartradeoffsandthermodynamics.15

16

Metabolicinteractionsemergingfromthermodynamiclimitations17

Inprinciple,cross-feedingandauxotrophicinteractionscouldbeseenasanextremeformof18

cooperation(i.e.,‘altruism’)astheybenefitonlythereceivingorganisms.Undercertainconditions,19

however,secretionofinternalmetabolitescanalsobenefittheproducerleadingtoamutually-20

beneficialinteraction:iftheproductsreleasedhaveaninhibitoryeffectontheproducer,the21

presenceofanadditionalspeciesthatwouldassimilatetheseproductswouldleadtomoremild22

formsofcooperativeinteractionratherthanastraight‘altruistic’actonbehalfoftheproducer(Lilja23

andJohnson,2016).Morespecifically,thistypecross-feedinginteraction,involvingreleaseof24

inhibitionarisingfrombyproductsofmetabolismofoneorganismbyanotherisoftenreferredtoas25

syntrophy(Fig2A).Themost-wellknownexampleistheH2-mediatedsyntrophicinteractions26

betweensecondarydegradersandmethanogens(Schink,1997).Intheseinteractions,theinhibition27

ofthedegradingspeciesarisesduetoitsgrowth-supportingmetabolicreactionreachingtowards28

thermodynamicequilibriumasH2accumulates(Schink,1997;GroßkopfandSoyer,2016).This29

‘thermodynamicinhibition’isrelievedbytheconsumingofH2bythesyntrophicpartners(McInerney30

andBryant,1981;Seitzetal.,1988;ScholtenandConrad,2000),creatingasituationinwhich31

continuedgrowthisonlypossiblewhenthetwopartnersco-exist.Manyofthebiodegradation32

processesconsistofindividualsyntrophicandcross-feedinginteractionsamongdifferentspecies33

(Schink,1997),withexamplesincludingthedegradationofmonoaromaticandpolyaromatic34

Cooperationinmicrobialbiotechnology

8

compoundsinsyntrophywithmethanogens(KnollandWinter,1989;Berdugo-Clavijoetal.,2012;1

Morrisetal.,2013).Syntrophicinteractionsarealsoimportantinoil-degradingmicrobial2

communities,althoughtheexactrolesofmanyindividualmembersinthesecommunitiesareless3

clear.Ithasbeenreported,forinstance,thatsyntrophicinteractionsbetweenDesulfatibacillum4

alkenivoransandMethanospirillumhungateiarenecessarytodegraderefractoryhydrocarbons5

(Westerholmetal.,2011;Callaghanetal.,2012).6

Theseexamplesillustratehowubiquitousandessentialsyntrophicinteractionsarefor7

completedegradationoforganiccompounds.Therefore,forfullybeingabletooptimize8

bioprocessesandbiotechnologiesaroundorganicdegradationandtransformationsweneedabetter9

understandingoftheemergenceandmaintenanceofmetaboliccooperations. Itisimportantto10

notethatsyntrophicandcross-feedinginteractionsareshowntoaltercellularmetabolicfluxes11

withinindividualspecies,aswellasinsimplecommunitiessuchthatthepresenceofadownstream12

syntrophicpartnercanresultinchangesinthemetabolicby-productsandyieldsfromupstream13

producermicroorganisms(McInerneyandBryant,1981;Seitzetal.,1988;Schink,1997;Scholten14

andConrad,2000).Inotherwords,organisms’preferredmetabolicroutes(or‘strategies’)would15

changewithlocalsubstrate/productavailabilities(aswellasinternalconstraintssuchasonuptake16

ratesorcofactoravailabilities),buttheseinturnwoulddependonwhatotherorganismswould17

choosetodometabolically.Fromatheoreticalperspective,thissituationcannotbeanalysed18

assumingasimpleindividualfitnessoptimizationunderconstantselectionpressure,butwould19

requireinsteadthecombinationofevolutionarygametheoryandecologyinordertodevelop20

theoreticalframeworksandexperimentalmodelsystemsaccountingforthedescribedcomplex21

interplays.22

Theinclusionofthermodynamicsinmodelsofmicrobialgrowthandmetabolismcould23

contributetounraveltheemergenceofmetabolicinteractions.Takingintoaccountthe24

thermodynamicconstraintsofgrowth-supportingmicrobialbiochemicalreactionswouldenable25

bettercapturingchangesintheconcentrationsofdifferentcompoundsintheenvironmentandthus26

allowdirectlinkagebetweenecologyandindividualgrowthrates.Therehavebeenseveralrecent27

attemptsinthisdirection,andmodelsincludingthethermodynamicsofmetabolicreactionshave28

beensuccessfullyemployedtodescribethedynamicsofsomebiodegradationprocesses,suchasthe29

fermentationofglucoseandthereductionofnitrate(González-Cabaleiroetal.,2013,2015;Cueto-30

Rojasetal.,2015),toexplainmicrobialdiversity(GroßkopfandSoyer,2016),aswellastomodel31

individualspeciesgrowth(HohandCord-Ruwisch,1996;JinandBethke,2007).Additionalworksin32

thisdirectionwillallowbetterpredictivemodelstoexplainevolutionaryandecologicaldynamicsof33

Cooperationinmicrobialbiotechnology

9

microbialcommunitiesunderconditionswherethermodynamics-drivenmetabolicinteractions1

dominate.2

3

Metabolicinteractionsemergingfromcellulartradeoffs4

Asdiscussedabove,fitnessoptimizationisacomplexfunctionofmultipletraitsanditissubjectto5

intrinsictradeoffsthatcouldreadilyexplainmetabolicsecretions.Inparticular,theoptimizationof6

ATP-generatingpathwaysunderlimitationsonenzymeinvestmentandinternalmetabolic7

concentrationsisshowntoleadtotheevolutionofimpartialpathwaysandmetaboliteexcretion8

(PfeifferandBonhoeffer,2004).Similarly,limitationsonmembranespaceandinternalresources9

suchasenzymesandconservedmoietiescancausetradeoffsinsubstrateuptakeratesandinternal10

metabolicfluxes,resultingindifferentgenotypesthatdifferentiallyutilizerespiratory(i.e.pathways11

endingwithinorganicterminalelectronacceptors)andfermentation(i.e.pathwaysendingwith12

organicterminalelectronacceptors)pathways(MajewskiandDomach,1990;Vemurietal.,2006;13

Molenaaretal.,2009;Zhuangetal.,2011;vanHoekandMerks,2012;Flamholzetal.,2013;Basan14

etal.,2015).Sincetheendproductsoffermentativepathwaysareusuallystillabletosustainfurther15

microbialgrowth,thiscouldagainexplainthefirststageofformationofmetabolicinteractions16

throughmetabolicexcretions.Subsequently,limitationsonsubstrateuptakearepredictedtoactas17

aforcetodrivemetabolicspecializationonsuchexcretedcompounds(Doebeli,2002;Spenceretal.,18

2007).19

Theideaofcellulartradeoffsdrivingtheemergenceofmetaboliccross-feedinghasrecently20

beenevaluatedinacombinedinsilicoandexperimentalevolutionstudy(Großkopfetal.,2016).In21

thatstudy,theauthorshaveincorporatedtradeoffsinastoichiometricmetabolicmodelofE.coliby22

imposingglobalconstraintsonthetotaluptakerates.Thismodelwasthensimulatedusing23

dynamicalfluxbalanceanalysis,whichallowsmodellingofbothmicrobialgrowthandenvironmental24

substrateconcentrations,andmutations,whichcanalterthedistributionoftotaluptakefluxamong25

differentsubstrates.Inotherwords,thisapproachcombinedsimulationofecologicaland26

evolutionarydynamicsatthesametime;startingfromasinglemodel,theinsilicosimulationscan27

leadtoalterationsbothintheenvironmentalconditionsandmutantmodels(Fig.2B).The28

applicationofthisapproachtothemodellingoftheexperimentallong-termevolutionofEscherichia29

colirevealedthatthecombinationoftradeoffsandecological/evolutionarydynamicsresultsinthe30

emergenceoftwodominantmodels(Fig.2C).Thesetwomodelshavedistinctuptakefluxes31

suggestiveofacross-feedinginteraction;onemodelhadincreasedglucoseuptakeandacetate32

excretionrateandtheotherhadincreasedacetateuptakerate(Großkopfetal.,2016).Further33

experimentalanalysesrevealedthatthetwomodelsshowmetabolicfluxpatternsthatqualitatively34

Cooperationinmicrobialbiotechnology

10

matchexperimentallyobservedgenotypesinonelineageofthelong-termexperiments,indicating1

thatthisapproachmightprovideusefulinsightsintohowecologicalandevolutionarydynamicscan2

shapemetabolicsystems.Indeed,anemergingtrendintheanalysisofcommunitydynamicsisto3

increasinglycombinemulti-speciesecologicalsimulationswithstoichiometricmodelsdescribingthe4

metabolismofthoseinteractingspeciesinanattempttogenerateinsightsintoecology–5

evolutionaryinterplay(LoucaandDoebeli,2015;Widderetal.,2016;ZomorrodiandSegrè,2016).6

7

Factorscontributingtothestabilizationofcooperativeinteractionsinmicrobialpopulations8

9

Structuredenvironments10

Oneofthebasicmechanismsthataffecttheresilienceofcooperationisthepresenceofspatial11

structure.Structurewouldultimatelyfacilitatetheresilienceofcooperationasitallowsthe12

‘segregation’ofcooperativefromcheatingcells(Nowak,2006)(i.e.,cooperativecellscanthenshare13

theproducedpublicgoodwiththesimilartrait,excludingcheatingcells)(Fig3A).14

Thereareseveraltheoreticalstudiesandexperimentalevidencesofspatialsegregationin15

cellularpopulations(VanDykenetal.,2013),withbiofilmsbeingaparadigmaticexampleofbacterial16

communitiesexhibitingstablecooperationduetothesegregationinstructuredenvironments17

(Nadelletal.,2009).Thestructureandcompositionofbiofilmscanfeedbackonthehighlydynamic18

competitionbetweensub-populationsofcooperators(i.e.,contributingtothebiofilmassembly)and19

cheaters.Inthesecircumstances,thespatialarrangementsofthedistinctgenotypescruciallyaffect20

thedegreeofcooperationandcompetitionpresentinthebiofilm(Nadelletal.,2016).21

Abroadernotionofstructurecanalsorefertothecaseofhavingapopulationdistributed22

intodifferentheterogeneoussub-populationsthatmaybespatiallysegregated(e.g.forming23

colonies).Inthiscasethestructureofthepopulationcanleadtoacharacteristicissueofmulti-level24

selectionknownasSimpson’sparadox.Simpson’sparadoxisastatisticalphenomenomthatcan25

emergewhencomparinggroupsofdata;groupscandisplayatrendwhenanalysingthem26

individually,butthistrendisreversedwhenthegroupsarecombined.Afamousexampleof27

Simpson’sparadoxistheonebehindthegenderdiscriminationaccusationagainsttheUniversityof28

Berkeleyinearly1970s.Inthatcase,44%ofthetotalmaleapplicationstothegraduateschoolwere29

acceptedagainstthe35%ofthefemaleapplicantssuggestingabiasagainstfemaleapplicants.30

Lookingintohowtheapplicationsweredistributedamongthedifferentdepartments,however,it31

becameclearthattherewasnobias,andthedifferencesintheratesweretheresultofamajorityof32

womenhavingappliedtothemostcompetitivedepartments,whichdecreasedthesuccessrateof33

thefemaleapplicants.Inotherwords,theapparentbiasisonlytheresultofthewaysthe34

Cooperationinmicrobialbiotechnology

11

applicationsareaggregatedtogether(Bickeletal.,1975).Inthecontextofmicrobialcommunities,1

Simpson’sparadoxisshowntoemergewhenthedifferentsub-groupsaresufficiently2

heterogeneousintheircompositiontoguaranteethatintheaggregatepopulationthecooperative3

individualshaveanadvantageoverthecheatingcells(despiteineachofthecolonies–the4

disaggregatedpopulation–cheatersarefavoured)(Chuangetal.,2009).Thisfindingsuggeststhat5

theopportunedesignoftheorganizationofamicrobialcommunityinsub-populations(and6

subsequentcoalescenceofthosesub-populations)maybeusefultoimproveitsresilienceto7

detrimentalmutants.Ingeneral,othermorecomplexnotionsofstructuredpopulationsfrom8

ecology(e.g.,meta-populationdynamics)couldalsoberelevanttounderstandandcontrolthe9

evolutionarydynamicsofcooperativeinteractions(Dattaetal.,2013).10

11

Interplaybetweenecologicalandevolutionarydynamics12

Anotherstabilisinganddrivingfactorbeyondcooperativeinteractionsinmicrobialcommunitiesis13

theinterplaybetweenecologicalandevolutionarydynamicsthatresultsinchangesinthe14

compositionofthecommunityovertime.Thishappenswhen,duetotheinteractionsina15

community,certaintraits(suchascheatingandcooperation)areselectedfororagainst,resultingin16

rapidchangesinthefrequencyoftheindividualscarryingthetraitthataffecttheecologyofthe17

globalcommunity.Thechangesintheecologycanthenfeed-backontheselectiveadvantageofthe18

differenttraits(asdiscussedabove),leadingtoaneco-evolutionaryfeedback(Fig.3B)(Lennonand19

Denef,2015).Thisaspecthasbecomeofrecentinterestduetoseveraltheoreticalandexperimental20

studiesshowingthenon-trivialeffectsofthetime-scalesoverlapbetweenecologyandevolutionin21

whatarecalledeco-evofeedbacks(Schoener,2011).Thereareseveralexamplesofeco-evo22

feedbacksinmicrobialpopulationsinvestigatedexperimentally(FiegnaandVelicer,2003;Ross-23

Gillespieetal.,2009;Moreno-Fenolletal.,2017)withthemostknownexamplebeingtheinterplay24

betweenpopulationdensityandfitness(SanchezandGore,2013).Forinstance,intheyeast25

communitiesdiscussedabove,cooperativecellshavehigherfitnessthancheatingcellsonlyatlower26

populationdensity.This,coupledtothefactthatcheatersleadtolowerpopulationgrowth,27

facilitatestheobservedco-existencebetweenthetwotraits,i.e.thestabilisationofcooperation28

(SanchezandGore,2013).Eco-evofeedbackscanbemodelledbyaddingnotionsofpopulation29

dynamicstoevolutionarygametheory,leadingtotheframeworkofecologicalpublicgoodgames30

(Hauertetal.,2008)thatextendthestandardevolutionarygametheory(inwhich,usually,thefocus31

oftheanalysisisthechangeinfrequencyofacertaintrait).Combinationofpopulationdynamics32

withmetabolicmodelsatthelevelofindividualspeciesorgenotypes(Harcombeetal.,2014)with33

Cooperationinmicrobialbiotechnology

12

evolutionarydynamics(Großkopfetal.,2016)isanotherpromisingroutetowardscapturingeco-1

evolutionarydynamics,especiallywhencooperativeinteractionsinvolvemetabolitesecretions.2

3

Regulatorymechanisms4

Anotherpotentialfactorforthestabilisationofcooperationthathasrecentlyattractedattentionis5

cellularregulatorymechanisms.Animals,includinghumans,havedevelopedcomplexsocial6

strategiestocontrolcheaters,andthereisgreatinterestindeterminingtowhichextentsinglecell7

organismscouldemploysimilarmechanismstofightdetrimentalmutants(TravisanoandVelicer,8

2004).9

Oneoftheseregulatorymechanismsisknownas‘reciprocity’.Inthiscasetheamount10

contributedofapublicgooddependsontheenvironmentalconditions,whichinturnmaydepend11

onthecontributionsmadebyothers.ThisisforinstancethecaseofironuptakeinP.aeruginosa12

whereironscavengingsiderophores(thepublicgood)arereleasedingreaterorsmallerquantities13

dependingontheamountofironintheenvironment(Kümmerlietal.,2009).Recentexperiments14

usingthissystemhaveconfirmedthatcellsuseatypeof‘reciprocity’thatfacilitatesthecontrolof15

cheaters:thecellulardecisionofproducingpublicgoodismadeonlyinanenvironmentwithmany16

producers.Inotherwords,thecellsseemtoimplementarulestating‘cooperatewhensurrounded17

bymostlycooperators’.Coupledtoquorumsensing,thisruleallowsbacteriatomatchtheir18

investmentatlowerlevelsofpopulationstructuringanditisaneffectivewaytorepresscheaters19

(Allenetal.,2016).Inyeast,asimilarmechanismhappensintheproductionofinvertase.Another20

regulatorymechanismthatcouldbeinterpretedasafunctional‘decision’tolimitthespreadof21

cheatersistoincreasethenoiseintheexpressionofgenesencodingforpublicgoods(Goreetal.,22

2009).Thisisthecaseofself-destructivecooperation,inwhichcooperativecellsdiewhilehelping23

others,forexample,asithappensduringthesecretionoftoxinsthatenhancethecolonizationof24

tissuesbycertainbacterialpathogens(Ackermannetal.,2008).Sincethetoxinisgenetically25

encoded,itisonlyexpressedbyafractionofthepopulationorthewholemicrobialpopulation26

woulddie.The‘decision’onwhichcellsmaketheultimatesacrificeisgivenbythestochastic27

expressionofthegeneencodingthetoxin.Similarly,cell-cellvariabilityintheproductionofother28

kindsofpublicgoodsmayallowcooperativecellstotemporarilyswitchofftheproductionofapublic29

good,thereforelimitingitscostandallowingforenhancedcompetitionagainstthecheatingcells.30

Thesetypesofcellulardecision-makingmechanismscaninterplaywithanunderlyingeco-31

evodynamics(HarringtonandSanchez,2014)andcruciallyaffecttheresilienceofcooperation,as32

shownintheoreticalmodels(CavaliereandPoyatos,2013)(Fig.3C).Thus,itisplausibletopropose33

thecontrolofpublicgoodproductionforsuccessfulbioprocesses(suchasthedescribedcellulose34

Cooperationinmicrobialbiotechnology

13

degradation)throughexistinggeneregulatorymechanismsorbyengineeringsuchmechanismsde1

novo.2

3

Horizontalgenetransferofcooperativetraits4

Mobilegeneticelements(plasmids,bacteriophages,transposons,etc.)transmittedviahorizontal5

genetransferareoneofthemainfactorscontributingtoshapingmicrobialevolution.Apartfromthe6

genesessentialforthereplicationandtransmissionessentialforthemobileelements,theyoften7

carrymultipletraitstheenablesocialinteractionsinmicrobialcommunitiesandmakethemactive8

agentsdefiningtheevolutionarydynamicsofthesecommunities(Rankinetal.,2011).9

Cooperativetraitssuchaspublicgoodproducingexoenzymesarecommonlyacquireddueto10

thetransferenceofmobileelements.Infact,agenomicanalysisinsomebacterialspeciesshowthat11

thefrequencyofgenesencodingextracellularproteinsissignificantlyhigherinchromosomal12

locationsknowntobetransferred(e.g.transposons)comparedtoregionsthatarenot,andthe13

frequencyisevenhigherinplasmids,whichwerethemostmobileelementspresentintheanalysis14

(Nogueiraetal.,2009).Horizontalgenetransferisalsoresponsibleforthetransmissionof15

exoenzymesineukaryoticmicroorganisms,asrevealedbyasimilaranalysiscarriedoutin16

osmotrophicfungi,inwhichitbecameevidentthatnotonlytheenzymes,butalsothetransporters17

requiredfortheuptakeoftheproductsresultingfromtheactivityoftheenzymesonlargepolymers,18

wereencodedinmobilegeneticelements(RichardsandTalbot,2013).19

Theseobservationsareconsistentwiththeideaofmobileelementsenablingcooperationin20

acommunityowingtotheinvasionofmobileelementstransmittingcooperativetraits.However,the21

mobileelementsalsogenerateacosttothecellsharbouringthemand,therefore,canpotentiallybe22

lostoroutcompetedby‘cheat’geneticelements(Rankinetal.,2011).Recentexperimental23

evidencesshowneverthelessthathorizontalgenetransferhelpstomaintaintheproductionof24

publicgoodsdespitethepotentialpresenceofnon-cooperativeorganismsandnon-cooperative25

mobileelements(Dimitriuetal.,2015)owing,amongotherfactors,totheincreaseingenetic26

relatednessduetothepresenceofthemobileelements(McGintyetal.,2013).Inotherwords,27

transmissiblemobileelementsallowforthelocalenrichmentincooperativeinteractions,which28

may,inthelongterm,leadtothespecializationofsub-populationsincooperativenichesspeciallyin29

thepresenceofstrongstructure(Niehusetal.,2015).30

31

Therelevanceofcooperationforbiotechnologicalapplications32

Thepresenceofcooperativeinteractionsfacilitatesthedevelopmentofcomplexfunctionsthat33

wouldbeotherwisedifficultorimpossible(Nowak,2006).34

Cooperationinmicrobialbiotechnology

14

Cooperativemicrooorganismscanexhibitdistributionoflabour:alargecollectionofdistinct1

phenotypicbehaviours,organizedinsubpopulations,cancoordinatetofulfilsomecomplextasksina2

collectiveway(Fig4A).Shareddiffusiblemoleculesallowcellstocommunicateandspatially3

distributethelabour.Examplesofcomplextasksrangefromthecontrolledgrowthofbiofilms4

dependingonenvironmentalconditions(Liuetal.,2015;Kimetal.,2016)tothedistributed5

computationofBooleanfunctions(Regotetal.,2011).6

Thistypeofinteractioniscommonlyobservedinbiodegradativeprocessescarriedoutby7

interspeciesbiofilms.Forinstance,thepresenceofaalgaeinamicrobialconsortiumwithmorethan8

ninebacterialspeciesenhancesthedegradationofthepesticidediclofopmethyl(Wolfaardtetal.,9

1994).Anotherinterestingexampleisthesyntrophicinteractionbetweenthenon-cellulolytic10

speciesTreponemabryantii,andthecellulolyticspeciesRuminococcusflavefaciens,toenhancethe11

rateofcellulosedegradation.TheslowlygrowingculturesofR.flavefaciensbenefitsfromT.bryantii12

removingthecellulolyticproduct,whichresultsinhigherpopulationdensityanddegradationrates13

(Jamesetal.,1995).14

Distributionoflabouris,however,notrestrictedtospatiallystructuredpopulationsor15

populationscomposedbymorethanonespecies,butcanalsoapplytootherbiologicalprocesses16

likethebiochemicalpathwaysforthedegradationofaromaticsinpopulationscomposedofone17

strain(Nikeletal.,2014).Thesepathwaysaresometimesorganisedintotwodistinctgeneoperons,18

oneencodingfortheactivitiesrequiredtofunnelthearomaticsubstrateintoamoreaffordable19

aromaticcarbonsourceandasecondrequiredtotransformthisaromaticcompoundintocentral20

metabolites.Forinstance,theTOLpathwayofPseudomonasputidaresponsiblefortolueneand21

xylenedegradationcontainsan‘upper’partthatconvertstolueneintobenzoate,anda‘lower’22

segmentresponsibleforthedegradationofbenzoate(Franklinetal.,1981).Inprinciple,itwouldbe23

expectedthatallcellsexpressbothoperonswhenaclonalpopulationofP.putidaisculturedinthe24

presenceoftoluenebut,surprisingly,manyofthecellsdisplayanearbimodaldistribution25

expressingeitheroneoperonortheother(Nikeletal.,2014).Themechanisticexplanationofthis26

behaviourisunknownalthoughaplausibleexplanationofthephenotypicdistributionmayarise27

fromtheintricatetranscriptionalcontroloftheoperons(Silva-RochaanddeLorenzo,2012).28

Distributionoflabouralsoappearsintheanaerobicmetabolismofaromaticcompoundsin29

Rhodopseudomonaspalustris.Monoculturesofthisspeciesorganiseinthreedifferent30

subpopulationswhenusingp-coumarateorbenzoateasthecarbonsource.Eachofthese31

subpopulationsisresponsiblefortheutilizationofeitherthearomaticcompound,CO2andH2or,32

whengrowingonbenzoate,N2andformate,formingasyntrophicconsortiadefactocomposedofa33

singlespecies(Karpinetsetal.,2009).However,whetherthisparticulartypeofcooperativecross-34

Cooperationinmicrobialbiotechnology

15

feedinginteractionisadvantageoustopreventwasteofresourcesoraccumulationoftoxic1

intermediatesisanopenquestion.2

Distributionoflabourcanalsobeengineeredtogetherwithcooperativetraitsin‘synthetic’3

communities(Fig.4B).Thisisthecaseofco-culturingengineeredstrainsofthebacteriumE.coliand4

theyeastS.cerevisiaethatareartificiallymutualistic.Eachofthesestrainsismodifiedtoexpressone5

moduleofthebiosyntheticpathwayofanantitumoralcompoundofinterest(theacetylateddiol6

paclitaxelprecursor).Thecooperationbetweenthesespeciesallowsproductionoftaxaneswith7

higheryieldsthanusingE.colialone.ThemixedculturecombinesthecapabilitiesofE.colifor8

producingtheintermediatetaxadienewiththesuperiorpropertiesofS.cerevisiaecomparedtoE.9

colitocatalysetheoxygenationreactionsrequiredtorenderthefinalcompound(Zhouetal.,2015).10

Syntheticconsortiacanbeusedinbioprocessesevenintheabsenceofmutualismasexplainedin11

theprevioussections(e.g.ifeco-evofeedbackstakeplace).Thisisthecaseofanartificial12

communitydesignedtoproduceisobutanolfromcellulosicbiomasscomposedbythefungus13

TrichodermareeseiandanengineeredstrainofE.coli.InthisconsortiumT.reseeiactsasa14

cooperatorsecretingcellulasesrequiredtodegradelignocellulosicpolymersandtheresulting15

saccharidesareusedtofeedtheE.colistrainthatdeliversthefinalproduct(Mintyetal.,2013).16

Syntheticcommunitiescanalsoimprovebiodegradationprocessescomparedtomonocultures.17

Degradationofcrudeoilisagoodexampleinwhichmicrobialcommunitiescanexhibitcooperative18

interactionsinNatureincludingmetaboliccross-talkandsharedgoodsthatmaycontributetothe19

formationofinterspeciesbiofilms(McGenityetal.,2012).Moreover,theseinteractionscanbe20

harnessedtoproduceartificialcommunitieswithenhanceddegradationcapabilitiessuitableforoil21

removal(Gallegoetal.,2007).Anotherexampleisthedesulphurizationofdibenzothiophene(DBT)22

toformsulphur-free2-hydroxybiphenyl.Inarecentwork,DBTdesulphurizationwascarriedout23

usingeitheranengineeredP.putidastrainexpressingallthedszABCDgenesrequiredintheprocess,24

oramixedcultureofthesamestrainexpressingonlysomeofthegenes.Inthisexperiment,25

desulphurationofDBTwashigherwhencombiningmultiplecells‘specialising’inonestepofthe26

biochemicalpathwaycomparedtothecaseofhavingallreactionstakingplaceinthesameorganism27

(Martínezetal.,2016).28

Cooperativeinteractionsinmicrobialcommunitiescanalsoleadtohigherresistanceto29

environmentalandecologicalstress.Empiricalobservationsusingartificialcommunitiesofyeast30

showthatthisresistancetakesplaceoverawiderangeofconditions(Goreetal.,2009).Inaddition,31

experimentscarriedoutwithengineeredpopulationsofBacillussubtilislackingtheabilitytoform32

biofilmsshowthattheyneverthelesstendtoformclustersthat,althoughcanhavereducedgrowth33

duetolimitedmobility,allowthecellstoendureharshenvironmentalconditions(RatzkeandGore,34

Cooperationinmicrobialbiotechnology

16

2016).Inthiscase,cooperativeindividualstendtoaggregateleadingtothe‘privatization’ofpublic1

goodsandtotheexclusionofcheatingindividuals(Pandeetal.,2016).Ontheotherhand,thelossof2

cooperationmakescellularcommunitiesmorefragile(SanchezandGore,2013)andmorevulnerable3

tocompositionalshiftsarising,forexample,fromantibiotictreatments(Liuetal.,2015).Thefact4

thatthesebehavioursareobservedinexperimentswithdifferentmanipulatedspeciessuggeststhat5

thesemechanismsaregeneralandcouldbecommonplaceinNature.6

Thepresenceofmechanismsthatfacilitatecooperationcanalsoleadtocomplexco-7

evolutionarydynamicswiththeconsequentemergenceofnovelsocialinteractions.Themost8

significantexampleinthisrespectisthemechanismofquorumsensing(QS)thatisinvolvedin9

controllingtheinvestmentin‘publicgoods’(Allenetal.,2016).AlthoughtheoriginalroleofQSis10

unknown,itsabilitytofacilitatethe(beneficial)presenceofcooperativeinteractionsmayhaveledto11

theselectionofcomplexfunctionalities,e.g.,coordinatingtheexpressionofgenesinvolvedin12

multiplecooperativestrategies,oftenco-evolvingwiththem(Popatetal.,2015).Thisexample13

suggeststhepossibilityofusingthepresenceofcooperativeinteractionstodirecttheevolutionof14

thecommunitiestowardsotherpropertiesofinterest.15

16

Conclusion17

Thekeypointofevolutionarygametheoryisthatthefitnessofindividualsdependsnotonlyonthe18

environmentbutalsoonothermembersinthepopulation.Thistheoryprovidesaframeworkto19

understandthedynamicsofmanybioprocessesinvolvingcomplexmicrobialpopulations(natural20

andsynthetic)inwhichthefitnessofanindividualcellisinfactaffectedbytheenvironmentandby21

thepresenceofothercells.Aparticularcaseofthisscenarioconcernsthepresenceofcooperative22

interactionsbasedonpublicgoodsandmetabolicinteractionsandthathavebeenthemainfocusof23

thisreview.Wehavealsodiscussedsomeofthefactorsshapingtheseinteractionssuchascellular24

andthermodynamicconstraints,aswellasfactorsstabilisingthemsuchasstructuredenvironments,25

feedbacksarisingfromtheecologyofthepopulation,cellularregulatorymechanismsimplementing26

certainbehaviouralstrategiesandtheroleofmobilegeneticelements.Thesepropertiesendow27

cooperativemicrobialpopulationswiththepossibilitytoresistcheatersinvasionsandthecapability28

ofperformingmoresophisticatedtasks.29

Despiteitsgrowingusetostudytheevolutionofcooperation,evolutionarygametheoryhas30

hadsofaraverylimitedimpactinfieldorindustrialbiotechnologicalapplicationsinwhichthe31

environmentalconditionsaregenerallynotwell-definedandmayaffectthemicrobialcommunities32

(Bouchezetal.,2000;SaylerandRipp,2000;CasesanddeLorenzo,2005).Infact,wehave33

presentedseveralexamplessuggestingthatcooperativeinteractionsbasedoncross-feedingand34

Cooperationinmicrobialbiotechnology

17

publicgoodsareatthecoreofmanyprocessesrelevantforindustrialbiotechnologyincludingfood,1

energyandenvironmentalapplicationsofmicroorganisms.2

Therefore,theyaresuitableofimprovementbyincorporatingthemechanismsinvestigated3

inthelargeliteratureoftheevolutionofcooperation.Aswehavediscussed,populationscouldbe4

manipulatedbasedonthermodynamicconstrainstopromotecertainmetabolic(cooperative)5

interactions.Similarly,bioprocesses,includingbioreactordesign,couldbeengineeredtoaccount6

(andexploit)foreco-evofeedbacksandspatialorganizations.7

Understandinghowsyntrophyandcooperationendowthemicrobialpopulationswith8

resistanceandresilienceagainstecologicalandenvironmentaldisturbanceslikecompositionalshifts9

intheenvironmentorantibioticshockscouldbeusedtoengineerrobustmicrobialcommunities10

withenhancedperformanceandpredictabledynamics(BrionesandRaskin,2003;Allisonand11

Martiny,2008;Sözenetal.,2014).Overall,webelievethatthemigrationofresultsand12

methodologiesfromtheareaofevolutionarygametheoryintothedesignofmicrobialconsortia13

wouldfacilitatetheengineeringofevolutionaryresilientcommunitieswithabetterperformancein14

awiderangeofbiotechnologicalapplications.15

16

Acknowledgements17

JJwouldliketoacknowledgethesupportreceivedfromtheEuropeanUnion'sHorizon2020research18

andinnovationprogrammeundergrantagreementno.633962fortheprojectP4SBandthesupport19

fromtheBiotechnologyandBiologicalSciencesResearchCouncil(BBSRC)(grantBB/M009769/1).20

OSSacknowledgessupportfromBBSRC(grantsBB/K003240/1andBB/M017982/1).M.C.21

acknowledgesthesupportfromtheEngineeringandPhysicalSciencesResearchCouncil(EPSRC)22

grantEP/J02175X/1andfromUKResearchCouncils'SyntheticBiologyforGrowthprogramme.S.F.23

acknowledgesthesupportbyLaboratoryDirectedResearch&Development(LDRD)grant24

XWJX00/3000FENGfromLosAlamosNationalLaboratory.Theauthorsdonotahaveconflictof25

interesttodeclare.26

27

Cooperationinmicrobialbiotechnology

18

1

Figure1.(A)Interactionsbasedonsharedpublicgoods.Somecells(cooperators,showninblack2

edge)produceanenzymerequiredtosplitasubstrateintodigestibleproducts.Othercells(cheats,3

showningrey),donotproducetheenzymebuttakeadvantageofthepublicgoodsproducedbythe4

others.(B)Interactionsbasedoncross-feeding.Somecellsinthecommunityexcretemetabolites5

thatcanbetakenupbyothercellsgivingrisetoawebofinteractions.6

7

Cooperationinmicrobialbiotechnology

19

1Figure2.(A)Metabolicinteractionsthatcantakeplaceinapopulation.Cellscanexchangemetabolitesthat2

arerequiredtosupporteachother’sgrowthinamutualisticinteraction(left).Oneofthecellscanusea3

metaboliteexcretedbyanothercell,favouringinthiswaythemetabolismoftheproducerthroughthe4

pathwaysleadingtotheexcretion(centre).Whenthemetabolitesexcretedhaveaninhibitoryeffectonthe5

producer(e.g.becausetheyleadtothermodynamicequilibrium),therelationshipwithadegradercellofthe6

inhibitorymetaboliteismutuallybeneficialandknownassyntrophy(right).(B)Dynamicmodellingofthe7

evolutionofFBAmodels.Cellscanbemodelledasmetabolicnetworksexchangingmetaboliteswithother8

cellsinthepopulation.InthisabstractioneachcellisrepresentedbyaFluxBalanceAnalysismodel.These9

modelscanreplicateovertimeandalsoevolve,producingpopulationscomposedbymodelswithdifferent10

constrainsforuptakeandsecretionofmetabolites.(C)Dynamicanalysisofmodelgenealogy.Thefrequency11

ofeachmodelinthepopulationchangesovertimebeingthedarkestbarsthemostabundantmodels.Dueto12

mutations,newmodelsariseandtheyarerepresentedasnewbranchesinthephylogeny.Plotredrawnfrom13

(Großkopfetal.,2016).14

15

Mutualism Cross-Feeding Synthrophy

A

B

FBA1

FBA2FBA3

FBA4

Generation n

FBA1

FBA1*

Generation IGenerations

Mod

els

C

Cooperationinmicrobialbiotechnology

20

1Figure3.MechanismstoPreserveCooperationinCellularCommunities.(A):Astructuredenvironmentcan2

facilitatecooperation.Thefigureshowsthegrowthoffluorescentlylabeledcolonies(cooperatorsinred,3

cheatersingreen)ofS.cerevisiae(Figurefrom(VanDykenetal.,2013)).Cooperativecellsproduceinvertase4

thatbreaksdownsucroseintodigestibleglucoseandfructose.Non-producerscells(cheaters)haveafitness5

advantagebecausetheydonotproduceinvertasebutcanaccessglucose.Inunstructuredenvironment(liquid6

culture)cooperatorsdecline.However,inaspatialenvironment(obtainedbyspottingadropletofmixed7

cooperator/cheaterculturesontosolidmedium)cooperatorscanspreadovercheaters.Thediffusionofcells8

leadtotheformationofdiscretesectors-cooperatorsectorsaremoreproductivethancheatersectorsand9

willexpandradiallyfaster.(B):Eco-evodynamicscanpreservecooperationincommunitiesofS.cerevisiae10

(redrawnfrom(SanchezandGore,2013)).Redcirclesrepresentcooperativecells(invertaseproducers),green11

circlesrepresentcheaters(non-producers).Belowacertaincooperatordensity,thereislittleglucoseavailable.12

Cooperativecellsgrowataslowrateonthelittleamountofglucosetheycanretain,whilecheatercellsgrow13

moreslowly(itiscrucialthatcooperatorshavepreferentialaccesstotheglucose).Aboveacertaincooperator14

density,bothcooperatorsandcheatersgrowatafastratebecauseofthelargepoolofavailableglucose,but15

cheatersgrowfasterastheydonothavetheburdenofproducinginvertase.Suchdensity-dependent16

selectionfavorscooperatorsatlowdensitiesandcheatersathighdensities,whichleadstothestableco-17

existenceofcooperativeandcheatingyeastcells.(C):Regulationofpublicgoodproductioncanpreserve18

cooperationinameta-populationmodelinwhichthepopulationistransientlydividedinsub-populations19

A

C

B

Population density

Frac

tion

of c

oope

rativ

e ce

lls

Cooperationinmicrobialbiotechnology

21

(figurefrom(CavaliereandPoyatos,2013)).In-silicosimulationspresenttwopossiblesuccessfultypesof1

regulationagainstcheaters:positiveplasticity(toprow)inwhichcooperatorsconstraintcheatersbystopping2

theproductionofpublicgoodwhencheatersappear(a)andfullyrestartingonlywhencheatershave3

disappeared(b)andnegativeplasticity(bottomrow)inwhichcooperatorsproducepermanentlylow4

amountsofpublicgoodwhichhelpscontrollingcheatersinvasion(c).Thickarrowsdenotethecellulardecision5

toproduce(P)ornotproduce(nP)thepublicgood.Thesuccessoftheregulationiscoupledtothe6

heterogeneity(variance)ofthesub-populations,i.e.,positiveplasticitytransientlymodifiesthevariancewhile7

negativeplasticitykeepsarelativelyconstantheterogeneity(varianceshownin(d)correspondto8

trajectories(b)and(c),respectively).9

10

Cooperationinmicrobialbiotechnology

22

12

Figure4.(A)Divisionoflabourinmicrobialpopulations.ColoniesofPseudomonasfluorescensP0-1are3

composedbycellswithtwodifferentmorphologiesknownasmucoidanddrythatcanevolvefromeachother4

duetoasinglemutation(leftpicture).Coloniescomposedbyamixtureofthetwophenotypesexpandfaster5

allowingcellstocoloniselargerregionsinshorterperiodsoftimecomparedtocoloniescomposedbyeachof6

theindividualphenotypes.Thetwomorphotypesoccupydifferentregionsofthecolonyasshownwhen7

labelledwithfluorescentreporters(centre).Drycells(inred)exhibitaradialdistributiongrowingontopofthe8

mucoid(ingreen).Confocalmicroscopyrevealsthattheedgeofthecolony(rightpicture)displaysadistinct9

spatialorganizationinwhichmucoidcellsformathinstripattheveryedge.Thedifferentiationandspatial10

segregationallowsthedistributionoflabourinthepopulation:Mucoidcellsproducealubricantpolymerat11

theedge,whereasdrycellssitbehindandpushbothofthemalong.Thecooperationofthesetwophenotypes12

resultsinafastgrowingcolony.Pictureshavebeenreproducedfrom(Kimetal.,2016).(B)Engineered13

populationscanimprovebioprocesses.Twostrainsarecombinedtocarryoutthesynthesisofaproductof14

interest(redpentagons)thatcannotbeproducedusingeachofthestrainsindividually.Theprocessinvolves15

thatoneofproducesanintermediate(theyellowpentagon)thatisusedbytheothertosynthesizethefinal16

product.Ifthetwocellscompeteforthesameresources(e.g.carbonsourceshownbythebluehexagon;left17

panel)thepopulationwiththelowerfitnessunderthoseconditionswilleventuallycollapse.However,when18

thetwopopulationsareengineeredsothatonegrowsattheexpensesoftheother(e.g.throughcross-feedor19

syntrophyshownbythepurpletriangle),thetwopopulationscooperate(centrepanel)andthesynthesisof20

theproductofinteresttakesplaceforalongerperiodoftimeresultinginhigheryields(rightpanel).Panels21

inspiredby(Zhouetal.,2015).22

time

A

B

Competition Cooperationprod

uct

competitioncooperation

Cooperationinmicrobialbiotechnology

23

Bibliography1

2

Ackermann,M.,Stecher,B.,Freed,N.E.,Songhet,P.,Hardt,W.-D.,andDoebeli,M.(2008)3Self-destructivecooperationmediatedbyphenotypicnoise.Nature454:987–990.4

Adami,C.,Schossau,J.,andHintze,A.(2016)Evolutionarygametheoryusingagent-based5methods.PhysLifeRev19:1–26.6

Allen,R.C.,McNally,L.,Popat,R.,andBrown,S.P.(2016)Quorumsensingprotectsbacterial7co-operationfromexploitationbycheats.ISMEJ10:1706–1716.8

Allison,S.D.(2005)Cheaters,diffusionandnutrientsconstraindecompositionbymicrobial9enzymesinspatiallystructuredenvironments.EcolLett8:626–635.10

Allison,S.D.andMartiny,J.B.(2008)Resistance,resilience,andredundancyinmicrobial11communities.ProcNatlAcadSciUSA105Suppl1:11512–11519.12

Arnesen,S.,HavnEriksen,S.,Olsen,J.andJensen,B.(1998)Increasedproductionofα-13amylasefromThermomyceslanuginosusbytheadditionofTween80.Enzyme14MicrobTechnol23:249–252.15

Avery,S.V.(2006)Microbialcellindividualityandtheunderlyingsourcesofheterogeneity.16NatRevMicrobiol4:577–587.17

Axelrod,R.M.(1990)Theevolutionofcooperation,PenguinBooks,London.18

Bachmann,H.,Fischlechner,M.,Rabbers,I.,Barfa,N.,BrancodosSantos,F.,Molenaar,D.,19andTeusink,B.(2013)Availabilityofpublicgoodsshapestheevolutionofcompeting20metabolicstrategies.ProcNatlAcadSciUSA110:14302–14307.21

Basan,M.,Hui,S.,Okano,H.,Zhang,Z.,Shen,Y.,Williamson,J.R.,andHwa,T.(2015)22OverflowmetabolisminEscherichiacoliresultsfromefficientproteomeallocation.23Nature528:99–104.24

Berdugo-Clavijo,C.,Dong,X.,Soh,J.,Sensen,C.W.,andGieg,L.M.(2012)Methanogenic25biodegradationoftwo-ringedpolycyclicaromatichydrocarbons.FEMSMicrobiolEcol2681:124–133.27

Bickel,P.J.,Hammel,E.A.,andO’connell,J.W.(1975)Sexbiasingraduateadmissions:data28fromBerkeley.Science187:398–404.29

Bouchez,T.,Patureau,D.,Dabert,P.,Juretschko,S.,Doré,J.,Delgenès,P.,etal.(2000)30Ecologicalstudyofabioaugmentationfailure.EnvironMicrobiol2:179–190.31

Briones,A.andRaskin,L.(2003)Diversityanddynamicsofmicrobialcommunitiesin32engineeredenvironmentsandtheirimplicationsforprocessstability.CurrOpin33

Cooperationinmicrobialbiotechnology

24

Biotechnol14:270–276.1

Burns,R.G.(2010)Howdomicrobialextracellularenzymeslocateanddegradenaturaland2syntheticpolymersinsoil.In,Xu,J.andHuang,P.M.(eds),MolecularEnvironmental3SoilScienceattheInterfacesintheEarth’sCriticalZone.SpringerBerlinHeidelberg,4Berlin,Heidelberg,pp.294–297.5

Callaghan,A.V.,Morris,B.E.L.,Pereira,I.A.C.,McInerney,M.J.,Austin,R.N.,Groves,J.T.,et6al.(2012)ThegenomesequenceofDesulfatibacillumalkenivoransAK-01:ablueprint7foranaerobicalkaneoxidation.EnvironMicrobiol14:101–113.8

Carlquist,M.,Fernandes,R.L.,Helmark,S.,Heins,A.-L.,Lundin,L.,Sørensen,S.J.,etal.9(2012)Physiologicalheterogeneitiesinmicrobialpopulationsandimplicationsfor10physicalstresstolerance.MicrobCellFact11:94.11

Cases,I.anddeLorenzo,V.(2005)Geneticallymodifiedorganismsfortheenvironment:12storiesofsuccessandfailureandwhatwehavelearnedfromthem.IntMicrobiol8:13213–222.14

Cavaliere,M.andPoyatos,J.F.(2013)Plasticityfacilitatessustainablegrowthinthe15commons.JRSocInterface10:20121006.16

Chen,S.,Su,L.,Billig,S.,Zimmermann,W.,Chen,J.,andWu,J.(2010)Biochemical17characterizationofthecutinasesfromThermobifidafusca.JournalofMolecular18CatalysisB:Enzymatic63:121–127.19

Chuang,J.S.,Rivoire,O.,andLeibler,S.(2009)Simpson’sparadoxinasyntheticmicrobial20system.Science323:272–275.21

Coleman,G.andElliott,W.H.(1962)Studiesonalpha-amylaseformationbyBacillussubtilis.22BiochemJ83:256–263.23

Cooper,M.B.andSmith,A.G.(2015)Exploringmutualisticinteractionsbetweenmicroalgae24andbacteriaintheomicsage.CurrOpinPlantBiol26:147–153.25

Cueto-Rojas,H.F.,vanMaris,A.J.A.,Wahl,S.A.,andHeijnen,J.J.(2015)Thermodynamics-26baseddesignofmicrobialcellfactoriesforanaerobicproductformation.Trends27Biotechnol33:534–546.28

Datta,M.S.,Korolev,K.S.,Cvijovic,I.,Dudley,C.,andGore,J.(2013)Rangeexpansion29promotescooperationinanexperimentalmicrobialmetapopulation.ProcNatlAcad30SciUSA110:7354–7359.31

Dimarogona,M.,Topakas,E.,andChristakopoulos,P.(2012)Cellulosedegradationby32oxidativeenzymes.ComputStructBiotechnolJ2:e201209015.33

Cooperationinmicrobialbiotechnology

25

Dimitriu,T.,Misevic,D.,Lindner,A.B.,andTaddei,F.(2015)Mobilegeneticelementsare1involvedinbacterialsociality.MobGenetElements5:7–11.2

Doebeli,M.(2002)Amodelfortheevolutionarydynamicsofcross-feedingpolymorphisms3inmicroorganisms.Populationecology44:59–70.4

Doyle,E.,Noone,A.,Kelly,C.,Quigley,T.,andFogarty,W.(1998)Mechanismsofactionof5themaltogenicα-amylaseofByssochlamysfulva.EnzymeMicrobTechnol22:612–6616.7

VanDyken,J.D.,Müller,M.J.I.,Mack,K.M.L.,andDesai,M.M.(2013)Spatialpopulation8expansionpromotestheevolutionofcooperationinanexperimentalPrisoner’s9Dilemma.CurrBiol23:919–923.10

El-Fallal,A.,Abou,M.,El-Sayed,A.,andOmar,N.(2012)StarchandMicrobialα-Amylases:11FromConceptstoBiotechnologicalApplications.In,Chang,C.-F.(ed),Carbohydrates-12ComprehensiveStudiesonGlycobiologyandGlycotechnology.InTech.13

Enfors,S.O.,Jahic,M.,Rozkov,A.,Xu,B.,Hecker,M.,Jürgen,B.,etal.(2001)Physiological14responsestomixinginlargescalebioreactors.JBiotechnol85:175–185.15

Eriksson,A.andLindgren,K.(2005)Cooperationdrivenbymutationsinmulti-person16Prisoner’sDilemma.JTheorBiol232:399–409.17

Fiegna,F.andVelicer,G.J.(2003)Competitivefatesofbacterialsocialparasites:persistence18andself-inducedextinctionofMyxococcusxanthuscheaters.ProcBiolSci270:1527–191534.20

Fiore,C.L.,Longnecker,K.,KidoSoule,M.C.,andKujawinski,E.B.(2015)Releaseof21ecologicallyrelevantmetabolitesbythecyanobacteriumSynechococcuselongatus22CCMP1631.EnvironMicrobiol17:3949–3963.23

Flamholz,A.,Noor,E.,Bar-Even,A.,Liebermeister,W.,andMilo,R.(2013)Glycolytic24strategyasatradeoffbetweenenergyyieldandproteincost.ProcNatlAcadSciUS25A110:10039–10044.26

Franklin,F.C.,Bagdasarian,M.,Bagdasarian,M.M.,andTimmis,K.N.(1981)Molecularand27functionalanalysisoftheTOLplasmidpWWOfromPseudomonasputidaandcloning28ofgenesfortheentireregulatedaromaticringmetacleavagepathway.ProcNatl29AcadSciUSA78:7458–7462.30

Frey,E.(2010)Evolutionarygametheory:Theoreticalconceptsandapplicationstomicrobial31communities.PhysicaA:StatisticalMechanicsanditsApplications389:4265–4298.32

Gallego,J.L.R.,García-Martínez,M.J.,Llamas,J.F.,Belloch,C.,Peláez,A.I.,andSánchez,J.33(2007)Biodegradationofoiltankbottomsludgeusingmicrobialconsortia.34

Cooperationinmicrobialbiotechnology

26

Biodegradation18:269–281.1

González-Cabaleiro,R.,Lema,J.M.,Rodríguez,J.,andKleerebezem,R.(2013)Linking2thermodynamicsandkineticstoassesspathwayreversibilityinanaerobic3bioprocesses.EnergyEnviron.Sci.6:3780.4

González-Cabaleiro,R.,Ofiţeru,I.D.,Lema,J.M.,andRodríguez,J.(2015)Microbialcatabolic5activitiesarenaturallyselectedbymetabolicenergyharvestrate.ISMEJ9:2630–62641.7

Gore,J.,Youk,H.,andvanOudenaarden,A.(2009)Snowdriftgamedynamicsandfacultative8cheatinginyeast.Nature459:253–256.9

Großkopf,T.,Consuegra,J.,Gaffé,J.,Willison,J.C.,Lenski,R.E.,Soyer,O.S.,andSchneider,10D.(2016)Metabolicmodellinginadynamicevolutionaryframeworkpredicts11adaptivediversificationofbacteriainalong-termevolutionexperiment.BMCEvol12Biol16:163.13

Großkopf,T.andSoyer,O.S.(2016)Microbialdiversityarisingfromthermodynamic14constraints.ISMEJ.15

Gross,R.A.andKalra,B.(2002)Biodegradablepolymersfortheenvironment.Science297:16803–807.17

Harcombe,W.R.,Riehl,W.J.,Dukovski,I.,Granger,B.R.,Betts,A.,Lang,A.H.,etal.(2014)18Metabolicresourceallocationinindividualmicrobesdeterminesecosystem19interactionsandspatialdynamics.CellRep7:1104–1115.20

Harrington,K.I.andSanchez,A.(2014)Eco-evolutionarydynamicsofcomplexsocial21strategiesinmicrobialcommunities.CommunIntegrBiol7:e28230.22

Hauert,C.,Wakano,J.Y.,andDoebeli,M.(2008)Ecologicalpublicgoodsgames:cooperation23andbifurcation.TheorPopulBiol73:257–263.24

vanHoek,M.J.A.andMerks,R.M.H.(2012)Redoxbalanceiskeytoexplainingfullvs.partial25switchingtolow-yieldmetabolism.BMCSystBiol6:22.26

Hoh,C.Y.andCord-Ruwisch,R.(1996)Apracticalkineticmodelthatconsidersendproduct27inhibitioninanaerobicdigestionprocessesbyincludingtheequilibriumconstant.28BiotechnolBioeng51:597–604.29

James,G.A.,Beaudette,L.,andCosterton,J.W.(1995)Interspeciesbacterialinteractionsin30biofilms.JIndMicrobiol15:257–262.31

Jin,Q.andBethke,C.M.(2007)Thethermodynamicsandkineticsofmicrobialmetabolism.32AmJSci307:643–677.33

Cooperationinmicrobialbiotechnology

27

Karpinets,T.V.,Pelletier,D.A.,Pan,C.,Uberbacher,E.C.,Melnichenko,G.V.,Hettich,R.L.,1andSamatova,N.F.(2009)Phenotypefingerprintingsuggeststheinvolvementof2single-genotypeconsortiaindegradationofaromaticcompoundsby3Rhodopseudomonaspalustris.PLoSONE4:e4615.4

Kim,W.,Levy,S.B.,andFoster,K.R.(2016)Rapidradiationinbacterialeadstoadivisionof5labour.NatCommun7:10508.6

Knoll,G.andWinter,J.(1989)Degradationofphenolviacarboxylationtobenzoatebya7defined,obligatesyntrophicconsortiumofanaerobicbacteria.ApplMicrobiol8Biotechnol30.:9

Kümmerli,R.,Jiricny,N.,Clarke,L.S.,West,S.A.,andGriffin,A.S.(2009)Phenotypicplasticity10ofacooperativebehaviourinbacteria.JEvolBiol22:589–598.11

Lennon,J.T.andDenef,V.J.(2015)Evolutionaryecologyofmicroorganisms:Fromthetamed12tothewild.In,Pillai,S.D.,Nakatsu,C.H.,Miller,R.V.,andYates,M.V.(eds),Manualof13EnvironmentalMicrobiology,4thEdition.AmericanSocietyofMicrobiology,pp.144.1.2–1–4.1.2–12.15

Lilja,E.E.andJohnson,D.R.(2016)Segregatingmetabolicprocessesintodifferentmicrobial16cellsacceleratestheconsumptionofinhibitorysubstrates.ISMEJ10:1568–1578.17

Lindemann,S.R.,Bernstein,H.C.,Song,H.-S.,Fredrickson,J.K.,Fields,M.W.,Shou,W.,etal.18(2016)Engineeringmicrobialconsortiaforcontrollableoutputs.ISMEJ10:2077–192084.20

Liu,J.,Prindle,A.,Humphries,J.,Gabalda-Sagarra,M.,Asally,M.,Lee,D.D.,etal.(2015)21Metabolicco-dependencegivesrisetocollectiveoscillationswithinbiofilms.Nature22523:550–554.23

Louca,S.andDoebeli,M.(2015)Calibrationandanalysisofgenome-basedmodelsfor24microbialecology.elife4:e08208.25

Majewski,R.A.andDomach,M.M.(1990)Simpleconstrained-optimizationviewofacetate26overflowinE.coli.BiotechnolBioeng35:732–738.27

Martínez,I.,Mohamed,M.E.-S.,Rozas,D.,García,J.L.,andDíaz,E.(2016)Engineering28syntheticbacterialconsortiaforenhanceddesulfurizationandrevalorizationofoil29sulfurcompounds.MetabEng35:46–54.30

McGenity,T.J.,Folwell,B.D.,McKew,B.A.,andSanni,G.O.(2012)Marinecrude-oil31biodegradation:acentralroleforinterspeciesinteractions.AquatBiosyst8:10.32

McGinty,S.É.,Lehmann,L.,Brown,S.P.,andRankin,D.J.(2013)Theinterplaybetween33relatednessandhorizontalgenetransferdrivestheevolutionofplasmid-carried34

Cooperationinmicrobialbiotechnology

28

publicgoods.ProcBiolSci280:20130400.1

McInerney,M.J.andBryant,M.P.(1981)Anaerobicdegradationoflactatebysyntrophic2associationsofMethanosarcinabarkeriandDesulfovibriospeciesandeffectofH2on3AcetateDegradation.ApplEnvironMicrobiol41:346–354.4

Minty,J.J.,Singer,M.E.,Scholz,S.A.,Bae,C.-H.,Ahn,J.-H.,Foster,C.E.,etal.(2013)Design5andcharacterizationofsyntheticfungal-bacterialconsortiafordirectproductionof6isobutanolfromcellulosicbiomass.ProcNatlAcadSciUSA110:14592–14597.7

Molenaar,D.,vanBerlo,R.,deRidder,D.,andTeusink,B.(2009)Shiftsingrowthstrategies8reflecttradeoffsincellulareconomics.MolSystBiol5:323.9

Moreno-Fenoll,C.,Cavaliere,M.,Martínez-García,E.,andPoyatos,J.F.(2017)Eco-10evolutionaryfeedbackscanrescuecooperationinmicrobialpopulations.SciRep7:1142561.12

Morris,B.E.L.,Henneberger,R.,Huber,H.,andMoissl-Eichinger,C.(2013)Microbial13syntrophy:interactionforthecommongood.FEMSMicrobiolRev37:384–406.14

Müller,S.,Harms,H.,andBley,T.(2010)Originandanalysisofmicrobialpopulation15heterogeneityinbioprocesses.CurrOpinBiotechnol21:100–113.16

Nadell,C.D.,Drescher,K.,andFoster,K.R.(2016)Spatialstructure,cooperationand17competitioninbiofilms.NatRevMicrobiol14:589–600.18

Nadell,C.D.,Xavier,J.B.,andFoster,K.R.(2009)Thesociobiologyofbiofilms.FEMS19MicrobiolRev33:206–224.20

Niehus,R.,Mitri,S.,Fletcher,A.G.,andFoster,K.R.(2015)Migrationandhorizontalgene21transferdividemicrobialgenomesintomultipleniches.NatCommun6:8924.22

Nikel,P.I.,Silva-Rocha,R.,Benedetti,I.,anddeLorenzo,V.(2014)Theprivatelifeof23environmentalbacteria:pollutantbiodegradationatthesinglecelllevel.Environ24Microbiol16:628–642.25

Nogueira,T.,Rankin,D.J.,Touchon,M.,Taddei,F.,Brown,S.P.,andRocha,E.P.C.(2009)26Horizontalgenetransferofthesecretomedrivestheevolutionofbacterial27cooperationandvirulence.CurrBiol19:1683–1691.28

Nowak,M.A.(2006)Fiverulesfortheevolutionofcooperation.Science314:1560–1563.29

Nowak,M.A.andSigmund,K.(2004)Evolutionarydynamicsofbiologicalgames.Science30303:793–799.31

Paczia,N.,Nilgen,A.,Lehmann,T.,Gätgens,J.,Wiechert,W.,andNoack,S.(2012)Extensive32exometabolomeanalysisrevealsextendedoverflowmetabolisminvarious33

Cooperationinmicrobialbiotechnology

29

microorganisms.MicrobCellFact11:122.1

Pande,S.,Kaftan,F.,Lang,S.,Svatoš,A.,Germerodt,S.,andKost,C.(2016)Privatizationof2cooperativebenefitsstabilizesmutualisticcross-feedinginteractionsinspatially3structuredenvironments.ISMEJ10:1413–1423.4

Pennisi,E.(2009)Origins.Ontheoriginofcooperation.Science325:1196–1199.5

Pfeiffer,T.andBonhoeffer,S.(2004)Evolutionofcross-feedinginmicrobialpopulations.Am6Nat163:E126–35.7

Popat,R.,Cornforth,D.M.,McNally,L.,andBrown,S.P.(2015)Collectivesensingand8collectiveresponsesinquorum-sensingbacteria.JRSocInterface12.:9

Rankin,D.J.,Rocha,E.P.C.,andBrown,S.P.(2011)Whattraitsarecarriedonmobilegenetic10elements,andwhy?Heredity106:1–10.11

Ratzke,C.andGore,J.(2016)Self-organizedpatchinessfacilitatessurvivalinacooperatively12growingBacillussubtilispopulation.Naturemicrobiology1:16022.13

Regot,S.,Macia,J.,Conde,N.,Furukawa,K.,Kjellén,J.,Peeters,T.,etal.(2011)Distributed14biologicalcomputationwithmulticellularengineerednetworks.Nature469:207–15211.16

Richards,T.A.andTalbot,N.J.(2013)Horizontalgenetransferinosmotrophs:playingwith17publicgoods.NatRevMicrobiol11:720–727.18

Ross-Gillespie,A.,Gardner,A.,Buckling,A.,West,S.A.,andGriffin,A.S.(2009)Density19dependenceandcooperation:theoryandatestwithbacteria.Evolution63:2315–202325.21

Sanchez,A.andGore,J.(2013)Feedbackbetweenpopulationandevolutionarydynamics22determinesthefateofsocialmicrobialpopulations.PLoSBiol11:e1001547.23

Sayler,G.S.andRipp,S.(2000)Fieldapplicationsofgeneticallyengineeredmicroorganisms24forbioremediationprocesses.CurrOpinBiotechnol11:286–289.25

Schink,B.(1997)Energeticsofsyntrophiccooperationinmethanogenicdegradation.26MicrobiolMolBiolRev61:262–280.27

Schoener,T.W.(2011)Thenewestsynthesis:understandingtheinterplayofevolutionary28andecologicaldynamics.Science331:426–429.29

Scholten,J.C.andConrad,R.(2000)Energeticsofsyntrophicpropionateoxidationindefined30batchandchemostatcocultures.ApplEnvironMicrobiol66:2934–2942.31

Seitz,H.J.,Schink,B.,andConrad,R.(1988)Thermodynamicsofhydrogenmetabolismin32

Cooperationinmicrobialbiotechnology

30

methanogeniccoculturesdegradingethanolorlactate.FEMSMicrobiolLett55:119–1124.2

Silva-Rocha,R.anddeLorenzo,V.(2012)StochasticityofTOLplasmidcatabolicpromoters3setsabimodalexpressionregimeinPseudomonasputidamt-2exposedtom-xylene.4MolMicrobiol86:199–211.5

Sözen,S.,Çokgör,E.U.,Başaran,S.T.,Aysel,M.,Akarsubaşı,A.,Ergal,I.,etal.(2014)Effectof6highloadingonsubstrateutilizationkineticsandmicrobialcommunitystructurein7superfastsubmergedmembranebioreactor.BioresourTechnol159:118–127.8

Spencer,C.C.,Bertrand,M.,Travisano,M.,andDoebeli,M.(2007)Adaptivediversificationin9genesthatregulateresourceuseinEscherichiacoli.PLoSGenet3:e15.10

Travisano,M.andVelicer,G.J.(2004)Strategiesofmicrobialcheatercontrol.Trends11Microbiol12:72–78.12

Velicer,G.J.andVos,M.(2009)SociobiologyoftheMyxobacteria.AnnuRevMicrobiol63:13599–623.14

Vemuri,G.N.,Altman,E.,Sangurdekar,D.P.,Khodursky,A.B.,andEiteman,M.A.(2006)15OverflowmetabolisminEscherichiacoliduringsteady-stategrowth:transcriptional16regulationandeffectoftheredoxratio.ApplEnvironMicrobiol72:3653–3661.17

Westerholm,M.,Dolfing,J.,Sherry,A.,Gray,N.D.,Head,I.M.,andSchnürer,A.(2011)18Quantificationofsyntrophicacetate-oxidizingmicrobialcommunitiesinbiogas19processes.EnvironMicrobiolRep3:500–505.20

West,S.A.,Diggle,S.P.,Buckling,A.,Gardner,A.,andGriffin,A.S.(2007)Thesociallivesof21microbes.Annu.Rev.Ecol.Evol.Syst.38:53–77.22

West,S.A.,Griffin,A.S.,Gardner,A.,andDiggle,S.P.(2006)Socialevolutiontheoryfor23microorganisms.NatRevMicrobiol4:597–607.24

Widder,S.,Allen,R.J.,Pfeiffer,T.,Curtis,T.P.,Wiuf,C.,Sloan,W.T.,etal.(2016)Challenges25inmicrobialecology:buildingpredictiveunderstandingofcommunityfunctionand26dynamics.ISMEJ10:2557–2568.27

Wierckx,N.,Prieto,M.A.,Pomposiello,P.,deLorenzo,V.,O’Connor,K.,andBlank,L.M.28(2015)Plasticwasteasanovelsubstrateforindustrialbiotechnology.Microb29Biotechnol8:900–903.30

Willsey,G.G.andWargo,M.J.(2015)Extracellularlipaseandproteaseproductionfroma31modeldrinkingwaterbacterialcommunityisfunctionallyrobusttoabsenceof32individualmembers.PLoSONE10:e0143617.33

Cooperationinmicrobialbiotechnology

31

Wolfaardt,G.M.,Lawrence,J.R.,Robarts,R.D.,andCaldwell,D.E.(1994)Theroleof1interactions,sessilegrowthandnutrientamendmentsonthedegradativeefficiency2ofamicrobialconsortium.CanJMicrobiol40:331–340.3

Yoshida,S.,Hiraga,K.,Takehana,T.,Taniguchi,I.,Yamaji,H.,Maeda,Y.,etal.(2016)A4bacteriumthatdegradesandassimilatespoly(ethyleneterephthalate).Science351:51196–1199.6

Zamocky,M.,Ludwig,R.,Peterbauer,C.,Hallberg,B.M.,Divne,C.,Nicholls,P.,andHaltrich,7D.(2006)Cellobiosedehydrogenase--aflavocytochromefromwood-degrading,8phytopathogenicandsaprotropicfungi.CurrProteinPeptSci7:255–280.9

Zhou,K.,Qiao,K.,Edgar,S.,andStephanopoulos,G.(2015)Distributingametabolic10pathwayamongamicrobialconsortiumenhancesproductionofnaturalproducts.11NatBiotechnol33:377–383.12

Zhuang,K.,Vemuri,G.N.,andMahadevan,R.(2011)Economicsofmembraneoccupancy13andrespiro-fermentation.MolSystBiol7:500.14

Zomorrodi,A.R.andSegrè,D.(2016)Syntheticecologyofmicrobes:Mathematicalmodels15andapplications.JMolBiol428:837–861.16

17