67
Cone convexity Convex analysis of convex convex-composite functions Applications References Convex Convex-Composite Functions Tim Hoheisel (McGill University, Montreal) joint work with James V. Burke (UW, Seattle) Quang V. Nguyen (McGill, Montreal) West Coast Optimization Meeting Vancovuer, September 28, 2019

Convex Convex-Composite FunctionsConvex Convex-Composite Functions Tim Hoheisel (McGill University, Montreal) joint work with James V. Burke (UW, Seattle) Quang V. Nguyen (McGill,

  • Upload
    others

  • View
    38

  • Download
    0

Embed Size (px)

Citation preview

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convex Convex-Composite FunctionsTim Hoheisel (McGill University, Montreal)

joint work with

James V. Burke (UW, Seattle)

Quang V. Nguyen (McGill, Montreal)

West Coast Optimization Meeting

Vancovuer, September 28, 2019

Cone convexity Convex analysis of convex convex-composite functions Applications References

1. Cone convexity

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convex sets and cones

”The great watershed in optimization is not between linearity and nonlinearity, but convexity andnonconvexity.” (R.T. Rockafellar)

In what follows E will be a Euclidean space, i.e. a real-vector space equipped with an inner product〈·, ·〉 : E × E→ R of dimension κ < ∞.

S ⊂ E is said to be

convex if λS + (1 − λ)S ⊂ S (λ ∈ (0, 1));

a cone if λS ⊂ S (λ ≥ 0).

For a cone K its polar is K =v

∣∣∣ 〈v , x〉 ≤ 0 (x ∈ K)

Note that K ⊂ E is a convex cone iff K + K ⊂ K .

0

Figure: Convex set/non-convex cone

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convex sets and cones

”The great watershed in optimization is not between linearity and nonlinearity, but convexity andnonconvexity.” (R.T. Rockafellar)

In what follows E will be a Euclidean space, i.e. a real-vector space equipped with an inner product〈·, ·〉 : E × E→ R of dimension κ < ∞.

S ⊂ E is said to be

convex if λS + (1 − λ)S ⊂ S (λ ∈ (0, 1));

a cone if λS ⊂ S (λ ≥ 0).

For a cone K its polar is K =v

∣∣∣ 〈v , x〉 ≤ 0 (x ∈ K)

Note that K ⊂ E is a convex cone iff K + K ⊂ K .

0

Figure: Convex set/non-convex cone

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convex sets and cones

”The great watershed in optimization is not between linearity and nonlinearity, but convexity andnonconvexity.” (R.T. Rockafellar)

In what follows E will be a Euclidean space, i.e. a real-vector space equipped with an inner product〈·, ·〉 : E × E→ R of dimension κ < ∞.

S ⊂ E is said to be

convex if λS + (1 − λ)S ⊂ S (λ ∈ (0, 1));

a cone if λS ⊂ S (λ ≥ 0).

For a cone K its polar is K =v

∣∣∣ 〈v , x〉 ≤ 0 (x ∈ K)

Note that K ⊂ E is a convex cone iff K + K ⊂ K .

0

Figure: Convex set/non-convex cone

Cone convexity Convex analysis of convex convex-composite functions Applications References

The topology relative to the affine hull

Affine set: A set S = U + x with x ∈ E and a subspace U ⊂ is called affine. This is characterized by

αS + (1 − α)S ⊂ S (α ∈ R).

Affine hull: affM :=⋂S ∈ E | M ⊂ S, S affine .

Relative interior/boundary: C ⊂ E convex.

ri C :=x ∈ C

∣∣∣ ∃ε > 0 : Bε(x) ∩ aff C ⊂ C

(relative interior)x ∈ ri C ⇔ R+(C − x) is a subspace

aff Cri C

C

C aff C ri C

x x x[x, x′] λx + (1 − λ)x′ | λ ∈ R (x, x′)Bε(x) E Bε(x)

Table: Examples for relative interiors

Cone convexity Convex analysis of convex convex-composite functions Applications References

The topology relative to the affine hull

Affine set: A set S = U + x with x ∈ E and a subspace U ⊂ is called affine. This is characterized by

αS + (1 − α)S ⊂ S (α ∈ R).

Affine hull: affM :=⋂S ∈ E | M ⊂ S, S affine .

Relative interior/boundary: C ⊂ E convex.

ri C :=x ∈ C

∣∣∣ ∃ε > 0 : Bε(x) ∩ aff C ⊂ C

(relative interior)x ∈ ri C ⇔ R+(C − x) is a subspace

aff Cri C

C

C aff C ri C

x x x[x, x′] λx + (1 − λ)x′ | λ ∈ R (x, x′)Bε(x) E Bε(x)

Table: Examples for relative interiors

Cone convexity Convex analysis of convex convex-composite functions Applications References

The topology relative to the affine hull

Affine set: A set S = U + x with x ∈ E and a subspace U ⊂ is called affine. This is characterized by

αS + (1 − α)S ⊂ S (α ∈ R).

Affine hull: affM :=⋂S ∈ E | M ⊂ S, S affine .

Relative interior/boundary: C ⊂ E convex.

ri C :=x ∈ C

∣∣∣ ∃ε > 0 : Bε(x) ∩ aff C ⊂ C

(relative interior)

x ∈ ri C ⇔ R+(C − x) is a subspace

aff Cri C

C

C aff C ri C

x x x[x, x′] λx + (1 − λ)x′ | λ ∈ R (x, x′)Bε(x) E Bε(x)

Table: Examples for relative interiors

Cone convexity Convex analysis of convex convex-composite functions Applications References

The topology relative to the affine hull

Affine set: A set S = U + x with x ∈ E and a subspace U ⊂ is called affine. This is characterized by

αS + (1 − α)S ⊂ S (α ∈ R).

Affine hull: affM :=⋂S ∈ E | M ⊂ S, S affine .

Relative interior/boundary: C ⊂ E convex.

ri C :=x ∈ C

∣∣∣ ∃ε > 0 : Bε(x) ∩ aff C ⊂ C

(relative interior)x ∈ ri C ⇔ R+(C − x) is a subspace

aff Cri C

C

C aff C ri C

x x x[x, x′] λx + (1 − λ)x′ | λ ∈ R (x, x′)Bε(x) E Bε(x)

Table: Examples for relative interiors

Cone convexity Convex analysis of convex convex-composite functions Applications References

The topology relative to the affine hull

Affine set: A set S = U + x with x ∈ E and a subspace U ⊂ is called affine. This is characterized by

αS + (1 − α)S ⊂ S (α ∈ R).

Affine hull: affM :=⋂S ∈ E | M ⊂ S, S affine .

Relative interior/boundary: C ⊂ E convex.

ri C :=x ∈ C

∣∣∣ ∃ε > 0 : Bε(x) ∩ aff C ⊂ C

(relative interior)x ∈ ri C ⇔ R+(C − x) is a subspace

aff Cri C

C

C aff C ri C

x x x[x, x′] λx + (1 − λ)x′ | λ ∈ R (x, x′)Bε(x) E Bε(x)

Table: Examples for relative interiors

Cone convexity Convex analysis of convex convex-composite functions Applications References

Cone-induced ordering

Given a cone K ⊂ E, the relation

x ≤K y :⇐⇒ y − x ∈ K (x, y ∈ E)

induces an ordering on E which is a partial ordering if K is convex and pointed1.

Attach to E a largest element +∞• w.r.t. ≤K which satisfies x ≤K +∞• (x ∈ E).

Set E• := E ∪ +∞•.

For F : E1 → E•2 define

dom F :=x ∈ E1

∣∣∣ F(x) ∈ E2

(domain),

gph F :=(x,F(x)) ∈ E1 × E2 | x ∈ dom F

(graph),

rge F :=F(x) ∈ E2 | x ∈ dom F

(range).

1 i.e. K ∩ (−K) = 0

Cone convexity Convex analysis of convex convex-composite functions Applications References

Cone-induced ordering

Given a cone K ⊂ E, the relation

x ≤K y :⇐⇒ y − x ∈ K (x, y ∈ E)

induces an ordering on E which is a partial ordering if K is convex and pointed1.

Attach to E a largest element +∞• w.r.t. ≤K which satisfies x ≤K +∞• (x ∈ E).

Set E• := E ∪ +∞•.

For F : E1 → E•2 define

dom F :=x ∈ E1

∣∣∣ F(x) ∈ E2

(domain),

gph F :=(x,F(x)) ∈ E1 × E2 | x ∈ dom F

(graph),

rge F :=F(x) ∈ E2 | x ∈ dom F

(range).

1 i.e. K ∩ (−K) = 0

Cone convexity Convex analysis of convex convex-composite functions Applications References

Cone-induced ordering

Given a cone K ⊂ E, the relation

x ≤K y :⇐⇒ y − x ∈ K (x, y ∈ E)

induces an ordering on E which is a partial ordering if K is convex and pointed1.

Attach to E a largest element +∞• w.r.t. ≤K which satisfies x ≤K +∞• (x ∈ E).

Set E• := E ∪ +∞•.

For F : E1 → E•2 define

dom F :=x ∈ E1

∣∣∣ F(x) ∈ E2

(domain),

gph F :=(x,F(x)) ∈ E1 × E2 | x ∈ dom F

(graph),

rge F :=F(x) ∈ E2 | x ∈ dom F

(range).

1 i.e. K ∩ (−K) = 0

Cone convexity Convex analysis of convex convex-composite functions Applications References

Cone-induced ordering

Given a cone K ⊂ E, the relation

x ≤K y :⇐⇒ y − x ∈ K (x, y ∈ E)

induces an ordering on E which is a partial ordering if K is convex and pointed1.

Attach to E a largest element +∞• w.r.t. ≤K which satisfies x ≤K +∞• (x ∈ E).

Set E• := E ∪ +∞•.

For F : E1 → E•2 define

dom F :=x ∈ E1

∣∣∣ F(x) ∈ E2

(domain),

gph F :=(x,F(x)) ∈ E1 × E2 | x ∈ dom F

(graph),

rge F :=F(x) ∈ E2 | x ∈ dom F

(range).

1 i.e. K ∩ (−K) = 0

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

K -convexity

Definition 1 (K -convexity).

Let K ⊂ E2 be a cone and F : E1 → E•2. Then we call F K-convex if

K -epi F :=(x, v) ∈ E1 × E2

∣∣∣ F(x) ≤K v

(K -epigraph)

is convex (in E1 × E2).

F is K -convex ⇐⇒ F(λx + (1 − λ)y) ≤K λF(x) + (1 − λ)F(y) (x, y ∈ E1, λ ∈ [0, 1])

F K -convex, then ri (K -epi F) =(x, v)

∣∣∣ x ∈ ri (dom F), F(x) ri (K) v

K ⊂ L cones: F K -convex ⇒ L -convex

Examples:

K = R+, F : E→ R ∪ +∞ convex

K = Rm+ and F : E→ (Rm)• with Fi : E→ R ∪ +∞ convex (i = 1, . . . ,m)

K =(x, t) ∈ Rn × R | ‖x‖ ≤ t

and F : Rn → Rn × R, F(x) = (x, ‖x‖)

K = Sn+ and F : Sn → (Sn)•,F(X) =

X−1, X 0,

+∞•, else

K = Sn+ and F : Rm×n → Sn , F(X) = XXT

K arbitrary, F affine.

Cone convexity Convex analysis of convex convex-composite functions Applications References

2. Convex analysis of convexconvex-composite functions

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convexity of composite functions

For F : E1 → E•2 and g : E2 → R ∪ +∞ we define

(g F)(x) :=

g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 2 (Combari et al. ’95/Pennanen ’99/Bot et al. ’08/Burke, H., Nguyen ’19).

Let K ⊂ E2 be a convex cone, F : E1 → E•2 K-convex and g : E2 → R ∪ +∞ convex and proper such

that rge F ∩ dom g , ∅. Ifg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (1)

then the following hold:

a) g F is convex and proper.

b) g F is lower semicontinuous under either of the following conditions:

i) g is lsc and F is continuous;ii) 〈v , F〉 is lsc (proper, convex) for all v ∈ −K and g is lsc and K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y) (x, y ∈ E2). (2)

Observe that (1) is strictly weaker than (2)!

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convexity of composite functions

For F : E1 → E•2 and g : E2 → R ∪ +∞ we define

(g F)(x) :=

g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 2 (Combari et al. ’95/Pennanen ’99/Bot et al. ’08/Burke, H., Nguyen ’19).

Let K ⊂ E2 be a convex cone, F : E1 → E•2 K-convex and g : E2 → R ∪ +∞ convex and proper such

that rge F ∩ dom g , ∅. Ifg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (1)

then the following hold:

a) g F is convex and proper.

b) g F is lower semicontinuous under either of the following conditions:

i) g is lsc and F is continuous;ii) 〈v , F〉 is lsc (proper, convex) for all v ∈ −K and g is lsc and K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y) (x, y ∈ E2). (2)

Observe that (1) is strictly weaker than (2)!

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convexity of composite functions

For F : E1 → E•2 and g : E2 → R ∪ +∞ we define

(g F)(x) :=

g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 2 (Combari et al. ’95/Pennanen ’99/Bot et al. ’08/Burke, H., Nguyen ’19).

Let K ⊂ E2 be a convex cone, F : E1 → E•2 K-convex and g : E2 → R ∪ +∞ convex and proper such

that rge F ∩ dom g , ∅. Ifg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (1)

then the following hold:

a) g F is convex and proper.

b) g F is lower semicontinuous under either of the following conditions:

i) g is lsc and F is continuous;ii) 〈v , F〉 is lsc (proper, convex) for all v ∈ −K and g is lsc and K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y) (x, y ∈ E2). (2)

Observe that (1) is strictly weaker than (2)!

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convexity of composite functions

For F : E1 → E•2 and g : E2 → R ∪ +∞ we define

(g F)(x) :=

g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 2 (Combari et al. ’95/Pennanen ’99/Bot et al. ’08/Burke, H., Nguyen ’19).

Let K ⊂ E2 be a convex cone, F : E1 → E•2 K-convex and g : E2 → R ∪ +∞ convex and proper such

that rge F ∩ dom g , ∅. Ifg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (1)

then the following hold:

a) g F is convex and proper.

b) g F is lower semicontinuous under either of the following conditions:

i) g is lsc and F is continuous;

ii) 〈v , F〉 is lsc (proper, convex) for all v ∈ −K and g is lsc and K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y) (x, y ∈ E2). (2)

Observe that (1) is strictly weaker than (2)!

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convexity of composite functions

For F : E1 → E•2 and g : E2 → R ∪ +∞ we define

(g F)(x) :=

g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 2 (Combari et al. ’95/Pennanen ’99/Bot et al. ’08/Burke, H., Nguyen ’19).

Let K ⊂ E2 be a convex cone, F : E1 → E•2 K-convex and g : E2 → R ∪ +∞ convex and proper such

that rge F ∩ dom g , ∅. Ifg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (1)

then the following hold:

a) g F is convex and proper.

b) g F is lower semicontinuous under either of the following conditions:

i) g is lsc and F is continuous;ii) 〈v , F〉 is lsc (proper, convex) for all v ∈ −K and g is lsc and K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y) (x, y ∈ E2). (2)

Observe that (1) is strictly weaker than (2)!

Cone convexity Convex analysis of convex convex-composite functions Applications References

Convexity of composite functions

For F : E1 → E•2 and g : E2 → R ∪ +∞ we define

(g F)(x) :=

g(F(x)) if x ∈ dom F ,

+∞ else.

Proposition 2 (Combari et al. ’95/Pennanen ’99/Bot et al. ’08/Burke, H., Nguyen ’19).

Let K ⊂ E2 be a convex cone, F : E1 → E•2 K-convex and g : E2 → R ∪ +∞ convex and proper such

that rge F ∩ dom g , ∅. Ifg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F) (1)

then the following hold:

a) g F is convex and proper.

b) g F is lower semicontinuous under either of the following conditions:

i) g is lsc and F is continuous;ii) 〈v , F〉 is lsc (proper, convex) for all v ∈ −K and g is lsc and K-increasing, i.e.

x ≤K y =⇒ g(x) ≤ g(y) (x, y ∈ E2). (2)

Observe that (1) is strictly weaker than (2)!

Cone convexity Convex analysis of convex convex-composite functions Applications References

The main result

For φ : E→ R ∪ +∞ and x ∈ E we define

∂φ(x) :=v

∣∣∣ φ(x) + 〈v , x − x〉 ≤ φ(x) (x ∈ dom φ)

(subdifferential);

φ : y ∈ E 7→ supx∈dom φ〈y, x〉 − φ(x) (conjugate).

Theorem 3 (Burke,H., Nguyen ’19).

Let K ⊂ E2 be a closed, convex cone, F : E1 → E•2 K-convex and f : E1 → R ∪ +∞, g : E2 → R ∪ +∞

proper, convex such thatg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F).

andF(ri (dom f) ∩ ri (dom F)) ∩ ri (dom g − K) , ∅. (3)

Then (f + g F is convex and) the following hold:

a) (f + g F)∗(p) = minv∈−K ,y∈E1

g∗(v) + f∗(y) + 〈v , F〉∗ (p − y);

b) ∂(f + g F)(x) = ∂f(x) +⋃

v∈∂g(F(x)) ∂ 〈v , F〉 (x) (x ∈ dom f ∩ dom g F).

Cone convexity Convex analysis of convex convex-composite functions Applications References

The main result

For φ : E→ R ∪ +∞ and x ∈ E we define

∂φ(x) :=v

∣∣∣ φ(x) + 〈v , x − x〉 ≤ φ(x) (x ∈ dom φ)

(subdifferential);

φ : y ∈ E 7→ supx∈dom φ〈y, x〉 − φ(x) (conjugate).

Theorem 3 (Burke,H., Nguyen ’19).

Let K ⊂ E2 be a closed, convex cone, F : E1 → E•2 K-convex and f : E1 → R ∪ +∞, g : E2 → R ∪ +∞

proper, convex such thatg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F).

andF(ri (dom f) ∩ ri (dom F)) ∩ ri (dom g − K) , ∅. (3)

Then (f + g F is convex and) the following hold:

a) (f + g F)∗(p) = minv∈−K ,y∈E1

g∗(v) + f∗(y) + 〈v , F〉∗ (p − y);

b) ∂(f + g F)(x) = ∂f(x) +⋃

v∈∂g(F(x)) ∂ 〈v , F〉 (x) (x ∈ dom f ∩ dom g F).

Cone convexity Convex analysis of convex convex-composite functions Applications References

The main result

For φ : E→ R ∪ +∞ and x ∈ E we define

∂φ(x) :=v

∣∣∣ φ(x) + 〈v , x − x〉 ≤ φ(x) (x ∈ dom φ)

(subdifferential);

φ : y ∈ E 7→ supx∈dom φ〈y, x〉 − φ(x) (conjugate).

Theorem 3 (Burke,H., Nguyen ’19).

Let K ⊂ E2 be a closed, convex cone, F : E1 → E•2 K-convex and f : E1 → R ∪ +∞, g : E2 → R ∪ +∞

proper, convex such thatg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F).

andF(ri (dom f) ∩ ri (dom F)) ∩ ri (dom g − K) , ∅. (3)

Then (f + g F is convex and) the following hold:

a) (f + g F)∗(p) = minv∈−K ,y∈E1

g∗(v) + f∗(y) + 〈v , F〉∗ (p − y);

b) ∂(f + g F)(x) = ∂f(x) +⋃

v∈∂g(F(x)) ∂ 〈v , F〉 (x) (x ∈ dom f ∩ dom g F).

Cone convexity Convex analysis of convex convex-composite functions Applications References

The main result

For φ : E→ R ∪ +∞ and x ∈ E we define

∂φ(x) :=v

∣∣∣ φ(x) + 〈v , x − x〉 ≤ φ(x) (x ∈ dom φ)

(subdifferential);

φ : y ∈ E 7→ supx∈dom φ〈y, x〉 − φ(x) (conjugate).

Theorem 3 (Burke,H., Nguyen ’19).

Let K ⊂ E2 be a closed, convex cone, F : E1 → E•2 K-convex and f : E1 → R ∪ +∞, g : E2 → R ∪ +∞

proper, convex such thatg(F(x)) ≤ g(y) ((x, y) ∈ K-epi F).

andF(ri (dom f) ∩ ri (dom F)) ∩ ri (dom g − K) , ∅. (3)

Then (f + g F is convex and) the following hold:

a) (f + g F)∗(p) = minv∈−K ,y∈E1

g∗(v) + f∗(y) + 〈v , F〉∗ (p − y);

b) ∂(f + g F)(x) = ∂f(x) +⋃

v∈∂g(F(x)) ∂ 〈v , F〉 (x) (x ∈ dom f ∩ dom g F).

Cone convexity Convex analysis of convex convex-composite functions Applications References

The case K = −hzn gFor φ : E→ R ∪ +∞ lsc, proper, convex we define its horizon cone by

hzn φ := v | ∀t ≥ 0 : x + tv ∈ levαφ 2,

where levαφ is any nonempty sublevel set of φ.

Lemma 4 (Burke, H., Nguyen ’19).

Let g : E→ R ∪ +∞ be lsc, proper, convex. Then g is (−hzn g)-increasing.

Corollary 5 (Burke, H., Nguyen ’19).

g : E→ R ∪ +∞ be lsc, proper, convex and let F : E1 → E•2 be (−hzn g)-convex such that

F(ri (dom F)) ∩ ri (dom g) , ∅.

Then(g F)∗(p) = min

v∈E2g∗(v) + 〈v , F〉∗ (p)

and∂(g F)(x) =

⋃v∈∂g(F(x))

∂ 〈v , F〉 (x) (x ∈ dom g F).

Proof.K = −hzn g.

2 I.e. hzn φ is the closed, convex (horizon) cone (levαφ)∞ .

Cone convexity Convex analysis of convex convex-composite functions Applications References

The case K = −hzn gFor φ : E→ R ∪ +∞ lsc, proper, convex we define its horizon cone by

hzn φ := v | ∀t ≥ 0 : x + tv ∈ levαφ 2,

where levαφ is any nonempty sublevel set of φ.

Lemma 4 (Burke, H., Nguyen ’19).

Let g : E→ R ∪ +∞ be lsc, proper, convex. Then g is (−hzn g)-increasing.

Corollary 5 (Burke, H., Nguyen ’19).

g : E→ R ∪ +∞ be lsc, proper, convex and let F : E1 → E•2 be (−hzn g)-convex such that

F(ri (dom F)) ∩ ri (dom g) , ∅.

Then(g F)∗(p) = min

v∈E2g∗(v) + 〈v , F〉∗ (p)

and∂(g F)(x) =

⋃v∈∂g(F(x))

∂ 〈v , F〉 (x) (x ∈ dom g F).

Proof.K = −hzn g.

2 I.e. hzn φ is the closed, convex (horizon) cone (levαφ)∞ .

Cone convexity Convex analysis of convex convex-composite functions Applications References

The case K = −hzn gFor φ : E→ R ∪ +∞ lsc, proper, convex we define its horizon cone by

hzn φ := v | ∀t ≥ 0 : x + tv ∈ levαφ 2,

where levαφ is any nonempty sublevel set of φ.

Lemma 4 (Burke, H., Nguyen ’19).

Let g : E→ R ∪ +∞ be lsc, proper, convex. Then g is (−hzn g)-increasing.

Corollary 5 (Burke, H., Nguyen ’19).

g : E→ R ∪ +∞ be lsc, proper, convex and let F : E1 → E•2 be (−hzn g)-convex such that

F(ri (dom F)) ∩ ri (dom g) , ∅.

Then(g F)∗(p) = min

v∈E2g∗(v) + 〈v , F〉∗ (p)

and∂(g F)(x) =

⋃v∈∂g(F(x))

∂ 〈v , F〉 (x) (x ∈ dom g F).

Proof.K = −hzn g.

2 I.e. hzn φ is the closed, convex (horizon) cone (levαφ)∞ .

Cone convexity Convex analysis of convex convex-composite functions Applications References

Component-wise convex functions

Corollary 6.

Let g : Rm → R ∪ +∞ be proper, convex and Rm+-increasing, F : E→ (Rm)• with Fi (i = 1, . . . ,m)

proper, convex such that

F

m⋂i

ri (dom Fi)

∩ ri (dom g) , ∅.

Then

(g F)∗(p) = minv≥0

g∗(v) +

m∑i=1

viFi

∗ (p)

and

∂(g F)(x) =⋃

v∈∂g(F(x))

m∑i=1

vi∂Fi(x) (x ∈ dom g F).

Proof.Use K = Rm

+ and observe that F is K -convex.

Cone convexity Convex analysis of convex convex-composite functions Applications References

3. Applications

Cone convexity Convex analysis of convex convex-composite functions Applications References

Conic programming

Consider the general conic program

min f(x) s.t. F(x) ∈ −K (4)

with

K ⊂ E2 a closed, convex cone,

F : E1 → E2 K -convex,

f : E1 → R ∪ +∞ proper and convex.

Problem (4) can be written in the additive composite form

minx∈E1

f(x) + (δ−K F)(x).

Then g = δ−K is K -increasing and qualification condition (3) reads

F(ri (dom f)) ∩ ri (−K) , ∅. (5)

Under (5) we haveinf

x∈E1f(x) + (δ−K F)(x) = max

v∈−K−f∗(y) − (δ−K F)∗(−y)

= maxv∈−K

infx∈E1

f(x) +⟨v , F(x)

⟩.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Conic programming

Consider the general conic program

min f(x) s.t. F(x) ∈ −K (4)

with

K ⊂ E2 a closed, convex cone,

F : E1 → E2 K -convex,

f : E1 → R ∪ +∞ proper and convex.

Problem (4) can be written in the additive composite form

minx∈E1

f(x) + (δ−K F)(x).

Then g = δ−K is K -increasing and qualification condition (3) reads

F(ri (dom f)) ∩ ri (−K) , ∅. (5)

Under (5) we haveinf

x∈E1f(x) + (δ−K F)(x) = max

v∈−K−f∗(y) − (δ−K F)∗(−y)

= maxv∈−K

infx∈E1

f(x) +⟨v , F(x)

⟩.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Conic programming

Consider the general conic program

min f(x) s.t. F(x) ∈ −K (4)

with

K ⊂ E2 a closed, convex cone,

F : E1 → E2 K -convex,

f : E1 → R ∪ +∞ proper and convex.

Problem (4) can be written in the additive composite form

minx∈E1

f(x) + (δ−K F)(x).

Then g = δ−K is K -increasing and qualification condition (3) reads

F(ri (dom f)) ∩ ri (−K) , ∅. (5)

Under (5) we haveinf

x∈E1f(x) + (δ−K F)(x) = max

v∈−K−f∗(y) − (δ−K F)∗(−y)

= maxv∈−K

infx∈E1

f(x) +⟨v , F(x)

⟩.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Conic programming

Consider the general conic program

min f(x) s.t. F(x) ∈ −K (4)

with

K ⊂ E2 a closed, convex cone,

F : E1 → E2 K -convex,

f : E1 → R ∪ +∞ proper and convex.

Problem (4) can be written in the additive composite form

minx∈E1

f(x) + (δ−K F)(x).

Then g = δ−K is K -increasing and qualification condition (3) reads

F(ri (dom f)) ∩ ri (−K) , ∅. (5)

Under (5) we haveinf

x∈E1f(x) + (δ−K F)(x) = max

v∈−K−f∗(y) − (δ−K F)∗(−y)

= maxv∈−K

infx∈E1

f(x) +⟨v , F(x)

⟩.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Conic programming II

Consider againmin f(x) s.t. F(x) ∈ −K . (6)

Observe that∂δ−K (y) =

v

∣∣∣ 〈v , y − y〉 ≥ 0 (y ∈ K)

=: N−K (y) (y ∈ −K).

Theorem 7 (Pennanen ’99/Burke, H.,Nguyen ’19).

Let f ∈ Γ(E1), K ⊂ E2 a closed, convex cone, and let F : E1 → E2 be K-convex. Then the condition

0 ∈ ∂f(x) +⋃

v∈N−K (F(x))

∂ 〈v , F〉 (x) (7)

is sufficient for x to be a minimizer of (6). Under the condition F(ri (dom f)) ∩ ri (−K) , ∅ it is alsonecessary.

Corollary 8.

Let f : E1 → R be differentiable and convex, K ⊂ E2 a closed, convex cone, and let F : E1 → E2 bedifferentiable and K-convex. Then the condition

− ∇f(x) ∈ F ′(x)∗N−K (F(x)) (8)

is sufficient for x to be a minimizer of (6). Under the condition rge F ∩ ri (−K) , ∅ it is also necessary.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Conic programming II

Consider againmin f(x) s.t. F(x) ∈ −K . (6)

Observe that∂δ−K (y) =

v

∣∣∣ 〈v , y − y〉 ≥ 0 (y ∈ K)

=: N−K (y) (y ∈ −K).

Theorem 7 (Pennanen ’99/Burke, H.,Nguyen ’19).

Let f ∈ Γ(E1), K ⊂ E2 a closed, convex cone, and let F : E1 → E2 be K-convex. Then the condition

0 ∈ ∂f(x) +⋃

v∈N−K (F(x))

∂ 〈v , F〉 (x) (7)

is sufficient for x to be a minimizer of (6). Under the condition F(ri (dom f)) ∩ ri (−K) , ∅ it is alsonecessary.

Corollary 8.

Let f : E1 → R be differentiable and convex, K ⊂ E2 a closed, convex cone, and let F : E1 → E2 bedifferentiable and K-convex. Then the condition

− ∇f(x) ∈ F ′(x)∗N−K (F(x)) (8)

is sufficient for x to be a minimizer of (6). Under the condition rge F ∩ ri (−K) , ∅ it is also necessary.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Conic programming II

Consider againmin f(x) s.t. F(x) ∈ −K . (6)

Observe that∂δ−K (y) =

v

∣∣∣ 〈v , y − y〉 ≥ 0 (y ∈ K)

=: N−K (y) (y ∈ −K).

Theorem 7 (Pennanen ’99/Burke, H.,Nguyen ’19).

Let f ∈ Γ(E1), K ⊂ E2 a closed, convex cone, and let F : E1 → E2 be K-convex. Then the condition

0 ∈ ∂f(x) +⋃

v∈N−K (F(x))

∂ 〈v , F〉 (x) (7)

is sufficient for x to be a minimizer of (6). Under the condition F(ri (dom f)) ∩ ri (−K) , ∅ it is alsonecessary.

Corollary 8.

Let f : E1 → R be differentiable and convex, K ⊂ E2 a closed, convex cone, and let F : E1 → E2 bedifferentiable and K-convex. Then the condition

− ∇f(x) ∈ F ′(x)∗N−K (F(x)) (8)

is sufficient for x to be a minimizer of (6). Under the condition rge F ∩ ri (−K) , ∅ it is also necessary.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Conic programming II

Consider againmin f(x) s.t. F(x) ∈ −K . (6)

Observe that∂δ−K (y) =

v

∣∣∣ 〈v , y − y〉 ≥ 0 (y ∈ K)

=: N−K (y) (y ∈ −K).

Theorem 7 (Pennanen ’99/Burke, H.,Nguyen ’19).

Let f ∈ Γ(E1), K ⊂ E2 a closed, convex cone, and let F : E1 → E2 be K-convex. Then the condition

0 ∈ ∂f(x) +⋃

v∈N−K (F(x))

∂ 〈v , F〉 (x) (7)

is sufficient for x to be a minimizer of (6). Under the condition F(ri (dom f)) ∩ ri (−K) , ∅ it is alsonecessary.

Corollary 8.

Let f : E1 → R be differentiable and convex, K ⊂ E2 a closed, convex cone, and let F : E1 → E2 bedifferentiable and K-convex. Then the condition

− ∇f(x) ∈ F ′(x)∗N−K (F(x)) (8)

is sufficient for x to be a minimizer of (6). Under the condition rge F ∩ ri (−K) , ∅ it is also necessary.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Variational Gram functionsGiven M ⊂ Sn

+ closed and convex, the associated variational Gram function (VGF) is given by

ΩM : Rn×m → R ∪ +∞, ΩM(X) =12σM(XXT ) := sup

V∈Mtr (VXXT ).

Then

F : X ∈ Rn×m 7→ XXT is Sn+-convex;

σK-epi F (X ,−V) =

12 tr

(XT V†X

), if rge X ⊂ rge V , V 0,

+∞, else(matrix-fractional function);

σM is Sn+-increasing;

M is bounded if and only if rge F ∩ ri (domσM) , ∅.

Proposition 9 (Jalali et al. ’17/Burke, Gao, H.’ 18/Burke, H.,Nguyen ’19).

Let M ⊂ Sn+ be nonempty, convex and compact. Then Ω∗M is finite-valued and given by

Ω∗M(X) =12

minV∈M

tr (XT V†X)

∣∣∣ rge X ⊂ rge V.

and

∂ΩM(X) =

VX

∣∣∣∣∣∣ V ∈ arg maxM

⟨XXT , ·

⟩ is compact for all X.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Variational Gram functionsGiven M ⊂ Sn

+ closed and convex, the associated variational Gram function (VGF) is given by

ΩM : Rn×m → R ∪ +∞, ΩM(X) =12σM(XXT ) := sup

V∈Mtr (VXXT ).

Then

F : X ∈ Rn×m 7→ XXT is Sn+-convex;

σK-epi F (X ,−V) =

12 tr

(XT V†X

), if rge X ⊂ rge V , V 0,

+∞, else(matrix-fractional function);

σM is Sn+-increasing;

M is bounded if and only if rge F ∩ ri (domσM) , ∅.

Proposition 9 (Jalali et al. ’17/Burke, Gao, H.’ 18/Burke, H.,Nguyen ’19).

Let M ⊂ Sn+ be nonempty, convex and compact. Then Ω∗M is finite-valued and given by

Ω∗M(X) =12

minV∈M

tr (XT V†X)

∣∣∣ rge X ⊂ rge V.

and

∂ΩM(X) =

VX

∣∣∣∣∣∣ V ∈ arg maxM

⟨XXT , ·

⟩ is compact for all X.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Variational Gram functionsGiven M ⊂ Sn

+ closed and convex, the associated variational Gram function (VGF) is given by

ΩM : Rn×m → R ∪ +∞, ΩM(X) =12σM(XXT ) := sup

V∈Mtr (VXXT ).

Then

F : X ∈ Rn×m 7→ XXT is Sn+-convex;

σK-epi F (X ,−V) =

12 tr

(XT V†X

), if rge X ⊂ rge V , V 0,

+∞, else(matrix-fractional function);

σM is Sn+-increasing;

M is bounded if and only if rge F ∩ ri (domσM) , ∅.

Proposition 9 (Jalali et al. ’17/Burke, Gao, H.’ 18/Burke, H.,Nguyen ’19).

Let M ⊂ Sn+ be nonempty, convex and compact. Then Ω∗M is finite-valued and given by

Ω∗M(X) =12

minV∈M

tr (XT V†X)

∣∣∣ rge X ⊂ rge V.

and

∂ΩM(X) =

VX

∣∣∣∣∣∣ V ∈ arg maxM

⟨XXT , ·

⟩ is compact for all X.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Variational Gram functionsGiven M ⊂ Sn

+ closed and convex, the associated variational Gram function (VGF) is given by

ΩM : Rn×m → R ∪ +∞, ΩM(X) =12σM(XXT ) := sup

V∈Mtr (VXXT ).

Then

F : X ∈ Rn×m 7→ XXT is Sn+-convex;

σK-epi F (X ,−V) =

12 tr

(XT V†X

), if rge X ⊂ rge V , V 0,

+∞, else(matrix-fractional function);

σM is Sn+-increasing;

M is bounded if and only if rge F ∩ ri (domσM) , ∅.

Proposition 9 (Jalali et al. ’17/Burke, Gao, H.’ 18/Burke, H.,Nguyen ’19).

Let M ⊂ Sn+ be nonempty, convex and compact. Then Ω∗M is finite-valued and given by

Ω∗M(X) =12

minV∈M

tr (XT V†X)

∣∣∣ rge X ⊂ rge V.

and

∂ΩM(X) =

VX

∣∣∣∣∣∣ V ∈ arg maxM

⟨XXT , ·

⟩ is compact for all X.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Variational Gram functionsGiven M ⊂ Sn

+ closed and convex, the associated variational Gram function (VGF) is given by

ΩM : Rn×m → R ∪ +∞, ΩM(X) =12σM(XXT ) := sup

V∈Mtr (VXXT ).

Then

F : X ∈ Rn×m 7→ XXT is Sn+-convex;

σK-epi F (X ,−V) =

12 tr

(XT V†X

), if rge X ⊂ rge V , V 0,

+∞, else(matrix-fractional function);

σM is Sn+-increasing;

M is bounded if and only if rge F ∩ ri (domσM) , ∅.

Proposition 9 (Jalali et al. ’17/Burke, Gao, H.’ 18/Burke, H.,Nguyen ’19).

Let M ⊂ Sn+ be nonempty, convex and compact. Then Ω∗M is finite-valued and given by

Ω∗M(X) =12

minV∈M

tr (XT V†X)

∣∣∣ rge X ⊂ rge V.

and

∂ΩM(X) =

VX

∣∣∣∣∣∣ V ∈ arg maxM

⟨XXT , ·

⟩ is compact for all X.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Variational Gram functionsGiven M ⊂ Sn

+ closed and convex, the associated variational Gram function (VGF) is given by

ΩM : Rn×m → R ∪ +∞, ΩM(X) =12σM(XXT ) := sup

V∈Mtr (VXXT ).

Then

F : X ∈ Rn×m 7→ XXT is Sn+-convex;

σK-epi F (X ,−V) =

12 tr

(XT V†X

), if rge X ⊂ rge V , V 0,

+∞, else(matrix-fractional function);

σM is Sn+-increasing;

M is bounded if and only if rge F ∩ ri (domσM) , ∅.

Proposition 9 (Jalali et al. ’17/Burke, Gao, H.’ 18/Burke, H.,Nguyen ’19).

Let M ⊂ Sn+ be nonempty, convex and compact. Then Ω∗M is finite-valued and given by

Ω∗M(X) =12

minV∈M

tr (XT V†X)

∣∣∣ rge X ⊂ rge V.

and

∂ΩM(X) =

VX

∣∣∣∣∣∣ V ∈ arg maxM

⟨XXT , ·

⟩ is compact for all X.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Extending the matrix-fractional function

Consider the Euclidean space G := Cn×m × Hn equipped with the inner product

〈·, ·〉 : ((X ,U), (Y ,V)) ∈ G × G 7→ Re tr (Y∗X) + Re tr (VU).

Define the mapping F : G→ (Hn)• by

F(X ,V) :=

X∗V†X if rge X ⊂ rge V ,

+∞•, else, (9)

where X∗ is the adjoint of X and V† is the Moore-Penrose pseudoinverse of V .

Proposition 10 (Burke, H., Nguyen, ’11).

Let F : G→ (Hn)• be given by (9) and define γ : G→ R ∪ +∞ by

γ(X ,V) :=

12 tr (F(X ,V)) , if rge X ⊂ rge V , V 0

+∞, else.

Then γ is lsc, proper, and convex, hence a support function.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Extending the matrix-fractional function

Consider the Euclidean space G := Cn×m × Hn equipped with the inner product

〈·, ·〉 : ((X ,U), (Y ,V)) ∈ G × G 7→ Re tr (Y∗X) + Re tr (VU).

Define the mapping F : G→ (Hn)• by

F(X ,V) :=

X∗V†X if rge X ⊂ rge V ,

+∞•, else, (9)

where X∗ is the adjoint of X and V† is the Moore-Penrose pseudoinverse of V .

Proposition 10 (Burke, H., Nguyen, ’11).

Let F : G→ (Hn)• be given by (9) and define γ : G→ R ∪ +∞ by

γ(X ,V) :=

12 tr (F(X ,V)) , if rge X ⊂ rge V , V 0

+∞, else.

Then γ is lsc, proper, and convex, hence a support function.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Extending the matrix-fractional function

Consider the Euclidean space G := Cn×m × Hn equipped with the inner product

〈·, ·〉 : ((X ,U), (Y ,V)) ∈ G × G 7→ Re tr (Y∗X) + Re tr (VU).

Define the mapping F : G→ (Hn)• by

F(X ,V) :=

X∗V†X if rge X ⊂ rge V ,

+∞•, else, (9)

where X∗ is the adjoint of X and V† is the Moore-Penrose pseudoinverse of V .

Proposition 10 (Burke, H., Nguyen, ’11).

Let F : G→ (Hn)• be given by (9) and define γ : G→ R ∪ +∞ by

γ(X ,V) :=

12 tr (F(X ,V)) , if rge X ⊂ rge V , V 0

+∞, else.

Then γ is lsc, proper, and convex, hence a support function.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Spectral FunctionsConsider the function

F : Sn → Rn , F(X) = (λ1(X), . . . , λn(X)), (X ∈ Sn) (10)

where λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X .

Let

K =

v ∈ Rn

∣∣∣∣∣∣∣k∑

i=1

vi ≥ 0, k = 1, . . . , n − 1,n∑

i=1

vi = 0

.Then

F is K -convex;

dom F = Sn ;

If g : Rn → R ∪ +∞ is proper, convex and permutation invariant3, theng(F(X)) ≤ g(y) ((X , y) ∈ K -epi F).

Proposition 11 (Lewis ’95/Burke, H., Nguyen ’19).

Let g be proper, convex and permutation invariant and let F : Sn → Rn be given by (10). Then thefollowing hold:

a) g F is convex and (g F)∗ = g∗ F .

b) For all X ∈ F−1(dom g) we have that

∂(g F)(X) =⋃

v∈∂g(λ(X))

convU∗diag(v)U

∣∣∣ U∗XU = diag(F(X)), U∗U = In.

3g(Py) = g(y) for any permuation matrix P.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Spectral FunctionsConsider the function

F : Sn → Rn , F(X) = (λ1(X), . . . , λn(X)), (X ∈ Sn) (10)

where λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X .Let

K =

v ∈ Rn

∣∣∣∣∣∣∣k∑

i=1

vi ≥ 0, k = 1, . . . , n − 1,n∑

i=1

vi = 0

.

Then

F is K -convex;

dom F = Sn ;

If g : Rn → R ∪ +∞ is proper, convex and permutation invariant3, theng(F(X)) ≤ g(y) ((X , y) ∈ K -epi F).

Proposition 11 (Lewis ’95/Burke, H., Nguyen ’19).

Let g be proper, convex and permutation invariant and let F : Sn → Rn be given by (10). Then thefollowing hold:

a) g F is convex and (g F)∗ = g∗ F .

b) For all X ∈ F−1(dom g) we have that

∂(g F)(X) =⋃

v∈∂g(λ(X))

convU∗diag(v)U

∣∣∣ U∗XU = diag(F(X)), U∗U = In.

3g(Py) = g(y) for any permuation matrix P.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Spectral FunctionsConsider the function

F : Sn → Rn , F(X) = (λ1(X), . . . , λn(X)), (X ∈ Sn) (10)

where λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X .Let

K =

v ∈ Rn

∣∣∣∣∣∣∣k∑

i=1

vi ≥ 0, k = 1, . . . , n − 1,n∑

i=1

vi = 0

.Then

F is K -convex;

dom F = Sn ;

If g : Rn → R ∪ +∞ is proper, convex and permutation invariant3, theng(F(X)) ≤ g(y) ((X , y) ∈ K -epi F).

Proposition 11 (Lewis ’95/Burke, H., Nguyen ’19).

Let g be proper, convex and permutation invariant and let F : Sn → Rn be given by (10). Then thefollowing hold:

a) g F is convex and (g F)∗ = g∗ F .

b) For all X ∈ F−1(dom g) we have that

∂(g F)(X) =⋃

v∈∂g(λ(X))

convU∗diag(v)U

∣∣∣ U∗XU = diag(F(X)), U∗U = In.

3g(Py) = g(y) for any permuation matrix P.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Spectral FunctionsConsider the function

F : Sn → Rn , F(X) = (λ1(X), . . . , λn(X)), (X ∈ Sn) (10)

where λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X .Let

K =

v ∈ Rn

∣∣∣∣∣∣∣k∑

i=1

vi ≥ 0, k = 1, . . . , n − 1,n∑

i=1

vi = 0

.Then

F is K -convex;

dom F = Sn ;

If g : Rn → R ∪ +∞ is proper, convex and permutation invariant3, theng(F(X)) ≤ g(y) ((X , y) ∈ K -epi F).

Proposition 11 (Lewis ’95/Burke, H., Nguyen ’19).

Let g be proper, convex and permutation invariant and let F : Sn → Rn be given by (10). Then thefollowing hold:

a) g F is convex and (g F)∗ = g∗ F .

b) For all X ∈ F−1(dom g) we have that

∂(g F)(X) =⋃

v∈∂g(λ(X))

convU∗diag(v)U

∣∣∣ U∗XU = diag(F(X)), U∗U = In.

3g(Py) = g(y) for any permuation matrix P.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Spectral FunctionsConsider the function

F : Sn → Rn , F(X) = (λ1(X), . . . , λn(X)), (X ∈ Sn) (10)

where λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X .Let

K =

v ∈ Rn

∣∣∣∣∣∣∣k∑

i=1

vi ≥ 0, k = 1, . . . , n − 1,n∑

i=1

vi = 0

.Then

F is K -convex;

dom F = Sn ;

If g : Rn → R ∪ +∞ is proper, convex and permutation invariant3, theng(F(X)) ≤ g(y) ((X , y) ∈ K -epi F).

Proposition 11 (Lewis ’95/Burke, H., Nguyen ’19).

Let g be proper, convex and permutation invariant and let F : Sn → Rn be given by (10). Then thefollowing hold:

a) g F is convex and (g F)∗ = g∗ F .

b) For all X ∈ F−1(dom g) we have that

∂(g F)(X) =⋃

v∈∂g(λ(X))

convU∗diag(v)U

∣∣∣ U∗XU = diag(F(X)), U∗U = In.

3g(Py) = g(y) for any permuation matrix P.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Spectral FunctionsConsider the function

F : Sn → Rn , F(X) = (λ1(X), . . . , λn(X)), (X ∈ Sn) (10)

where λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X .Let

K =

v ∈ Rn

∣∣∣∣∣∣∣k∑

i=1

vi ≥ 0, k = 1, . . . , n − 1,n∑

i=1

vi = 0

.Then

F is K -convex;

dom F = Sn ;

If g : Rn → R ∪ +∞ is proper, convex and permutation invariant3, theng(F(X)) ≤ g(y) ((X , y) ∈ K -epi F).

Proposition 11 (Lewis ’95/Burke, H., Nguyen ’19).

Let g be proper, convex and permutation invariant and let F : Sn → Rn be given by (10). Then thefollowing hold:

a) g F is convex and (g F)∗ = g∗ F .

b) For all X ∈ F−1(dom g) we have that

∂(g F)(X) =⋃

v∈∂g(λ(X))

convU∗diag(v)U

∣∣∣ U∗XU = diag(F(X)), U∗U = In.

3g(Py) = g(y) for any permuation matrix P.

Cone convexity Convex analysis of convex convex-composite functions Applications References

Spectral FunctionsConsider the function

F : Sn → Rn , F(X) = (λ1(X), . . . , λn(X)), (X ∈ Sn) (10)

where λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X .Let

K =

v ∈ Rn

∣∣∣∣∣∣∣k∑

i=1

vi ≥ 0, k = 1, . . . , n − 1,n∑

i=1

vi = 0

.Then

F is K -convex;

dom F = Sn ;

If g : Rn → R ∪ +∞ is proper, convex and permutation invariant3, theng(F(X)) ≤ g(y) ((X , y) ∈ K -epi F).

Proposition 11 (Lewis ’95/Burke, H., Nguyen ’19).

Let g be proper, convex and permutation invariant and let F : Sn → Rn be given by (10). Then thefollowing hold:

a) g F is convex and (g F)∗ = g∗ F .

b) For all X ∈ F−1(dom g) we have that

∂(g F)(X) =⋃

v∈∂g(λ(X))

convU∗diag(v)U

∣∣∣ U∗XU = diag(F(X)), U∗U = In.

3g(Py) = g(y) for any permuation matrix P.

Cone convexity Convex analysis of convex convex-composite functions Applications References

4. References

Cone convexity Convex analysis of convex convex-composite functions Applications References

J. M. Borwein: Optimization with respect to Partial Orderings. Ph.D. Thesis, University of Oxford,1974.

R.I. Bot, S.-M. Grad, and G. Wanka: A new constraint qualification for the formula of thesubdifferential of composed convex functions in infinite dimensional spaces. MathematischeNachrichten 281, 2008, pp. 1088–1107.

R.I. Bot, S.-M. Grad, and G. Wanka: Generalized Moreau-Rockafellar results for composed convexfunctions. Optimization 58(7), 2009, pp. 917–933.

J. V. Burke and T. Hoheisel: Matrix support functionals for inverse problems, regularization, andlearning. SIAM Journal on Optimization 25, 2015, pp. 1135–1159.

J. V. Burke, Y. Gao and T. Hoheisel: Convex Geometry of the Generalized Matrix-FractionalFunction. SIAM Journal on Optimization 28, 2018, pp. 2189–2200.

J. V. Burke, Y. Gao, and T. Hoheisel: Variational properties of matrix functions via the generalizedmatrix-fractional function. SIAM Journal on Optimization, to appear.

J. V. Burke, T. Hoheisel, and Q.V. Nguyen:A study of convex convex-composite functions via infimalconvolution with applications. arXiv:1907.08318.

A. Jalali, M. Fazel, and L. Xiao: Variational Gram Functions: Convex Analysis and Optimization.SIAM Journal on Optimization 27(4), 2017, pp. 2634–2661.

J.-B. Hiriart-Urruty: A Note on the Legendre-Fenchel Transform of Convex Composite Functions.in Nonsmooth Mechanics and Analysis. Eds. P. Alart, O. Maisonneuve, and R. T. Rockafellar,Springer, 2006, pp. 35–46.

Cone convexity Convex analysis of convex convex-composite functions Applications References

A.G. Kusraev and S.S. Kutateladze: Subdifferentials: theory and applications. Mathematics and itsApplications, 323. Kluwer Academic Publishers Group, Dordrecht, 1995.

A.S. Lewis: The convex analysis of unitarily invariant matrix functions. Journal of Convex Analysis2(1–2), 1995, pp. 173–183.

A.S. Lewis:Convex analysis on the hermitian Matrices SIAM Journal on Optimimization 6(1), 1996,pp. 164–177.

T. Pennanen: Graph-Convex Mappings and K-Convex Functions. Journal of Convex Analysis 6(2),1999, pp. 235–266.

R.T. Rockafellar: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton UniversityPress, Princeton, N.J. 1970.

R.T. Rockafellar and R.J.-B. Wets: Variational Analysis. Grundlehren der MathematischenWissenschaften, Vol. 317, Springer-Verlag, Berlin, 1998.