58
Conversion from a charge current into a spin polarized current in the surface state of threedimensional topological insulator New Perspectives in Spintronic and Mesoscopic Physics Symposium @Kashiwa 2015.06.12 Yuichiro Ando 1 , Satoshi Sasaki 2 , Kouji Segawa 2 , Yoichi Ando 2 , and Masashi Shiraishi 1 1. Department of Electronic Science and Engineering, Kyoto University 2. Institute of Scientific and Industrial Research, Osaka University Y. Ando et al., Nano Lett. 14, 6226(2014).

Conversion)from)a)charge)current)into)a)spin)polarized ... · Conversion)from)a)charge)current)into)a)spin)polarized)current) in)thesurface)state)ofthree 6dimensional)topological)insulator

  • Upload
    vothien

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • Conversion from a charge current into a spin polarized current in the surface state of three-dimensional topological insulator

    New Perspectives in Spintronic and Mesoscopic Physics

    Symposium @Kashiwa2015.06.12

    Yuichiro Ando1, Satoshi Sasaki2, Kouji Segawa2, Yoichi Ando2, and Masashi Shiraishi1

    1. Department of Electronic Science and Engineering, Kyoto University2. Institute of Scientific and Industrial Research, Osaka University

    Y. Ando et al., Nano Lett. 14, 6226(2014).

  • Acknowledgments

    Kyoto Univ.Detection of spin current

    Osaka Univ.Fabrication of TI

    Prof. Yoichi Ando Prof. Kouji Segawa

    Dr. Satoshi Sasaki

    Dr. Fan Yang

    Dr. Mario Novak

    Mr. TakahiroHamasaki

    Prof. Masashi Shiraishi

    Mr. TakayukiKurokawa

  • The surface state in 3D topological insulator

    Surface state of topological insulator 2D metallic surface stateDirac electron system

    1/25

    Topological Insulator Topologically-trivialInsulator, semiconductor

    Valanceband

    Conductionband

    Valance band

    Fermi Level, EF

    E

    k-k 0

    E

    k-k 0

  • Spin-momentum locking in 3D topological insulator 2/25

    Spin-momentum locking

    I < 0

    Jc

    I > 0

    JcJc Jc

    I < 0

    Jc

    I > 0

    JcJc Jc

    Surface state of topological insulator (TI) 2D metallic surface stateDirac electron system

    Electrical injection/extraction of the spin polarized current due to charge flow in the surface state of the topological insulator

    Objective

  • Verification of surface state of 3D topological insulator

    T. Arakane et al., Nat. Comm. 3, 636 (2012).

    Band structure of surface (Angle-Resolved Photo Emission Spectroscopy)

    TlBiSe2

    T. Sato et al., Phys. Rev. Lett. 105, 136802 (2010).

    Bi2Sb2-XTe3Se3-Y

    3/25

  • Verification of surface state of 3D topological insulator

    Two dimensional transport properties

    A. A. Taskin et al., Phys. Rev. Lett. 109, 066803 (2012).

    Shubnikov-de Haas oscillations Weak-antilocalization

    Z. Ren et al., Phys. Rev. B 82, 241306(R) (2010).

    Bi2Se3 thin film

    Bi2Te2Se Bi2Se3 thin film

    4/25

  • Detection of spin accumulation in topological insulator

    This studyBulk-insulating TI Extraction of spin currentby electric fields.(Local magnetoresistance)

    5/25

    Thickness of Bi2Se3:10 nm

  • Ferromagnetic metal (FM)

    Nonmagnetic metal (NM)

    Magnetoresistance using nonlocal three-terminal scheme

    B

    TI

    I

    Vmeas

    Magnetization of FM(spin angular momentum of majority spin: )

    Magnetic field, B

    e-

    e-Interface resistance at FM

    TI

    TI

    TI

    Vmeas

    TI TI

    e-

    0

    6/25

  • Magnetic field, B

    Magnetoresistance using nonlocal three-terminal scheme

    Interface resistance at FM

    B

    TI

    I

    Vmeas

    Change of current-voltage configuration Change of current direction

    B

    TI

    Vmeas B

    TI

    I

    VmeasI

    Charge current direction

    Charge current direction

    Magnetic field, B

    e-

    Interface resistance at FM

    e-

    e-

    e-

    0

    7/25

  • Device fabrication procedure

    TI SiO2/Si sub.

    Sample : Single crystal Bi1.5Sb0.5Te1.7Se1.3 (BSTS) & Bi2Se3 formed by a Bridgeman method

    Substrate : Thermally-oxidized SiO2 (500 nm) / SiTI flakes : Mechanical exfoliation using a Scotch tape Thickness of TI-flake : Laser microscope& Atomic force microscope.Ni80Fe20(Py) & Au/Cr electrode : Electron beam lithography

    & Electron beam evaporation.

    Unit layer(5 Layers)

    van der Waals' force

    8/25

    A. A. Taskin et al., Phys. Rev. Lett. 107, 016801 (2011).

  • Sample : Single crystal Bi1.5Sb0.5Te1.7Se1.3 (BSTS) & Bi2Se3 formed by a Bridgeman method

    Substrate : Thermally-oxidized SiO2 (500 nm) / SiTI flakes : Mechanical exfoliation using a Scotch tape Thickness of TI-flake : Laser microscope& Atomic force microscope.Ni80Fe20(Py) & Au/Cr electrode : Electron beam lithography

    & Electron beam evaporation.

    A. A. Taskin et al., Phys. Rev. Lett. 107, 016801 (2011).

    Unit layer(5 Layers)

    van der Waals' force

    1 m

    TI

    SiO2

    B

    I Vmeas2 1 3

    Au/CrFerromagneticmetalNi80Fe20(Py)

    8/25Device fabrication procedure

  • 0.0

    1.0 10-2

    2.0 10-2

    3.0 10-2

    0 100 200 300

    BST

    S(cm)

    Temperature (K)

    BSTSt = 45 nm

    BSTSt = 58 nm

    Temperature dependence of resistivity

    IIIV

    1 2 3 4

    +-- +

    TI

    r

    Temp.

    BSTS

    r

    Temp.

    Bulk : SemiconductorBand gap : 0.3eV

    Surface : Metallic

    9/25

  • 0.0

    1.0 10-2

    2.0 10-2

    3.0 10-2

    0 100 200 300

    BST

    S(cm)

    Temperature (K)

    BSTSt = 45 nm

    BSTSt = 58 nm

    IIIV

    1 2 3 4

    +-- +

    TIBulk conduction band

    Bulk valance band

    EF

    BSTS

    9/25Temperature dependence of resistivity

  • 0.0

    1.0 10-2

    2.0 10-2

    3.0 10-2

    0.0

    4.0 10-4

    8.0 10-4

    1.2 10-3

    0 100 200 300

    BST

    S(

    cm

    ) BS (

    cm

    )

    Temperature (K)

    BSTSBi2Se3

    t = 65 nmt = 45 nm

    BSTSt = 58 nm

    IIIV

    1 2 3 4

    +-- +

    TIBulk conduction band

    Bulk valance band

    EF

    BSTS

    Bi2Se3

    Bulk conduction band

    Bulk valance band

    EF

    9/25Temperature dependence of resistivity

  • 466.24

    466.28

    466.32

    466.36

    466.4

    -1000 0 1000Magnetic Field (Oe)

    R int

    .2 (

    )

    0.04W

    I =100 mA

    Device A

    Magnetoresistance in BSTS devices at 4.2 K

    B

    TI

    I

    Vmeas

    e-

    e-

    Magnetization of FM(Spin angular momentum of majority spin: ) e-

    4.2 K

    10/25

  • 466.24

    466.28

    466.32

    466.36

    466.4

    -1000 0 1000Magnetic Field (Oe)

    R int

    .2 (

    )

    0.04W

    I =100 mA

    Device A

    B

    TI

    I

    Vmeas

    Anisotropic magnetoresistanceAMR)

    Contact 2 : Py Au/PySuppression of the Dip signals

    e-

    e-

    Magnetization of FM(Spin angular momentum of majority spin: ) e-

    4.2 K

    10/25Magnetoresistance in BSTS devices at 4.2 K

  • 451.94

    451.98

    452.02

    452.06

    452.10

    -1000 0 1000Magnetic Field (Oe)

    R int

    .2 (

    )

    466.24

    466.28

    466.32

    466.36

    466.4

    -1000 0 1000Magnetic Field (Oe)

    R int

    .2 (

    )

    0.04W0.04W

    4.2 K

    I =100 mA I =-100 mA

    Device A Device A

    B

    TI

    I

    Vmeas

    e-

    e-

    e-

    e-

    10/25Magnetoresistance in BSTS devices at 4.2 K

  • Reversal of the current-voltage scheme

    173.1

    173.2

    173.3

    173.4

    173.5

    173.6

    -400 -200 0 200 400Magnetic Field (Oe)

    R int

    .2 (

    )

    177.2

    177.3

    177.4

    177.5

    177.6

    177.7

    -400 -200 0 200 400Magnetic Field (Oe)

    R int

    .2 (

    )

    I =-100 mA

    B I

    Vmeas B Vmeas I

    0.1W 0.1W

    I =-100 mA

    Device BDevice B

    4.2 K

    11/25

  • 79.46

    79.48

    79.5

    79.52

    79.54

    -400 0 400

    R 2 (

    )

    Magnetic Field (Oe)

    Device D

    82.58

    82.6

    82.62

    82.64

    82.66

    -1000 -500 0 500 1000

    R 2 (

    )

    Magnetic Field (Oe)

    0.02 W

    4.2 KI = -100 mA

    Magnetoresistance at B // I

    B I

    Vmeas B I

    Vmeas

    Device D

    4.2 KI = -100 mA

    4.2 K

    12/25

  • 102.5

    102.54

    102.58

    102.62

    102.66

    -1000 -500 0 500 1000Magnetic Field (Oe)

    R 2 (

    )

    102.16

    102.2

    102.24

    102.28

    102.32

    -1000 -500 0 500 1000

    R 2 (

    )

    Magnetic Field (Oe)

    Magnetoresistance in Bi2Se3 devices

    I =100 mA I =-100 mA

    0.04W 0.04W

    No rectangular hysteresis signals

    4.2 K

    13/25

  • Estimation of charge current density in the surface state 14/25

    30 nm

    300 nm10 nm

    500 nm

    2000 nmTI

    Au/CrPy

    3 nm

    TI surface

    TI bulk

    sPy=2.50100 W-1mm-1sBS surface=2.13100 W-1mm-1sBSTS surface=2.3210-2 W-1mm-1sBS bulk=2.7210-1 W-1mm-1sBSTS bulk=2.1010-5 W-1mm-1

    Z. Ren et al., Phys. Rev. B 84, 165311(2011).H. Steinberg et al., Nano Lett. 10, 5032(2010).

  • Bi2Se3I

    BSTSI

    30 nm

    x

    z

    300 nm10 nm

    500 nm

    2000 nmTI

    Au/CrPy

    3 nm

    TI surface

    TI bulk

    Estimation of charge current density in the surface state

    sPy=2.50100 W-1mm-1sBS surface=2.13100 W-1mm-1sBSTS surface=2.3210-2 W-1mm-1sBS bulk=2.7210-1 W-1mm-1sBSTS bulk=2.1010-5 W-1mm-1

    x

    z

    Z. Ren et al., Phys. Rev. B 84, 165311(2011).H. Steinberg et al., Nano Lett. 10, 5032(2010).

    14/25

  • Bi2Se3I

    BSTSI x

    z

    Estimation of charge current density in the surface state

    Spin polarization: High

    Spin polarization: Low

    x

    z

    14/25

    30 nm

    300 nm10 nm

    500 nm

    2000 nmTI

    Au/CrPy

    3 nm

    TI surface

    TI bulk

    sPy=2.50100 W-1mm-1sBS surface=2.13100 W-1mm-1sBSTS surface=2.3210-2 W-1mm-1sBS bulk=2.7210-1 W-1mm-1sBSTS bulk=2.1010-5 W-1mm-1

    Z. Ren et al., Phys. Rev. B 84, 165311(2011).H. Steinberg et al., Nano Lett. 10, 5032(2010).

  • 470.78

    470.82

    470.86

    470.90

    470.94

    -1000 -500 0 500 1000Magnetic Field (Oe)

    R int

    .2 (

    )

    0.04W

    300 K

    489.62

    489.66

    489.70

    489.74

    489.78

    -1000 -500 0 500 1000Magnetic Field (Oe)

    R int

    .2 (

    )

    0.04W

    I =100 mA I =-100 mA

    Rectangular hysteresis signals : DisappearedAMR signals : Observed

    Magnetoresistance in BSTS devices at 300 K

    Device A

    15/25

  • Disappearance of the rectangular signals : 150~200 K

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0 50 100 150 200 250 300R i

    nt_2

    ()

    Temp. (K)

    Device B I =-100 mA

    16/25Magnetoresistance in BSTS devices at 300 K

  • Magnetoresistance in BSTS devices at 300 K

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0 50 100 150 200 250 300R i

    nt_2

    ()

    Temp. (K)

    Device B I =-100 mA

    0.0

    1.0 10-2

    2.0 10-2

    3.0 10-2

    0 100 200 300

    BST

    S(cm)

    Temperature (K)

    BSTSt = 45 nm

    BSTSt = 58 nm

    "#$# @4.2"#$# @300

    = 1.07~1.43

    Considerable surface conduction at 300 K.

    "#$# @8"#$# @300

    = 10~100

    Y. Ando JPSJ 82, 102001 (2013).

    Several mm thick BSTS

    16/25

  • 0

    0.005

    0.01

    0.015

    0.02

    0.025

    0.03

    250

    300

    350

    400

    0 50 100 150 200 250 300R i

    nt_2

    () R

    channel ()

    Temp. (K)

    Magnetoresistance in BSTS devices at 300 K

    Device B I =-100 mA

    0.0

    1.0 10-2

    2.0 10-2

    3.0 10-2

    0 100 200 300

    BST

    S(cm)

    Temperature (K)

    BSTSt = 45 nm

    BSTSt = 58 nm

    "#$# @4.2"#$# @300

    = 1.07~1.43

    Considerable surface conduction at 300 K.

    16/25

  • Spin-charge coupled transport equations

    Spin drift-diffusion equations with spin-momentum locking

    =

    7 + 2

    >

    =27>

    7 +327>

    7 + 7A

    >

    + >

    A

    =27A

    7 +327A

    7 + 7>

    A

    + A

    17/25

  • Assuming dSx/dy=0,dSy/dy=0

    Boundary conditions

    Spin density along x direction

    Spin-charge coupled transport equations

    77 + 2

    A

    = 0327A

    7 A

    + = 0

    |>GI/7 =

    32A

    |>GMI/7 =

    A

    |>GI/7 = 0

    A =P

    23 2 / 3/2 2/ 3/2

    2P

    18/25

  • 72

    =47P

    Charge current

    Spin dependent voltagedue to spin momentum locking

    Spin-charge coupled transport equations

    =1

    P`

    =27P

    +47P

    I/7

    MI/7

    7= 7

    451.94

    451.98

    452.02

    452.06

    452.10

    -1000 0 1000Magnetic Field (Oe)

    R int

    .2 (

    )

    0.04W

    4.2 K Device A

    7

    19/25

  • 72

    =47P

    Charge current

    Bias current dependence of the spin signal

    7= 7 4.2 K

    Device B

    -2 10-5

    -1 10-5

    0

    1 10-5

    2 10-5

    -100 0 100I ( A)

    V 2 (V

    )

    19/25

    Spin dependent voltagedue to spin momentum locking

    =1

    P`

    =27P

    +47P

    I/7

    MI/7

  • 10010-6 [A=C/s] 1.0510-34 [Js=CVs]

    Spin polarization of injected current

    1.6010-19 [C] 0.05~0.1 -1 from ARPES(S. Kim et al., Phys. Rev. Lett. 112, 136802 (2014).)

    Width of TI channel2000 [nm] =2104 []

    This study: 2V=440mV=0.05~0.5%

    Magnetoresistance

    Estimation of spin injection and extraction efficiencies

    =1

    P`

    =27P

    +47P

    I/7

    MI/7

    20/25

    72

    =47P

  • Charge current through the bottom surface

    I

    BSTS

    21/31

    Charge current through the bottom surface

  • -0.08-0.06-0.04-0.02

    00.020.040.060.08

    -4 10-5 -2 10-5 0 2 10-5 4 10-5

    2-35-6

    Vol

    tage

    (V)

    Current(A)

    4.2 K

    II +-

    BSTS

    I IVV1 2 3 4 5 6

    Path 1Path 2

    Charge current through the bottom surface

    Path 1

    Path 2

    21/31

    I

    BSTS

    Charge current through the bottom surface

  • = bd(1 ( + P) + P))

    1 7

    +jMk + MMk P +

    4d(P )1 7

    Mk + Mk P P +

    4d( )1 7

    4 n

    (in TI) = jMkrs + + d,

    = MMkrs + + d ,

    (in Py) u =

    MkMrsw + + ,

    u =

    MkMrsw + + ,

    One dimensional spin drift-diffusion model

    Effect of the interface resistance on the spin injection efficiency

    m

    z

    z

    m

    Py BSTS 22/25

  • 10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    10-16 10-14 10-12 10-10

    R 2 (

    )

    Resistance area ( m2)

    Effect of the interface resistance on the spin injection efficiency

    sPy= 2.50 W-1mm-1ssur_iTI = 2.3210-2 W-1mm-1PF = 0.5 %

    23/25Saturation region

  • 10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    10-16 10-14 10-12 10-10

    R 2 (

    )

    Resistance area ( m2)

    Effect of the interface resistance on the spin injection efficiency

    sPy= 2.50 W-1mm-1ssur_iTI = 2.3210-2 W-1mm-1PF = 0.5 %

    Saturation region 23/25

    The conductance mismatch problem is not crucial issue.

  • Possible origin of the low spin injection efficiency

    Unoptimized spin injection and extraction geometry

    Low quality Py/TI interface (e.g. Intermixing TI and FM)

    Carrier momentum change Spin angular momentum change??

    TI

    Insertion of MgO or Al2O3 tunnel barrier Improvement of device fabrication procedure

    e.g., Ferromagnetic materials,Low temperature deposition

    Py

    24/25

    TI Py

  • 177.2

    177.4

    177.6

    -400 -200 0 200 400Magnetic Field (Oe)

    R int

    .2 (

    )Summary

    We have demonstrated the electrical injection and extraction of the spinpolarized current due to spin-momentum locking of bulk-insulatingtopological insulator Bi1.5Sb0.5Te1.7Se1.3

    102.5

    102.54

    102.58

    102.62

    102.66

    -1000 -500 0 500 1000Magnetic Field (Oe)

    R 2 (

    )

    4.2 K4.2 K

    Y. Ando et al., Nano Lett. 14, 6226(2014).

    Bi1.5Sb0.5Te1.7Se1.3 Bi2Se3

    25/25

    Local magnetoresistance Spin injection/extraction efficiency: 0.05~0.5%

    (BSTS>>Bi2Se3) Detectable temperature: 4.2~200 K

  • =y=

    y7

    47P= 16.7%

    Spin Polarization in TI

    y = 100

    =110M| 210M}[]

    = 50[AMk]

    y =1.610Mk 0.17[]4 6.5810Mk} 7 []

    = 300[AMk]

  • -4

    0

    4

    -400 -200 0 200 400

    Vol

    tage

    (V

    )

    Magnetic field(Oe)

    -4

    0

    4

    -400 -200 0 200 400

    Vol

    tage

    (V

    )

    Magnetic field(Oe)

    4.2 K

    I =1 mA I =-1 mA

    4.2 K

    1 2 3 4

    VI

    -+

    +-

    Spin accumulation measurements

  • -0.08-0.06-0.04-0.02

    00.020.040.060.08

    -4 10-5 -2 10-5 0 2 10-5 4 10-5

    2-35-6

    Vol

    tage

    (V)

    Current(A)

    4.2 K

    II +-

    BSTS

    I IVV1 2 3 4 5 6

    Disconnected

    TI PyI-V

    Path 1Path 2

    1 m

    Au/Cr

    TI

    Py

    SiO2

    H

    I Vmeas2 1 3

    xz

    y

    No electric conduction

    Charge current through the bottom and side surface

    Path 1

    Path 2

  • 4.2 K

    Bias current dependence of DV2

    A linear relationship between DV2 vs I

    4.2 KDevice B Device D

    -2 10-5

    -1 10-5

    0

    1 10-5

    2 10-5

    -100 0 100I ( A)

    V 2 (V

    )

    -4 10-6

    0

    4 10-6

    -200 -100 0 100 200I ( A)

    V 2 (V

    )

  • 102.5

    102.54

    102.58

    102.62

    102.66

    -1000 -500 0 500 1000Magnetic Field (Oe)

    R 2 (

    )

    102.16

    102.2

    102.24

    102.28

    102.32

    -1000 -500 0 500 1000Magnetic Field (Oe)

    R 2 (

    )

    116.5

    116.54

    116.58

    116.62

    116.66

    -1000 -500 0 500 1000Magnetic Field (Oe)

    R 2 (

    )

    116.06

    116.1

    116.14

    116.18

    116.22

    -1000 -500 0 500 1000Magnetic Field (Oe)

    R 2 (

    )

    R2-H curves of Bi2Se3 devices

    4.2 K4.2 K

    I =100 mA I =-100 mA

    0.04W

    0.04W 0.04W

    0.04W

    300 K300 K

    No rectangular hysteresis signals

  • Charge circuit Voltage measurement

    N M N MF M N M

    T I

    Charge circuit Voltage measurement

    N M N MF M

    T I

    Charge circuitVoltage measurement

    N M F M

    T I

    (b) Nonlocal magnetoresistance

    (c) Three terminal local (This study)

    (a) Local magnetoresistance

    Magnetoresistance

    Spin voltage

    Magnetoresistance

  • (a)

    0

    0.005

    0.01

    0.015

    0.02

    0.025

    -400 -200 0 200 400EG (MV/m)

    R int

    . ()

    77.64

    77.66

    77.68

    77.7

    -400 -200 0 200 400Magnetic field (Oe)

    R int

    . ()

    I = 100 ATemp. = 100 KEG= 0 MV/m

    (b)

  • 840.5

    841.0

    841.5

    842.0

    842.5

    -400 0 400

    R int

    .2 (

    )

    Magnetic field (Oe)

    I =50 mA

    0.5 W

    4.2 K

    0

    0.2

    0.4

    0.6

    0 100 200 300

    R int

    .2 (

    )

    Temperature (K)

    I =50 mA

    Temperature dependence of DR2 (Device B)

    Rectangular hysteresis signals disappeared at 150 K

  • High charge current density ( > 100 ~ 1000 mA)Large interface and channel resistances

    A technical issue

    The TI devices were easily broken.

    Au/Cr Py Au/Cr Py

  • Spurious effects expected in FM/TI devices

    Anisotropic Magnetoresistance (AMR) Planar Hall effect (PHE) Anomalous Hall effects (AHE) Lorenz MR Tunneling Anisotropic Magnetoresistance (TAMR)

    Magnetization & charge current

    Anomalous Nernst effects (ANE) Spin Seebeck effect (SSE)

    .etc

    Magnetization & Thermal gradient

    A strong TI dependence and temperature dependence of therectangular signals cannot be explained as a result of thespurious effects.

  • Spurious effects expected in FM/TI devices

    Anisotropic Magnetoresistance(AMR)

    IMrM//I rMI

    Planar Hall effect (PHE)V0

    Anomalous Hall effect (AHE)V0

    Difference betweenBS and BSTS devices?????

  • Spurious effects expected in FM/TI devices

    Lorenz MR

    Tunneling Anisotropic Magnetoresistance (TAMR)

    Stray field

    Disappearance of the rectangular signals at 300 K &Clear AMR signals at 300K ???

    Discrepancy between AMR signals and Rectangular signals ??

    Origin: An anisotropic density of states[C. Gould et al., PRL 93, 117203(2004).]

    Interference of Rashba and Dresselhausspin-orbit interactions[L. Moser et al., PRL 99, 056601(2007).]

  • Low spin injection efficiency (=0.0005~0.005)

    E. Villamor Phys. Rev. B 88, 184411 (2013).

    Spin polarization of Py

    Py/metal interface 0.2~0.4

    Small temperature dependence

    Possible origin of the low spin injection efficiency

  • = bd(1 ( + P) + P))

    1 7

    +jMk + MMk P +

    4d(P )1 7

    Mk + Mk P P +

    4d( )1 7

    4 Mk + Mk + Mk + Mk P +

    4d1 7

    n

    (in TI) = jMkrs + + d,

    = MMkrs + + d ,

    (in Py) u =

    MkMrsw + + ,

    u =

    MkMrsw + + ,

    One dimensional spin drift-diffusion model

    Possible origin of the low spin injection efficiency

  • Nonlocal magnetoresistance

    I

    I

    Local magnetoresistance

    FM

    NM FM NM

    NM NM

    Bulk-metallic TI

    Bulk-metallic TI

    I

    FMNM NM

    I

    NM FM NM

    Bulk-insulating TI

    Bulk-insulating TI

    610-3 [A/mm-2]

    30 nm

    x

    z300 nm

    10 nm500 nm

    2000 nmTI

    Nonmagnetic metal (NM)Ferromagnetic metal (FM)

    4

    2

    0

    -2

    3 nm

    TI surface

    TI bulk

  • BS Local Current : z-directionI

    BSTS Local Current : z-directionI

  • BS Non local Current : z-directionI

    BSTS Non local Current : z-directionI

  • BSTS Local Current : x-direction real scale