671

Click here to load reader

Control and Mechatronics

Embed Size (px)

DESCRIPTION

Industrial Electronics Handbook

Citation preview

  • The Industrial Electronics HandbookS E c o n d E d I T I o n

    control and mechatronIcs

    Edited by

    Bogdan M. WilamowskiJ. david Irwin

    2011 by Taylor and Francis Group, LLC

  • MATLAB is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This books use or discussion of MATLAB software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB software.

    CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487-2742

    2011 by Taylor and Francis Group, LLCCRC Press is an imprint of Taylor & Francis Group, an Informa business

    No claim to original U.S. Government works

    Printed in the United States of America on acid-free paper10 9 8 7 6 5 4 3 2 1

    International Standard Book Number: 978-1-4398-0287-8 (Hardback)

    This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

    Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

    For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

    Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

    Library of Congress CataloginginPublication Data

    Control and mechatronics / editors, Bogdan M. Wilamowski and J. David Irwin.p. cm.

    A CRC title.Includes bibliographical references and index.ISBN 978-1-4398-0287-8 (alk. paper)1. Mechatronics. 2. Electronic control. 3. Servomechanisms. I. Wilamowski, Bogdan M. II. Irwin,

    J. David. III. Title.

    TJ163.12.C67 2010629.8043--dc22 2010020062

    Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.comand the CRC Press Web site athttp://www.crcpress.com

    2011 by Taylor and Francis Group, LLC

  • vii

    Contents

    Preface....................................................................................................................... xiAcknowledgments................................................................................................... xiiiEditorial.Board..........................................................................................................xvEditors..................................................................................................................... xviiContributors............................................................................................................ xxi

    Part I Control System analysis

    . 1. Nonlinear.Dynamics........................................................................................1-1Istvn Nagy and Zoltn Sto

    . 2. Basic.Feedback.Concept.................................................................................. 2-1Tong Heng Lee, Kok Zuea Tang, and Kok Kiong Tan

    . 3. Stability.Analysis............................................................................................. 3-1Naresh K. Sinha

    . 4. Frequency-Domain.Analysis.of.Relay.Feedback.Systems.............................. 4-1Igor M. Boiko

    . 5. Linear.Matrix.Inequalities.in.Automatic.Control......................................... 5-1Miguel Bernal and Thierry Marie Guerra

    . 6. Motion.Control.Issues..................................................................................... 6-1Roberto Oboe, Makoto Iwasaki, Toshiyuki Murakami, and Seta Bogosyan

    . 7. New.Methodology.for.Chatter.Stability.Analysis.in.Simultaneous.Machining........................................................................................................7-1Nejat Olgac and Rifat Sipahi

    Part II Control System Design

    . 8. Internal.Model.Control................................................................................... 8-1James C. Hung

    . 9. Dynamic.Matrix.Control................................................................................ 9-1James C. Hung

    2011 by Taylor and Francis Group, LLC

  • viii Contents

    .10. PID.Control....................................................................................................10-1James C. Hung and Joel David Hewlett

    .11. Nyquist.Criterion........................................................................................... 11-1James R. Rowland

    .12. Root.Locus.Method........................................................................................12-1Robert J. Veillette and J. Alexis De Abreu Garcia

    .13. Variable.Structure.Control.Techniques.........................................................13-1Asif abanovic and Nadira abanovic-Behlilovic

    .14. Digital.Control...............................................................................................14-1Timothy N. Chang and John Y. Hung

    .15. Phase-Lock-Loop-Based.Control...................................................................15-1Guan-Chyun Hsieh

    .16. Optimal.Control.............................................................................................16-1Victor M. Becerra

    .17. Time-Delay.Systems....................................................................................... 17-1Emilia Fridman

    .18. AC.Servo.Systems...........................................................................................18-1Yong Feng, Liuping Wang, and Xinghuo Yu

    .19. Predictive.Repetitive.Control.with.Constraints...........................................19-1Liuping Wang, Shan Chai, and Eric Rogers

    .20. Backstepping.Control.....................................................................................20-1Jing Zhou and Changyun Wen

    .21. Sensors............................................................................................................ 21-1Tiantian Xie and Bogdan M. Wilamowski

    .22. Soft.Computing.Methodologies.in.Sliding.Mode.Control............................22-1Xinghuo Yu and Okyay Kaynak

    Part III Estimation, Observation, and Identification

    .23. Adaptive.Estimation.......................................................................................23-1Seta Bogosyan, Metin Gokasan, and Fuat Gurleyen

    .24. Observers.in.Dynamic.Engineering.Systems................................................24-1Christopher Edwards and Chee Pin Tan

    .25. Disturbance.ObservationCancellation.Technique......................................25-1Kouhei Ohnishi

    .26. Ultrasonic.Sensors.........................................................................................26-1Lindsay Kleeman

    .27. Robust.Exact.Observation.and.Identification.via.High-Order.Sliding.Modes............................................................................................................. 27-1Leonid Fridman, Arie Levant, and Jorge Angel Davila Montoya

    2011 by Taylor and Francis Group, LLC

  • Contents ix

    Part IV Modeling and Control

    .28. Modeling.for.System.Control.........................................................................28-1A. John Boye

    .29. Intelligent.Mechatronics.and.Robotics..........................................................29-1Satoshi Suzuki and Fumio Harashima

    .30. State-Space.Approach.to.Simulating.Dynamic.Systems.in.SPICE................30-1Joel David Hewlett and Bogdan M. Wilamowski

    .31. Iterative.Learning.Control.for.Torque.Ripple.Minimization.of.Switched.Reluctance.Motor.Drive................................................................................. 31-1Sanjib Kumar Sahoo, Sanjib Kumar Panda, and Jian-Xin Xu

    .32. Precise.Position.Control.of.Piezo.Actuator...................................................32-1Jian-Xin Xu and Sanjib Kumar Panda

    .33. Hardware-in-the-Loop.Simulation................................................................33-1Alain Bouscayrol

    Part V Mechatronics and robotics

    .34. Introduction.to.Mechatronic.Systems...........................................................34-1Ren C. Luo and Chin F. Lin

    .35. Actuators.in.Robotics.andAutomation.Systems...........................................35-1Choon-Seng Yee and Marcelo H. Ang Jr.

    .36. Robot.Qualities..............................................................................................36-1Raymond Jarvis

    .37. Robot.Vision................................................................................................... 37-1Raymond Jarvis

    .38. Robot.Path.Planning......................................................................................38-1Raymond Jarvis

    .39. Mobile.Robots.................................................................................................39-1Miguel A. Salichs, Ramn Barber, and Mara Malfaz

    Index.................................................................................................................. Index-1

    2011 by Taylor and Francis Group, LLC

  • xi

    Preface

    The.field.of.industrial.electronics.covers.a.plethora.of.problems.that.must.be.solved.in.industrial.prac-tice..Electronic.systems.control.many.processes.that.begin.with.the.control.of.relatively.simple.devices.like.electric.motors,.through.more.complicated.devices.such.as.robots,.to.the.control.of.entire.fabrica-tion.processes..An.industrial.electronics.engineer.deals.with.many.physical.phenomena.as.well.as.the.sensors.that.are.used.to.measure.them..Thus,.the.knowledge.required.by.this.type.of.engineer.is.not.only.traditional.electronics.but.also.specialized.electronics,.for.example,.that.required.for.high-power.appli-cations..The.importance.of.electronic.circuits.extends.well.beyond.their.use.as.a.final.product.in.that.they.are.also.important.building.blocks.in.large.systems,.and.thus.the.industrial.electronics.engineer.must.also.possess.knowledge.of.the.areas.of.control.and.mechatronics..Since.most.fabrication.processes.are.relatively.complex,.there.is.an.inherent.requirement.for.the.use.of.communication.systems.that.not.only.link.the.various.elements.of.the.industrial.process.but.are.also.tailor-made.for.the.specific.indus-trial.environment..Finally,.the.efficient.control.and.supervision.of.factories.require.the.application.of.intelligent.systems.in.a.hierarchical.structure.to.address.the.needs.of.all.components.employed.in.the.production.process..This.need. is.accomplished. through. the.use.of. intelligent.systems.such.as.neural.networks,.fuzzy.systems,.and.evolutionary.methods..The.Industrial.Electronics.Handbook.addresses.all.these.issues.and.does.so.in.five.books.outlined.as.follows:

    . 1.. Fundamentals of Industrial Electronics

    . 2.. Power Electronics and Motor Drives

    . 3.. Control and Mechatronics

    . 4.. Industrial Communication Systems

    . 5.. Intelligent Systems

    The.editors.have.gone.to.great.lengths.to.ensure.that.this.handbook.is.as.current.and.up.to.date.as.pos-sible..Thus,.this.book.closely.follows.the.current.research.and.trends.in.applications.that.can.be.found.in.IEEE Transactions on Industrial Electronics..This.journal.is.not.only.one.of.the.largest.engineering.pub-lications.of.its.type.in.the.world.but.also.one.of.the.most.respected..In.all.technical.categories.in.which.this.journal.is.evaluated,.its.worldwide.ranking.is.either.number.1.or.number.2..As.a.result,.we.believe.that.this.handbook,.which.is.written.by.the.worlds.leading.researchers.in.the.field,.presents.the.global.trends.in.the.ubiquitous.area.commonly.known.as.industrial.electronics.

    The.successful.construction.of.industrial.systems.requires.an.understanding.of.the.various.aspects.of.control.theory..This.area.of.engineering,.like.that.of.power.electronics,.is.also.seldom.covered.in.depth.in.engineering.curricula.at.the.undergraduate.level..In.addition,.the.fact.that.much.of.the.research.in.control.theory.focuses.more.on.the.mathematical.aspects.of.control.than.on.its.practical.applications.makes.matters.worse..Therefore,.the.goal.of.Control and Mechatronics.is.to.present.many.of.the.concepts.of.control.theory.in.a.manner.that.facilitates.its.understanding.by.practicing.engineers.or.students.who.would.like.to.learn.about.the.applications.of.control.systems..Control and Mechatronics.is.divided.into.several.parts..Part.I.is.devoted.to.control.system.analysis.while.Part.II.deals.with.control.system.design..

    2011 by Taylor and Francis Group, LLC

  • xii Preface

    Various.techniques.used.for.the.analysis.and.design.of.control.systems.are.described.and.compared.in.these.two.parts..Part.III.deals.with.estimation,.observation,.and.identification.and.is.dedicated.to.the.identification.of.the.objects.to.be.controlled..The.importance.of.this.part.stems.from.the.fact.that. in.order.to.efficiently.control.a.system,.it.must.first.be.clearly.identified..In.an.industrial.environment,.it.is.difficult.to.experiment.with.production.lines..As.a.result,.it.is.imperative.that.good.models.be.developed.to.represent.these.systems..This.modeling.aspect.of.control.is.covered.in.Part.IV..Many.modern.factories.have.more.robots.than.humans..Therefore,.the.importance.of.mechatronics.and.robotics.can.never.be.overemphasized..The.various.aspects.of.robotics.and.mechatronics.are.described.in.Part.V..In.all.the.material.that.has.been.presented,.the.underlying.central.theme.has.been.to.consciously.avoid.the.typical.theorems.and.proofs.and.use.plain.English.and.examples.instead,.which.can.be.easily.understood.by.students.and.practicing.engineers.alike.

    For.MATLAB.and.Simulink.product.information,.please.contact

    The.MathWorks,.Inc.3.Apple.Hill.DriveNatick,.MA,.01760-2098.USATel:.508-647-7000Fax:.508-647-7001E-mail:[email protected]:.www.mathworks.com

    2011 by Taylor and Francis Group, LLC

  • I-1

    IControl System Analysis 1 Nonlinear Dynamics Istvn Nagy and Zoltn Sto...........................................................1-1

    Introduction. . Basics. . Equilibrium.Points. . Limit.Cycle. . Quasi-Periodic.and.Frequency-Locked.State. . Dynamical.Systems.Described.by.Discrete-Time.Variables:.Maps. . Invariant.Manifolds:.Homoclinic.and.Heteroclinic.Orbits. . Transitions.to.Chaos. . Chaotic.State. . Examples.from.Power.Electronics. . Acknowledgments. . References

    2 Basic Feedback Concept Tong Heng Lee, Kok Zuea Tang, and Kok Kiong Tan.............2-1Basic.Feedback.Concept. . Bibliography

    3 Stability Analysis Naresh K. Sinha.......................................................................................3-1Introduction. . States.of.Equilibrium. . Stability.of.Linear.Time-Invariant.Systems. . Stability.of.Linear.Discrete-Time.Systems. . Stability.of.Nonlinear.Systems. . References

    4 Frequency-Domain Analysis of Relay Feedback Systems Igor M. Boiko......................4-1RelayFeedback.Systems. . Locus.of.a.Perturbed.Relay.System.Theory. . Design.ofCompensating.Filters.in.Relay.Feedback.Systems. . References

    5 Linear Matrix Inequalities in Automatic Control Miguel Bernal and Thierry Marie Guerra................................................................................................................................5-1What.Are.LMIs?. . What.Are.LMIs.Good.For?. . References

    6 Motion Control Issues Roberto Oboe, Makoto Iwasaki, Toshiyuki Murakami, and Seta Bogosyan........................................................................................................................6-1Introduction. . High-Accuracy.Motion.Control. . Motion.Control.and.Interaction.withthe.Environment. . Remote.Motion.Control. . Conclusions. . References

    7 New Methodology for Chatter Stability Analysis in Simultaneous Machining Nejat Olgac and Rifat Sipahi..............................................................................7-1Introduction.and.a.Review.of.Single.Tool.Chatter. . Regenerative.Chatter.in.Simultaneous.Machining. . CTCR.Methodology. . Example.Case.Studies. . Optimization.of.the.Process. . Conclusion. . Acknowledgments. . References

    2011 by Taylor and Francis Group, LLC

  • 1-1

    1.1 Introduction

    A.new.class.of.phenomena.has.recently.been.discovered.three.centuries.after.the.publication.of.Newtons Principia.(1687).in.nonlinear.dynamics..New.concepts.and.terms.have.entered.the.vocabulary.to.replace.time. functions. and. frequency. spectra. in. describing. their. behavior,. e.g.,. chaos,. bifurcation,. fractal,.Lyapunov.exponent,.period.doubling,.Poincar.map,.and.strange.attractor.

    Until.recently,.chaos.and.order.have.been.viewed.as.mutually.exclusive..Maxwells.equations.gov-ern.the.electromagnetic.phenomena;.Newtons.laws.describe.the.processes.in.classical.mechanics,.etc..

    1Nonlinear Dynamics

    1.1. Introduction....................................................................................... 1-11.2. Basics................................................................................................... 1-2

    Classification. . Restrictions. . Mathematical.Description1.3. Equilibrium.Points............................................................................ 1-5

    Introduction. . Basin.of.Attraction. . Linearizing.around.theEP. . Stability. . Classification.of.EPs,.Three-Dimensional.StateSpace.(N.=.3). . No-Intersection.Theorem

    1.4. Limit.Cycle.......................................................................................... 1-9Introduction. . Poincar.Map.Function.(PMF). . Stability

    1.5. Quasi-Periodic.and.Frequency-Locked.State.............................. 1-12Introduction. . Nonlinear.Systems.with.Two.Frequencies. . .Geometrical.Interpretation. . N-Frequency.Quasi-Periodicity

    1.6. Dynamical.Systems.Described.by.Discrete-Time.Variables:Maps.................................................................................1-14Introduction. . Fixed.Points. . MathematicalApproach. . .Graphical.Approach. . Study.of.Logistic.Map. .Stability.of.Cycles

    1.7. Invariant.Manifolds:.Homoclinic.and.Heteroclinic.Orbits...... 1-21Introduction. . Invariant.Manifolds,.CTM. . Invariant.Manifolds,.DTM. . Homoclinic.and.Heteroclinic.Orbits,.CTM

    1.8. Transitions.to.Chaos....................................................................... 1-24Introduction. . Period-Doubling.Bifurcation. . Period-Doubling.Scenario.in.General

    1.9. Chaotic.State..................................................................................... 1-26Introduction. . Lyapunov.Exponent

    1.10. Examples.from.Power.Electronics................................................ 1-27Introduction. . High-Frequency.Time-Sharing.Inverter. . Dual.Channel.Resonant.DCDC.Converter. . Hysteresis.Current-Controlled.Three-Phase.VSC. . Space.Vector.Modulated.VSC.withDiscrete-Time.Current.Control. . Direct.Torque.Control

    Acknowledgments....................................................................................... 1-41References..................................................................................................... 1-41

    Istvn NagyBudapestUniversityofTechnologyandEconomics

    Zoltn StoBudapestUniversityofTechnologyandEconomics

    2011 by Taylor and Francis Group, LLC

  • 1-2 ControlandMechatronics

    They.represent.the.world.of.order,.which.is.predictable..Processes.were.called.chaotic.when.they.failed.to.obey.laws.and.they.were.unpredictable..Although.chaos.and.order.have.been.believed.to.be.quite.distinct.faces.of.our.world,.there.were.tricky.questions.to.be.answered..For.example,.knowing.all.the.laws.governing.our.global.weather,.we.are.unable.to.predict.it,.or.a.fluid.system.can.turn.easily.from.order.to.chaos,.from.laminar.flow.into.turbulent.flow.

    It.came.as.an.unexpected.discovery.that.deterministic.systems.obeying.simple.laws.belonging.undoubt-edly.to.the.world.of.order.and.believed.to.be.completely.predictable.can.turn.chaotic..In.mathematics,.the.study.of.the.quadratic.iterator.(logistic.equation.or.population.growth.model).[xn+1.=.axn(1..xn),.n.=.0,.1,.2,.].revealed.the.close.link.between.chaos.and.order.[5]..Another.very.early.example.came.from.the.atmospheric.science.in.1963;.Lorenzs.three.differential.equations.derived.from.the.NavierStokes.equa-tions.of.fluid.mechanics.describing.the.thermally.induced.fluid.convection.in.the.atmosphere,.Peitgen.etal..[9]..They.can.be.viewed.as.the.two.principal.paradigms.of.the.theory.of.chaos..One.of.the.first.cha-otic.processes.discovered.in.electronics.can.be.shown.in.diode.resonator.consisting.of.a.series.connection.of.a.pn.junction.diode.and.a.10100.mH.inductor.driven.by.a.sine.wave.generator.of.50100.kHz.

    The.chaos.theory,.although.admittedly.still.young,.has.spread.like.wild.fire.into.all.branches.of.sci-ence..In.physics,.it.has.overturned.the.classic.view.held.since.Newton.and.Laplace,.stating.that.our.uni-verse.is.predictable,.governed.by.simple.laws..This.illusion.has.been.fueled.by.the.breathtaking.advances.in.computers,.promising.ever-increasing.computing.power.in.information.processing..Instead,.just.the.opposite.has.happened..Researchers.on.the.frontier.of.natural.science.have.recently.proclaimed.that.this.hope. is.unjustified.because.a. large.number.of.phenomena.in.nature.governed.by.known.simple. laws.are.or.can.be.chaotic..One.of.their.principle.properties.is.their.sensitive.dependence.on.initial.condi-tions..Although.the.most.precise.measurement.indicates.that.two.paths.have.been.launched.from.the.same.initial.condition,.there.are.always.some.tiny,.impossible-to-measure.discrepancies.that.shift.the.paths.along.very.different.trajectories..The.uncertainty. in.the. initial.measurements.will.be.amplified.and.become.overwhelming.after.a.short.time..Therefore,.our.ability.to.predict.accurately.future.develop-ments.is.unreasonable..The.irony.of.fate.is.that.without.the.aid.of.computers,.the.modern.theory.of.chaos.and.its.geometry,.the.fractals,.could.have.never.been.developed.

    The.theory.of.nonlinear.dynamics.is.strongly.associated.with.the.bifurcation.theory..Modifying.the.parameters.of.a.nonlinear.system,.the.location.and.the.number.of.equilibrium.points.can.change..The.study.of.these.problems.is.the.subject.of.bifurcation.theory.

    The.existence.of.well-defined.routes.leading.from.order.to.chaos.was.the.second.great.discovery.and.again.a.big.surprise.like.the.first.one.showing.that.a.deterministic.system.can.be.chaotic.

    The.overview.of.nonlinear.dynamics.here.has. two.parts..The.main.objective. in. the.first.part. is. to.summarize. the. state. of. the. art. in. the. advanced. theory. of. nonlinear. dynamical. systems.. Within. the.overview,.five.basic.states.or.scenario.of.nonlinear.systems.are.treated:.equilibrium.point,.limit.cycle,.quasi-periodic. (frequency-locked).state,. routes. to.chaos,.and.chaotic.state..There.will.be.some.words.about.the.connection.between.the.chaotic.state.and.fractal.geometry.

    In.the.second.part,.the.application.of.the.theory.is.illustrated.in.five.examples.from.the.field.of.power.elec-tronics..They.are.as.follows:.high-frequency.time-sharing.inverter,.voltage.control.of.a.dual-channel.resonant.DCDC.converter,.and.three.different.control.methods.of.the.three-phase.full.bridge.voltage.source.DCAC/ACDC.converter,.a.sophisticated.hysteresis.current.control,.a.discrete-time.current.control.equipped.with.space.vector.modulation.(SVM).and.the.direct.torque.control.(DTC).applied.widely.in.AC.drives.

    1.2 Basics

    1.2.1 Classification

    The. nonlinear. dynamical. systems. have. two. broad. classes:. (1). autonomous systems. and. (2). non-autonomous systems..Both.are.described.by.a.set.of.first-order.nonlinear.differential.equations.and.can.be.represented.in.state.(phase).space..The.number.of.differential.equations.equals.the.degree of freedom.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-3

    (ordimension).of.the.system,.which.is.the.number.of.independent.state.variables.needed.to.determine.uniquely.the.dynamical.state.of.the.system.

    1.2.1.1 autonomous Systems

    There.are.no.external.input.or.forcing.functions.applied.to.the.system..The.set.of.nonlinear.differential.equations.describing.the.system.is

    .ddtx v f x= = ,( )m

    .(1.1)

    wherexvT

    NT

    N

    x x xv v v

    =

    =

    [ , , , ][ , , ]

    1 2

    1 2

    is the state vectoris the velocity vvectoris the nonlinear vector functionf T N

    Tf f f=

    =

    [ , , ][ ,

    1 2

    1 2

    m ,, ]NTt

    is the parameter vectordenotes the transpose of a vectoris tthe timeis the dimension of the systemN

    The.time.t.does.not.appear.explicitly.

    1.2.1.2 Non-autonomous Systems

    Time-dependent.external.inputs.or.forcing.functions.u(t).are.applied.to.the.system..It.is.a.set.of.nonlin-ear.differential.equations:

    .ddt

    tx v f x u= = , ,( ( ) )m.

    (1.2)

    Time.t.explicitly.appears.in.u(t)..(1.1).and.(1.2).can.be.solved.analytically.or.numerically.for.a.given.ini-tial.condition.x0.and.parameter.vector...The.solution.describes.the.state.of.the.system.as.a.function.of.time..The.solution.can.be.visualized.in.a.reference.frame.where.the.state.variables.are.the.coordinates..It.is.called.the.state space.or.phase space..At.any.instant,.a.point.in.the.state.space.represents.the.state.of.the.system..As.the.time.evolves,.the.state.point.is.moving.along.a.path.called.trajectory.or.orbit.starting.from.the.initial.condition.

    1.2.2 restrictions

    The.non-autonomous.system.can.always.be.transformed.to.autonomous.systems.by.introducing.a.new.state.variable.xN+1.=.t..Now.the.last.differential.equation.in.(1.1).is

    .dxdt

    dtdt

    N += =

    1 1.

    (1.3)

    The.number.of.dimensions.of.the.state.space.was.enlarged.by.one.by.including.the.time.as.a.state.vari-able..From.now.on,.we.confine.our.consideration.to.autonomous.systems.unless.it.is.stated.otherwise..By.this.restriction,.there.is.no.loss.of.generality.

    2011 by Taylor and Francis Group, LLC

  • 1-4 ControlandMechatronics

    The.discussion.is.confined.to.real,.dissipative.systems..As.time.evolves,.the.state.variables.will.head.for.some.final.point,.curve,.area,.or.whatever.geometric.object.in.the.state.space..They.are.called.the.attractor.for.the.particular.system.since.certain.dedicated.trajectories.will.be.attracted.to.these.objects..We.focus.our.considerations.on.the.long-term.behavior.of.the.system.rather.than.analyzing.the.start-up.and.transient.processes.

    The.trajectories.are.assumed.to.be.bounded.as.most.physical.systems.are..They.cannot.go.to.infinity.

    1.2.3 Mathematical Description

    Basically,.two.different.concepts.applying.different.approaches.are.used..The.first.concept.considers.all.the.state.variables.as.continuous.quantities.applying.continuous-time.model.(CTM)..As.time.evolves,.the.system.behavior.is.described.by.a.moving.point. in.state.space.resulting.in.a.trajectory.(or.flow).obtained.by.the.solution.of.the.set.of.differential.equations.(1.1).[or.(1.2)]..Figure.1.1.shows.the.continu-ous.trajectory.of.function.(x0,.t,.).for.three-dimensional.system,.where.x0.is.the.initial.point..The.second.concept.takes.samples.from.the.continuously.changing.state.variables.and.describes.the.system.behavior.by.discrete.vector.function.applying.the.Poincar concept..Figure.1.1.shows.the.way.how.the.samples.are.taken.for.a.three-dimensional.autonomous.system..A.so-called.Poincar plane,.in.general.Poincar.section,.is.chosen.and.the.intersection.points.cut.by.the.trajectory.are.recorded.as.samples..The.selection.of.the.Poincar.plane.is.not.crucial.as.long.as.the.trajectory.cuts.the.surface.transversely..The.relation.between.xn.and.xn+1,.i.e.,.between.subsequent.intersection.points.generated.always.from.the.same.direction.are.described.by.the.so-called.Poincar.map.function.(PMF)

    . x P xn n+ =1 ( ) . (1.4)

    Pay.attention,.the.subscript.of.x.denotes.the.time.instant,.not.a.component.of.vector.x..The.Poincar.sec-tion.is.a.hyperplane.for.systems.with.dimension.higher.than.three,.while.it.is.a.point.and.a.straight.line.for.a.one-.and.a.two-dimensional.system,.respectively.

    For.a.non-autonomous.system.having.a.periodic.forcing.function,.the.samples.are.taken.at.a.definite.phase.of.the.forcing.function,.e.g.,.at.the.beginning.of.the.period..It.is.a.stroboscopic.sampling,.the.state.variables.for.a.mechanical.system.are.recorded.with.a.flash.lamp.fired.once.in.every.period.of.the.forc-ing.function.[8]..Again,.the.PMF.describes.the.relation.between.sampled.values.of.the.state.variables.

    Knowing.that.the.trajectories.are.the.solution.of.differential.equation.system,.which.are.unique.and.deterministic,.it.implies.the.existence.of.a.mathematical.relation.between.xn.and.xn+1,.i.e.,.the.existence.

    x3

    x2

    xn

    x0 x1

    xn+1=P(xn)

    Poincarplane

    Trajectory (x0, t, )

    FIGURE 1.1 Trajectory.described.by.(x0,. t,.)..xn,.xn+1. are. the. intersection.points.of. the. trajectory.with. the.Poincar.plane.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-5

    of.PMF..However,.the.discrete-time.equation.(1.4).can.be.solved.analytically.or.numerically.indepen-dent.of.the.differential.equation..In.the.second.concept,.the.discrete-time.model.(DTM).is.used.

    The.Poincar.section.reduces.the.dimensionality.of.the.system.by.one.and.describes.it.by.an.iterative,.finite-size.time.step.function.rather.than.a.differential,.infinitesimal.time.step..On.the.other.hand,.PMF.retains.the.essential.information.of.the.system.dynamics.

    Even.though.the.state.variables.are.changing.continuously.in.many.systems.like.in.power.electron-ics,.they.can.advantageously.be.modeled.by.discrete-iteration.function.(1.4)..In.some.other.cases,.the.system.is.inherently.discrete,.their.state.variables.are.not.changing.continuously.like.in.digital.systems.or.models.describing.the.evolution.of.population.of.species.

    1.3 Equilibrium Points

    1.3.1 Introduction

    The.nonlinear.world.is.much.more.colorful.than.the.linear.one..The.nonlinear.systems.can.be.in.various.states,.one.of.them.is.the.equilibrium point.(EP)..It.is.a.point.in.the.state.space.approached.by.the.trajec-tory.of.a.continuous,.nonlinear.dynamical.system.as.its.transients.decay..The.velocity.of.state.variables.v.=.x.is.zero.in.the.EP:

    .ddtx v f x= = , =( )m 0

    .(1.5)

    The. solution. of. the. nonlinear. algebraic. function. (1.5). can. result. in. more. than. one. EPs.. They. are.x x x x1 2* * * *, , , , k n, ..The.stable.EPs.are.attractors.

    1.3.2 Basin of attraction

    The.natural.consequence.of.the.existence.of.multiple.attractors.is.the.partition.of.state.space.into.dif-ferent. regions. called. basins of attractions.. Any. of. the. initial. conditions. within. a. basin. of. attraction.launches.a.trajectory.that.is.finally.attracted.by.the.particular.EP.belonging.to.the.basin.of.attraction.(Figure.1.2)..The.border.between.two.neighboring.basins.of.attraction.is.called.separatrix..They.organize.the.state.space.in.the.sense.that.a.trajectory.born.in.a.basin.of.attraction.will.never.leave.it.

    x2

    x1

    x3

    x*2

    x*1

    x*i

    x*2 (0)

    x*k (0)

    x*k

    Basins of attractions

    Linearizedregion byJacobianmatrix Jk

    FIGURE 1.2 Basins. of. attraction. and. their. EP. (N. =. 3).. x1,. x2,. and. x3. are. coordinates. of. the. state. space..vectorx..xk*.is.a.particular.value.of.state.space.vector.x,.xk*.denotes.an.EP,.and.xk(0).is.an.initial.condition.in.the.basin.of.attraction.of.xk*.

    2011 by Taylor and Francis Group, LLC

  • 1-6 ControlandMechatronics

    1.3.3 Linearizing around the EP

    Introducing. the.small.perturbation. = x x xk*,. (1.1).can.be. linearized. in. the.close.neighborhood.of.the.EP.xk* ..Now. f x x f x J x( * ) ( * )k k k+ = + +, ,m m ..Neglecting.the.terms.of.higher.order.than.x.and.substituting.it.back.to.(1.1):

    .ddt k

    = x v J x.

    (1.6)

    where

    .

    Jk

    N

    N

    N N

    fx

    fx

    fx

    fx

    fx

    fx

    fx

    fx

    f

    =

    1

    1

    1

    2

    1

    2

    1

    2

    2

    2

    1 2

    NN

    Nx

    .

    (1.7)

    is.the.Jacobian.matrix..The.partial.derivatives.have.to.be.evaluated.at. xk* ..f(x*,.).=.0.was.observed.in.(1.6)..Jk.is.a.real,.time-independent.N..N.matrix..Seeking.the.solution.of.(1.7).in.the.form

    . =x erte . (1.8)

    and.substituting.it.back.to.(1.6):

    . J e ek r r= . (1.9)

    Its.nontrivial.solution.for..must.satisfy.the.Nth.order.polynomial.equation

    . det( )J Ik = 0 . (1.10)

    where.I.is.the.N..N.identity.matrix..From.(1.6),.(1.8),.and.(1.9),

    . = =v J e ek rt

    rte e . (1.11)

    Selecting.the.direction.of.vector.x.in.the.special.way.given.by.(1.8),.i.e.,.its.change.in.time.depends.only.on.one.constant.,.it.has.two.important.consequences:

    . 1.. The.product.Jker.(=.er).only.results.in.the.expansion.or.contraction.of.er.by...The.direction.of.er.is.not.changed.

    . 2.. The.direction.of.the.perturbation.of.the.velocity.vector.v.will.be.the.same.as.that.of.vector.er .

    The.direction.of.er.is.called.characteristic.direction.and.er.is.the.right-hand.side.eigenvector.of.Jk.as.Jk.is.multiplied.from.the.right.by.er...is.the.eigenvalue.(or.characteristic.exponent).of.Jk.

    We.confine.our.consideration.of.N.distinct.roots.of.(1.10).(multiple.roots.are.excluded)..They.are.1,.2,.m,,.N..Correspondingly,.we.have.N.distinct.eigenvectors.as.well..The.general.solution.of.(1.6):

    . = =

    = =

    x e( ) ( )t e tm

    N

    mt

    m

    N

    mm

    1 1

    .

    (1.12)

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-7

    Here.we.assumed.that.the.initial.condition.was. = ==

    x e( )t mN m0 1 ..The.roots.of.(1.10).are.either.real.or.complex.conjugate.ones.since.the.coefficients.are.real.in.(1.10).

    When. we. have. complex. conjugate. pairs. of. eigenvalues. m. =. m+1. =. m. . jm,. the. corresponding.eigenvectors.are.em.=.m+1.=.em,R.+.jem,I,.where.the..denotes.complex.conjugate.and.where.m,.m,.and.em,R,.em,I.are.all.real.and.real-valued.vectors,.respectively..From.the.two.complex.solutions.m(t).=.em.exp(mt).and.m+1(t).=.em+1.exp(m+1t),.two.linearly.independent.real.solutions.sm(t).and.sm+1(t).can.be.composed:

    .s e em m m t m R m m I mt t t e t tm( ) ( ) ( ) cos sin= + = + + , ,12 1

    .

    (1.13)

    .s e em m m t m I m m R mt j

    t t e t tm+ + , ,= = 1 112( ) ( ) ( ) cos sin

    .(1.14)

    When.the.eigenvalue.is.real.m.=.m.and.the.solution.belonging.to.m,

    . s em m mtt t e m( ) ( )= = . (1.15)

    Note.that.the.time.function.belonging.to.an.eigenvalue.or.a.pair.of.eigenvalues.is.the.same.for.all.state.variables.

    1.3.4 Stability

    The.EP.is.stable.if.and.only.if.the.real.part.m.of.all.eigenvalues.belonging.to.the.EP.is.negative..Otherwise,.one.or.more.solutions.sm(t).goes.to.infinity..m.=.0.is.considered.as.unstable.case..When.m.0

    Unstablem>0

    em

    em,I

    em,RP

    PStablem

  • 1-8 ControlandMechatronics

    1.3.5 Classification of EPs, three-Dimensional State Space (N = 3)

    Depending.on.the.location.of.the.three.eigenvalues.in.the.complex.plane,.eight.types.of.the.EPs.are.distin-guished.(Figure.1.4)..Three.eigenvectors.are.used.for.reference.frame..The.origin.is.the.EP..Eigenvectors.e1,.e2,.and.e3.are.used.when.all.eigenvalues.are.real.(Figure.1.4a,c,e,g).and.e1,.e2,R,.and.e2,I.are.used.when.we.have.a.pair.of.conjugate.complex.eigenvalues.(Figure.1.4b,d,f,h)..The.orbits.(trajectories).are.moving.exponentially.in.time.along.the.eigenvectors.e1,.e2,.or.e3.when.the.initial.condition.is.on.them..The.orbits.are.spiraling.in.the.plane.spanned.by.e2,R.and.e2,I.with.initial.condition.in.the.plane..The.operation.points.are.attracted.(repelled).by.stable.(unstable).EP.

    All.three.eigenvalues.are.on.the.left-hand.side.of.the.complex.plane.for.node.and.spiral node.(Figure.1.4a.and.b)..The.spiral.node.is.also.called.attracting focus..All.three.eigenvalues.are.on.the.right-hand.side.for.repeller.and.spiral repeller.(Figure.1.4c.and.d)..The.spiral.repeller.is.also.called.repelling focus..For.saddle points,.either.one.(Index.1).(Figure.1.4e.and.f).or.two.(Index.2).(Figure.1.4g.and.h).eigenvalues.are.on.the.right-hand.side.

    Saddle.points.play.very.important.role.in.organizing.the.trajectories.in.state.space..A.trajectory.asso-ciated. to.an.eigenvector.or.a.pair.of.eigenvectors.can.be.stable.when. its.eigenvalue(s). is. (are).on. the.left-hand.side.of.the.complex.plane.(Figure.1.4a.and.b).or.unstable.when.they.are.on.the.right-hand.side.(Figure.1.4c.through.f)..Trajectories.heading.directly.to.and.directly.away.from.a.saddle.point.are.called.

    e2

    e2

    e1

    e1

    Im

    Im

    Re

    Re

    e2,R

    e2,R

    e2,I

    e2,I

    e1

    e1

    Im

    Im

    Re

    Re

    Hopfbifurcation

    e3

    e3

    (a) (b)

    (c) (d)

    e2

    e2

    e1

    e1

    Im

    Im

    Re

    Re

    e2,R

    e2,R

    e2,I

    e2,I

    e1

    e1

    Im

    Im

    Re

    Re

    e3

    e3

    (e) (f )

    (g) (h)

    Stablemanifold

    Stablemanifold

    Unstablemanifold

    Unstablemanifold

    FIGURE 1.4 Classifications.of.EPs. (N.=.3).. (a).Node,. (b). spiral.node,. (c). repeller,. (d). spiral. repeller,. (e). saddle.pointindex.1,.(f).spiral.saddle.pointindex.1,.(g).saddle.point2,.and.(h).spiral.saddle.pointindex.2.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-9

    stable.and.unstable invariant manifold.or.shortly.manifold..Sometimes,.the.stable.(unstable).manifolds.are.called.insets.(outsets)..The.operation.point.either.on.the.stable.or.on.the.unstable.manifold.cannot.leave. the.manifold..The.manifolds.of. a. saddle.point. in. its.neighborhood. in.a. two-dimensional. state.space.divide.it.into.four.regions..A.trajectory.born.in.a.region.is.confined.to.the.region..The.manifolds.are.part.of.the.separatrices.separating.the.basins.of.attractions..In.this.sense,.the.manifolds.organize.the.state.space.

    Finally,.when.the.real.part.m.is.zero.in.the.pair.of.the.conjugate.complex.eigenvalue.and.the.dimen-sion.is.N.=.2,.the.EP.is.called.center..The.trajectories.in.the.reference.frame.eReI.are.circles.(Figure.1.5)..Their.radius.is.determined.by.the.initial.condition.

    1.3.6 No-Intersection theorem

    Trajectories. in.state.space.cannot. intersect.each.other..The.theorem.is. the.direct.consequence.of. the.deterministic.system..The.state.of.the.system.is.unambiguously.determined.by.the.location.of.its.opera-tion.point.in.the.state.space..As.the.system.is.determined.by.(1.1),.all.of.the.derivatives.are.determined.by.the.instantaneous.values.of.the.state.variables..Consequently,.there.is.only.one.possible.direction.for.a.trajectory.to.continue.its.journey.

    1.4 Limit Cycle

    1.4.1 Introduction

    Two-.or.higher-dimensional.nonlinear.systems.can.exhibit.periodic.(cyclic).motion.without.external.periodical.excitation..This.behavior.is.represented.by.closed-loop.trajectory.called.Limit Cycle.(LC).in.the.state.space..There.are.stable.(attracting).and.unstable.(repelling).LC..The.basic.difference.between.the.stable.LC.and.the.center.(see.Figure.1.5).having.closed.trajectory.is.that.the.trajectories.starting.from.nearby.initial.points.are.attracted.by.stable.limit.cycle.and.sooner.or.later.they.end.up.in.the.LC,.while.the.trajectories.starting.from.different.initial.conditions.will.stay.forever.in.different.tracks.determined.by.the.initial.conditions.in.the.case.of.center.

    Figure.1.6.shows.a.stable.LC.together.with.the.Poincar.plane..Here,.the.dimension.is.3..The.LC.inter-sects.the.Poincar.plane.at.point.Pk.called.Fixed Point.(FP)..It.plays.a.crucial.role.in.nonlinear.dynamics..Instead.of.investigating.the.behavior.of.the.LC,.the.FP.is.studied.

    1.4.2 Poincar Map Function (PMF)

    After.moving.the.trajectory.from.the.LC.by.a.small.deviation,.the.discrete.Poinear.Map.Function.(PMF).relates.the.coordinates.of.intersection.point.Pn.to.those.of.the.previous.point.Pn1..All.points.are. the. intersection.points. in. the.Poincar.plane.generated.by. the. trajectory..The.PMF.in.a. three-dimensional.state.space.is.(Figure.1.6)

    Initialconditions

    e2

    e1

    Im

    Re

    FIGURE 1.5 Center..Eigenvalues.are.complex.conjugate,.N.=.2.

    2011 by Taylor and Francis Group, LLC

  • 1-10 ControlandMechatronics

    .

    u P u v

    v P u v

    n n n

    n n n

    = ,( )= ,( )

    1 1 1

    2 1 1 .

    (1.16)

    whereP1.and.P2.are.the.PMFun.and.vn.are.the.coordinates.of.the.intersection.point.Pn.in.the.Poincar.plane

    Introducing.vector.zn.by

    . znT

    n nu v= , . (1.17)

    where.zn.points.to.intersection.Pn.from.the.origin,.the.PMF.is

    . z P zn n= ( )1 . (1.18)

    At.fixed.point.Pk

    . z P zk k= ( ) . (1.19)

    The.first.benefit.of.applying.the.PMF.is.the.reduction.of.the.dimension.by.one.as.the.stability.of.FP.Pk.is.studied.now.in.the.two-dimensional.state.space.rather.than.studying.the.stability.of.the.LC.in.the.three-dimensional.state.space,.and.the.second.one.is.the.substitution.of.the.differential.equation.by.difference.equation.

    1.4.3 Stability

    The.stability.can.be.investigated.on.the.basis.of.the.PMF.(1.18)..First,.the.nonlinear.function.P(zn1).has.to.be.linearized.by.its.Jacobian.matrix.Jk.evaluated.at.its.FP.zk..Knowing.Jk,.(1.18).can.be.rewritten.for.small.perturbation.around.the.FP.zk.as

    Poincarplane

    Trajectory

    Attracting limit cyclex2

    x1

    x3

    Pk is fixed point

    znPk Pn

    Pn1

    v

    u

    FIGURE 1.6 Stable.limit.cycle.and.the.Poincar.plane.(N.=.3).

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-11

    . = = z J J zn k n knz 1 0 . (1.20)

    where.z0.is.the.initial.small.deviation.from.FP.Pk.Substituting.Jk.by.its.eigenvalues.k.and.right.emr.and.left.eml.eigenvectors,

    . =

    =

    z e e zn mN

    mn

    mr mlT

    1

    1

    0.

    (1.21)

    Due.to.(1.21),.the.LC.is.stable.if.and.only.if.all.eigenvalues.are.within.the.circle.with.unit.radius.in.the.complex.plane.

    In.the.stability.analysis,.both.in.continuous-time.model.(CTM).and.in.discrete-time.model.(DTM),.the.Jacobian.matrix.is.operated.on.the.small.perturbation.of.the.state.vector.[see.(1.6).and.(1.20)]..The.essential. difference. is. that. it. determines. the. velocity. vector. for. CTM. and. the. next. iterate. for. DTM,.respectively.

    Assume. that. the. very. first. point. at. the. beginning. of. iteration. is. placed. on. eigenvector. em. of. the.Jacobian. matrix.. Figure. 1.7. shows. four. different. iteration. processes. corresponding. to. the. particular.value.of.eigenvalue.m.associated.to.em..In.Figure.1.7a.and.b,.m.is.real,.but.its.value.is.0.

  • 1-12 ControlandMechatronics

    1.5 Quasi-Periodic and Frequency-Locked State

    1.5.1 Introduction

    Beside.the.EP.and.LC,.another.possible.state.or.motion.is.the.quasi-periodic.(Qu-P).motion.in.CTM..In.Qu-P.state,.the.motionin.theorynever.exactly.repeats.itself..Other.terms.used.in.literature.are.conditionally periodic.or.almost periodic..Qu-P.state.is.possible.in.inherently.discrete.systems.as.well..The.frequency-locked.(F-L).state.is.a.special.case.of.Qu-P.state..Qu-P.state.is.not.possible.in.N.=.1.or.2.dimensional.systems,.i.e.,.N.must.be.N..3..Similarly.to.chaos,.Qu-P.state.is.aperiodic..In.chaotic.state,.two.points.in.state.space,.which.are.arbitrarily.close,.will.diverge..In.other.words,.the.chaotic.system.is.extremely.sensitive.to.initial.conditions.and.to.changes.in.control.parameters..In.contrast.to.chaotic.state,.two.points.that.are.initially.close.will.remain.close.over.time.in.Qu-P.state.

    The. Qu-P. motion. is. a. mixture. of. periodic. motions. of. several. different. angular. frequencies. 1,.2,,.m..Depending.on.the.value.of.their.linear.combination.L,

    . L k k km m= + + +1 1 2 2 . (1.22)

    the.motion.can.be.Qu-P,.i.e.,.aperiodic.when.the.sum.L..0.or.it.can.be.F-L,.i.e.,.periodic.state.when.the.sum.L.=.0..Here.k1,.k2,,.km.are.any.positive.(or.negative).integer.(k1.=.k2.=..=.km.=.0.is.excluded).

    The.EP,.LC,.Qu-P,.and.F-L.states.are.regular attractors.while.in.chaotic.state,.the.system.has.strange attractor. (see. later. in.Section.1.9)..The.Qu-P.motion.plays.central. role. in.Hamiltonian. systems,. e.g.,.in. mechanical. systems. modeled. without. friction,. which. are. non-dissipative. ones.. They. do. not. have.attractors.

    1.5.2 Nonlinear Systems with two Frequencies

    Qu-P.and.F-L.motions.occur.frequently.in.practice.in.systems.having.a.natural.oscillation.frequency.and.a.different.external.forcing.frequency.or.two.different.natural.oscillation.frequencies..Because.of.nonlinearity,.the.superposition.of.the.independent.frequencies.is.not.valid.

    Starting.from.(1.22),.assume.that

    .

    1

    2

    2

    1= =TT

    pq .

    (1.23)

    where.T1.=.2/1.and.T2.=.2/2.are.the.periods.of.respective.harmonic.oscillations.and.p.and.q.are.positive.integers..Here.we.assume.that.any.common.factors.in.the.frequency.ratio.have.been.removed,.e.g.,.if.f1/f2.=.2/6,.the.common.factor.of.2.will.be.removed.and.f1/f2.=.p/q.=.1/3.can.be.written..When.the.fre-quency.ratio.is.the.ratio.of.two.integers,.then.the.ratio.is.called.rational.in.mathematical.sense,.i.e.,.the.two.frequencies.are.commensurate,.the.behavior.of.the.system.is.periodic..It.is.in.F-L.state.

    On.the.other.hand,.when.the.frequency.ratio.is.irrational,.the.two.frequencies.are.incommensurate,.and.the.behavior.is.Qu-P..The.last.two.statements.can.easily.be.understood.in.the.geometrical.interpre-tation.of.the.system.trajectory.

    1.5.3 Geometrical Interpretation

    A.two-frequency.Qu-P.trajectory.on.a.toroidal.surface.in.the.three-dimensional.state.space.is.shown.in.Figure.1.8..Introducing.two.angles.r.=.rt.=.1t.and.R.=.Rt.=.2t,.they.determine.point.P.of.the.trajectory.on.the.surface.of.the.torus.provided.that.the.initial.condition.point.P0.belonging.to.t.=.0.is.known..The.center.of.the.torus.is.at.the.origin..R.is.the.large.radius.of.the.torus.whose.cross-sectional.radius.is.r..The.two.angles.R.and.r.are.increasing.as.time.evolves.and.therefore.point.P.is.moving.on.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-13

    the.surface.of.the.torus.tracking.the.trajectory.of.state.vector.xT.=.[x1,.x2,.x3]..The.three.components.of.the.state.vector.x.are.given.by.the.equations.as.follows:

    .

    x R r

    x r

    x R r

    r R

    r

    r R

    1

    2

    3

    =

    =

    =

    ( )cos

    sin

    ( )sin

    + cos

    + cos

    .

    (1.24)

    The.trajectory. is.winding.on.the. torus.around.the.cross.section.with.minor.radius.r,.making.R/2.rotations.per.unit.time..As.r/R.=.p/q.[see.(1.23)].and.assuming.that.p.and.q.are.integers,.the.number.of.rotations.around.circle.r.and.circle.R.in.per.unit.is.p.and.q,.respectively..For.example,.if.p.=.1.and.q=3,.point.P.makes.three.rotations.around.circle.R.as.long.as.it.makes.only.one.rotation.around.circle.r..Figure.1.9.shows.the.torus.and.the.Poincar.plane.intersecting.the.torus.together.with.the.trajectory.on.the.surface.of.the.torus..The.Poincar.plane.illustrates.its.intersection.points.with.the.trajectory.

    When.the.frequency.ratio.p/q.=.1/3,.it.is.rational..As.long.as.point.P.rotates.once.around.circle.R,.it.rotates.120.around.circle.r..Starting.from.point.0.on.the.Poincar.plane.(Figure.1.9a).after.123.rotations.around.circle.R,.point.P.intersects.the.Ponicar.plane.successively.at.point.123..Point.3.

    Torus

    x2

    x1

    x3

    P0

    R

    r

    P

    R

    2r

    FIGURE 1.8 Two-frequency.trajectory.on.a.toroidal.surface.in.state.space.(N.=.3).

    r/R=p/q=1/3

    Poincarplane(a)

    1

    230

    reeintersection

    points

    r/R=p/q=2pi

    (b)Poincarplane

    After long time thenumber of intersection

    points approaches innity

    FIGURE 1.9 Example.for.(a).frequency-locked.and.(b).quasi-periodic.state.

    2011 by Taylor and Francis Group, LLC

  • 1-14 ControlandMechatronics

    coincides.with.the.starting.point.0.as.three.times.120.is.360..The.process.is.periodic,.the.trajectory.closes.on.itself,.it.is.the.F-L.state.

    On.the.other.hand,.when.the.frequency.ratio.is.irrational,.e.g.,.p/q.=.2.as.long.as.the.point.P.makes.one.rotation.around.circle.R,.it.completes.2.rotations.around.circle.r..The.phase.shift.of.the.first.inter-section.point.on.the.Poincar.plane.from.the.initial.point.P0.is.given.by.an.irrational.angle.=.360..2(mod.1).where.(mod.1).is.the.modulus.operator.that.takes.the.fraction.of.a.number.(e.g.,.6.28(mod.1).=.0.28)..After.any.further.full.rotations.around.circle.R,.the.phase.shifts.of.the.intersection.points.from.P0.on.the.Poincar.plane.remain.irrational;.therefore,.they.will.never.coincide.with.P0,.and.the.trajectory.will.never.close.on.itself..All.intersection.points.will.be.different..As.t..,.the.number.of.intersection.points.will.be.infinite.and.a.circle.of.radius.r.will.be.visible.on.the.Poincar.plane.consisting.of.infinite.number.of.distinct.points.(Figure.1.9b)..The.system.is.in.Qu-P.state.

    1.5.4 N-Frequency Quasi-Periodicity

    We.have.treated.up.to.now.the.two-frequency.quasi-periodicity.a.little.bit.in.detail..It.has.to.be.stressed.that.in.mathematical.sense,.the.N-frequency.quasi-periodicity.is.essentially.the.same..The.N.frequen-cies.define.N.angles.1.=.1t,.2.=.2t,.N.=.Nt.determining.uniquely.the.position.and.movement.of.the.operation.point.P.on.the.surface.of.the.N-dimensional.torus..Now.again,.the.trajectory.fills.up.the.surface.of.the.N-dimensional.torus.in.the.state.space.

    1.6 Dynamical Systems Described by Discrete-time Variables: Maps

    1.6.1 Introduction

    The.dynamical.systems.can.be.described.by.difference.equation.systems.with.discrete-time.variables..The.relation.in.vector.form.is

    . x f xn n+ =1 ( ) . (1.25)

    where.xn.is.K-dimensional.state.variable.xnT n n nKx x x= , ,[ ]( ) ( ) ( )1 2 ,.f.is.nonlinear.vector.function..State.vec-tor.xn.is.obtained.at.discrete.time.n.=.1.by.x1.=.f(x0),.where.x0.is.the.initial.condition..From.x1,.the.value.x2.=.f(x1).can.be.calculated,.etc..Knowing.x0,.the.orbit.of.discrete-time.system.x0,.x1,.x2,.is.generated.

    We.can.consider.that.vector.function.f.maps.xn.into.xn+1..In.this.sense,.f.is.a.map function..The.number.of.state.variables.determines.the.dimension.of.the.map..

    Examples:One-dimensional.map.(K.=.1):

    . Logistic.map:. xn+1.=.axn(1..xn).

    Tentmap: =

    ifif

    xax x

    a x xnn n

    n n+

    >

    10 5

    1 0 5.

    ( ) ..

    where.a.is.constant.Two-dimensional.map.(K.=.2):

    .Henonmap:

    x ax bxx cx

    n n n

    n n

    +

    +

    = +

    =

    11 2 1

    12 1

    12( ) ( ) ( )

    ( ) ( )

    .

    where.a,.b,.and.c.are.constants.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-15

    K-dimensional.map:

    Poincar.map.of.an.N.=.K.+.1.dimensional.state.space.

    Maps.can.give.useful.insight.for.the.behavior.of.complex.dynamic.systems.

    The.map.function.(1.25).can.be.invertible.or.non-invertible..It.is.invertible.when.the.discrete.function

    . x f xn n=

    +1

    1( ) . (1.26)

    can. be. solved. uniquely. for. xn.. f 1. is. the. inverse. of. f.. Two. examples. are. given. next.. First,. the. invert-ible.Henon.map.and.after,.the.non-invertible.quadratic.(logistic).map.are.discussed..Henon map.is.fre-quently.cited.example.in.nonlinear.systems..It.has.two.dimensions.and.maps.the.point.with.coordinate.xn( )1 .and.xn( )2 . in. the.plane.to.a.new.point. xn+11( ) .and. xn+12( ) .. It. is. invertible,.because. xn+11( ) .and. xn+12( ) .uniquely.determine.the.value.xn( )1 .and.xn( )2 ,.since

    .

    x xc

    x x bxa

    nn

    nn n

    ( )( )

    ( )( ) ( )

    1 12

    2 11 2

    121

    =

    =

    +

    +

    + +

    Here,.a..0.and.c..0.must.hold..(For.some.values.of.a,.b,.and.c,.the.Henon.map.can.exhibit.chaotic.behavior.)

    Turning.now. to. the.non-invertible.maps,. the.quadratic or logistic map. is. taken.as. example.. It.was.developed.originally.as.a.demography.model..It.is.a.very.simple.system,.but.its.response.can.be.surpris-ingly.colorful.. It. is.non-invertible,.as.Figure.1.10.shows..We.cannot.uniquely.determine.xn. from.xn+1..Aswe.see.later,.an.invertible.map.can.be.chaotic.only.if.its.dimension.is.two.or.more.(Henon.map)..On.the.other.hand,.the.non-invertible.map.can.be.chaotic.even.in.one-dimensional.cases,.e.g.,.the.logistic.map.

    1.6.2 Fixed Points

    The.concept.of.FP.was.introduced.earlier.(see.Figure.1.6)..The.system.stays.in.steady.state.at.FP.where.xn+1.=.xn.=.x*..When.the.discrete.function.(1.25).is.nonlinear,.it.can.have.more.than.one.FP.

    1.6.2.1 One-Dimensional Iterated Maps

    For.the.sake.of.simplicity,.the.one-dimensional.maps.are.discussed.from.now.on..The.one-dimensional.iterated.maps.can.describe.the.dynamics.of.large.number.of.systems.of.higher.dimension..To.throw.light.

    xn+1

    xn

    FIGURE 1.10 The.quadratic.or.logistic.iterated.map.

    2011 by Taylor and Francis Group, LLC

  • 1-16 ControlandMechatronics

    to.the.statement,.consider.a.three-dimensional.dynamical.system.with.PMF. z PnT n n n n nu v u v+ + += , = ,1 1 1[ ] ( ) .[see. (1.18)].. In. certain. cases,. we. have. a. relation. between. the. two. coordinates. un. and. vn:. vn. =. Fv(un)..Substituting.it.into.the.map.function.un+1.=.Pu(un,.vn),.we.end.up.with

    . u P u F u f un u n v n n+ = =1 ( ( )) ( ), . (1.27)

    one-dimensional.map.function.More.arguments.can.be.found.in.the.literature.(see.chapter.5.2.in.Ref..[4].and.page.66.of.Ref..[5]).

    on.the.wide.scope.of.applications.on.the.one-dimensional.discrete.map.functions..If.the.dissipation.in.the.system.is.high.enough,.then.even.systems.with.dimension.more.than.three.can.be.analyzed.by.one-dimensional.map.

    1.6.2.2 return Map or Cobweb

    The.iteration.in.the.one-dimensional.discrete.map.function.or.difference.equation

    . x f xn n+ =1 ( ) . (1.28)

    can.be.done.with.numerical.or.graphical.method..The.return.map.or.cobweb.is.a.graphical.method..To.illustrate.the.return.map.method,.we.take.as.example.the.equation

    .x ax

    bxnn

    nc+ = +

    1 1 ( ) .(1.29)

    where.a,.b,.and.c.are.constants..The.iteration.has.to.be.performed.as.follows.(Figure.1.11):

    . 1.. Plot.the.function.xn+1(xn).in.plane.xn+1.versus.xn.

    . 2.. Select.x0.as.initial.condition.

    . 3.. Draw.a.straight.line.starting.from.origin.with.slope.1.called.mirror line.or.diagonal.

    . 4.. Read.the.value.x1.from.the.graph.and.draw.a.line.in.parallel.with.the.horizontal.axis.from.x1.to.the.mirror.line.(line.11).

    . 5.. Read.the.value.x2.by.vertical.line.12.

    . 6.. Repeat.the.graphical.process.by.drawing.the.horizontal.line.22.and.finally.determining.x3.

    In.order.to.find.the.FP.x*,.we.have.to.repeat.the.graphical.process.

    FP

    xn+1

    x2

    x1

    x1 x3 x2 x0

    xnx*

    2

    1

    2

    1

    FIGURE 1.11 Iteration.in.return.map.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-17

    1.6.2.3 kth return Map

    Periodic.steady.state.with.period.T.is.represented.by.a.single.FP.x*.in.the.mapping,.i.e.,.x*.=.f(x*)..kth-order.subharmonic. solutions. with. period. kT. correspond. to. FPs. { * *}x xk1 ,. where. x f x xn2 1 1* ( * ) *= =+f x x f xn k( *) * ( *) 1 = ..The.kth.iterate.of.f(x).is.defined.as.the.function.that.results.from.applying.f k.times,.its.notation.is.f (k)(x).=.f(f(f(x))),.and.its.mapping.is.called.kth.return.map.and.the.process.is.called.period-k.

    1.6.2.4 Stability of FP in One-Dimensional Map

    The.FP.is.locally stable.if.subsequent.iterates.starting.from.a.sufficiently.near.initial.point.to.the.FP.are.eventually.getting.closer.and.closer.the.FP..The.expressions.attracting.FP.or.asymptotically.stable.FP.are.also.used..On.the.other.hand,.if.the.subsequent.iterates.move.away.from.x*,.then.the.name.unstable.or.repelling.FP.is.used.

    1.6.3 Mathematical approach

    By.knowing.the.nonlinear.function.f(x).and.one.of.its.FPs.x*,.we.can.express.the.first.iterate.x1.by.apply-ing.a.Taylor.series.expansion.near.x*:

    .x f x f x df

    dxx f x df

    dxx

    x x1 0 0 0= = + + + ( ) ( *) ( *)

    * *

    .

    (1.30)

    where.x0.=.x0..x*.and.the.initial.condition.x0.is.sufficiently.near.x*..The.derivative..=.df/dx.has.to.be.evaluated.at.x*...is.the.eigenvalue.of.f(x).at.x*..The.nth.iterate.is

    . = = =

    x x x x dfdx

    xn n nn

    x

    ( *)*

    0 0 0

    .(1.31)

    It.is.obvious.that.x*.is.stable.FP.if. | / | df dx x* 1..In.general,.when.the.dimension.is.more.than.one,..must.be.within.the.unit.circle.drawn.around.the.origin.of.the.complex.plane.for.stable.FP.

    The.nonlinear.f(x).has.multiple.FPs..The.initial.conditions.leading.to.a.particular.x*.constitute.the.basin of attraction.of.x*..As.there.are.more.basins.of.attraction,.none.of.FPs.can.be.globally stable..They.can.be.only.locally.stable.

    1.6.4 Graphical approach

    Graphical approach.is.explained.in.Figure.1.12..Figure.1.12a,c,e,.and.g.presents.the.return.map.with.FP.x*.and.with.the.initial.condition.(IC)..The.thick.straight.line.with.slope..at.x*.approximates.the.function.f(x).at.x*..Figure.1.12b,d,f,.and.h.depicts.the.discrete-time.evolution.xn(n)..||.1..The.subsequent.iterates.explode,.FP.is.unstable..Note.that.the.cobweb.and.time.evolution.is.oscillating.when..

  • 1-18 ControlandMechatronics

    In.general,.it.has.two.FPs:. x a1 1 1* = / .and.x2 0* = ..The.respective.eigenvalues.are.1.=.2..a.and.2.=.a..Figure.1.13.shows.the.return.map.(left).and.the.time.evolution.(right).at.different.value.a.changing.in.range.0.

  • NonlinearDynamics 1-19

    stability.of.cycles)..Increasing.a.over.a.=.3.570,.we.enter.the.chaotic.range.(Figure.1.13k.and.l),.the.itera-tion.is.a.periodic.with.narrow.ranges.of.a.producing.periodic.solutions.

    As.a.is.increased,.first.we.have.period-1.in.steady.state,.later.period-2,.then.period-4.emerge,.etc..The.scenario.is.called.period doubling cascade.

    1.6.6 Stability of Cycles

    We.have.already.introduced.the.notation.f (k)(x).=.f(f(f(x)).for.the.kth.iterate.that.results.from.apply-ing.f k-times..If.we.start.at.x1*.and.after.applying.f k-times.we.end.up.with.x xk* *= 1 ,.then.we.say.we.have.period.or.cycle-k.with.k.separate.FPs:.x x f x x f xk k1 2 1 1* * ( * ) , * ( * ), ,= = .

    In.the.simplest.case.of.period-2,.the.two.FPs.are:.x f x2 1* ( *)= .and.x f x f f x1 2 1* ( * ) ( ( *))= = ..Referring.to.(1.30),.we.know.that.the.stability.of.FP.x1*.depends.on.the.value.of.the.derivative

    .( ) ( ( ))

    *2

    1

    =

    df f xdx x .

    (1.33)

    (a)

    1

    1

    xn+1

    xn+1

    0

    0

    0 1

    1

    IC

    0 IC

    xn

    xn

    xn

    xna

    a4 1

    00

    1

    00

    3

    2

    1

    0

    4

    3

    2

    1

    0

    n

    n

    1xn+1

    010 IC

    xn

    xna 1

    00

    4

    3

    2

    1

    0 n

    (b)

    (c) (d)

    (e) (f )

    FIGURE 1.13 Return.map.(left).and.time.evolution.(right).of.the.logistic.map.(continued)

    2011 by Taylor and Francis Group, LLC

  • 1-20 ControlandMechatronics

    Using.the.chain.rule.for.derivatives,

    .

    ( )

    ( )

    ( )

    *

    ( ( ))* * * *

    2

    1 1 1 1 2

    df xdx

    df f xdx

    dfdx

    dfdx

    dfdx

    dfd

    x x f x x x

    = = =

    xx x1* .(1.34)

    Consequently,

    . x x

    d f xdx

    d f xdx

    1 2

    2 2

    *

    ( ) ( )

    *

    ( ) ( )

    =

    .

    (1.35)

    (1.35). states. that. the.derivatives.or.eigenvalues.of. the.second. iterate.of. f(x).are. the.same.at.both.FPs.belonging.to.period-2.

    As. an. example,. Figure. 1.14. shows. the. return. map. for. the. first. (Figure. 1.14a). and. for. the. second.(Figure. 1.14b). iterate. when. a. =. 3.2.. Both. FPs. in. the. first. iterate. map. are. unstable. as. we. have. just.

    1

    1

    xn+1

    xn+1

    0

    0

    0 1

    1

    IC

    0 IC

    xn

    xn

    xn

    xna

    a4 1

    00

    1

    00

    3

    2

    1

    0

    4

    3

    2

    1

    0

    n

    n

    1xn+1

    010 IC

    xn

    xna 1

    00

    4

    3

    2

    1

    0n

    (g) (h)

    (i) (j)

    (k) (l)

    FIGURE 1.13 (continued)

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-21

    discussed..We.have.four.FPs.in.the.second.iterate.map..Two.of.them,. x1*.and.x2*,.are.stable.FPs.(point.S1.and.S2).and.the.other.two.(zero.and.x*).are.unstable.(point.U1.and.U2)..The.FP.of.the.first.iterate.must.be.the.FP.of.the.second.iterate.as.well:.x*.=.f(x*).and.x*.=.f( f(x*)).

    1.7 Invariant Manifolds: Homoclinic and Heteroclinic Orbits

    1.7.1 Introduction

    To. obtain. complete. understanding. of. the. global. dynamics. of.nonlinear.systems,.the.knowledge.of.invariant.manifolds.is.abso-lutely. crucial.. The. invariant. manifolds. or. briefly. the. manifolds.are.borders.in.state.space.separating.regions..A.trajectory.born.in.one.region.must.remain.in.the.same.region.as.time.evolves..The..manifolds. organize. the. state. space.. There. are. stable. and. unsta-ble. manifolds.. They. originate. from. saddle. points.. If. the. .initial..condition.is.on.the.manifold.or.subspace,.the.trajectory.stays.on.the. manifold.. Homoclinic. orbit. is. established. when. stable. and.unstable.manifolds.of.a.saddle.point.intersect..Heteroclinic.orbit.is.established.when.stable.and.unstable.manifolds.from.different.saddle.points.intersect.

    1.7.2 Invariant Manifolds, CtM

    The.CTM.is.applied.for.describing.the.system..Invariant.mani-fold. is. a. curve. (trajectory). in. plane. (N. =. 2). (Figure. 1.15),. or.curve.or.surface. in.space.(N.=.3).(Figure.1.16),.or. in.general.a.subspace.(hypersurface).of.the.state.space.(N.>.3)..The.manifolds.are.always.associated.with.saddle.point.denoted.here.by.x*..Any.initial.condition.in.the.manifold.results.in.movement.of.the.operation.point. in. the. manifold. under. the. action. of. the. relevant. differential. equations.. There. are. two. kinds.

    Unstablemanifold

    Stablemanifold

    W u(x *)

    W s(x*)x*

    es

    eu

    t

    t

    FIGURE 1.15 Stable.Ws.and.unstable.Wu.manifold.(N.=.2)..The.CTM.is.used..es.and.eu.are.eigenvectors.at.saddle.point.x*.belonging.to.Ws.and.Wu,.respectively.

    (a)

    xn+1

    xn+2

    xnU1

    S1

    S2U2

    x*1 x*2x*

    xnx*

    (b)

    FIGURE 1.14 Cycle. of. period-2. in.the.logistic.map.for.a.=.3.3..(a).Return.map.for.first.iterate..(b).Return.map.for.second.iterate.xn+2.versus.xn.

    2011 by Taylor and Francis Group, LLC

  • 1-22 ControlandMechatronics

    of. manifolds:. stable. manifold. denoted. by. Ws. and. unstable. manifold. denoted. by. Wu.. If. the. initial.points.are.on.Ws.or.on.Wu,.the.operation.points.remain.on.Ws.or.Wu.forever,.but.the.points.on.Ws.are.attracted.by.x*.and.the.points.on.Wu.are.repelled.from.x*..By.considering.t ,.every.movement.along.the.manifolds.is.reversed.

    If.the.initial.conditions.(points.P1,.P2,.P3,.P4.in.Figure.1.17).are.not.on.the.manifolds,.their.trajectories.will.not.cross.any.of.the.manifolds,.they.remain.in.the.space.bounded.by.the.manifolds..The.trajecto-ries.are.repelled.from.Ws(x*).and.attracted.by.Wu(x*)..Any.of.these.trajectories.(orbits).must.remain.in.the.space.where.it.was.born..Wu(x*).(or.Ws(x*)).are.boundaries..Consequently,.the.invariant.manifolds.organize.the.state.space.

    1.7.3 Invariant Manifolds, DtM

    Applying. DTM,. i.e.,. difference. equations. describe. the. system,. then. mostly. the. PMF. is. used.. The.fixed.point.x*.must.be.a.saddle.point.of.PMF.to.have.manifolds..Figure.1.18.presents.the.Ponicar.surface.or.plane.with.the.stable.Ws(x*).and.unstable.Wu(x*).manifold..s0.and.u0.is.the.intersection.point.of.the.trajectory.with.the.Poincar.surface,.respectively..The.next.intersection.point.of.the.same.

    Stablemanifold W s(x*)

    Unstablemanifold W u(x*)

    eu

    Es

    x*t

    t

    t

    FIGURE 1.16 Stable.Ws.and.unstable.Wu.manifold.(N.=.3)..The.CTM.is.used..Es.=.span[es1,.es2].stable.subspace.is.tangent.of.Ws(x*).at.x*..eu.is.an.unstable.eigenvector.at.x*..x*.is.saddle.point.

    W u(x*)P4

    P3

    P2P1

    x*

    W s(x*)

    FIGURE 1.17 Initial.conditions.(P1,.P2,.P3,.P4).are.not.placed.on.any.of.the.invariant.manifolds..The.trajectories.are.repelled.from.Ws(x*).and.attracted.by.Wu(x*)..Any.of.the.trajectories.(orbits).must.remain.in.the.region.where.it.was.born..Wu(x*).(or.Ws(x*)).are.boundaries.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-23

    trajectory.with.the.Poincar.surface.is.s1.and.u1.the.following.s2.and.u2,.etc..If.Ws,.Wu.are.manifolds.and.s0,.u0.are.on.the.mani-folds,.all. subsequent. intersection.point.will.be.on. the.respective.manifold.. Starting. from. infinitely. large. number. of. initial. point.s0(u0). on. Ws. (or. on. Wu),. infinitely. large. number. of. intersection.points.are.obtained.along.W s.(or.Wu)..Curve.Ws(Wu).is.determined.by.using.infinitely.large.number.of.intersection.points.

    1.7.4 Homoclinic and Heteroclinic Orbits, CtM

    In.homoclinic connection,.the.stable.Ws.and.unstable.Wu.manifold.of.the.same.saddle.point.x*.intersect.each.other.(Figure.1.19)..The.two.manifolds,.Ws.and.Wu,.constitute.a.homolinic.orbit..The.opera-tion.point.on.the.homoclinic.orbits.approach.x*.both. in. forward.and.in.backward.time.under.the.action.of.the.relevant.differential.equation..In.heteroclinic connection,.the.stable.manifold.W xs( *)1 .of.saddle.point.x1*.is.connected.to.the.unstable.manifold.W xu( *)2 .of.saddle.point.x2*,.and.vice.versa.(Figure.1.20)..The.two.manifolds.W xs( *)1 .and.W xu( *)2 .[similarly.W xs( *)2 .and.W xu( *)1 ].constitute.a.heteroclinic.orbit.

    Poincarsurface

    eu

    s0s1

    s2 s3 s4 u0x*

    u1u2

    u3u4

    es

    W s (x*)

    W u (x*)

    Points denoted by s (by u) approach(diverge from) x* as n

    FIGURE 1.18 Stable.Ws.and.unstable.Wu.manifold..DTM.is.used..es.and.eu.are.eigenvectors.at.saddle.point.x*.belonging.to.Ws.and.Wu,.respectively.

    W u (x*)

    W s (x*)

    Homoclinic connection

    Homoclinicorbit

    x*

    FIGURE 1.19 Homoclinic. con-nection.and.orbit.(CTM).

    Wu (x1*)

    W s (x2*)

    W s (x1*)

    Wu (x1*)

    x11*x2*Heteroclinic

    orbit

    Heteroclinic connection

    FIGURE 1.20 Heteroclinic.connection.and.orbit.(CTM).

    2011 by Taylor and Francis Group, LLC

  • 1-24 ControlandMechatronics

    1.8 transitions to Chaos

    1.8.1 Introduction

    One.of. the.great.achievements.of. the. theory.of. chaos. is. the.discovery.of. several. typical. routes. from.regular.states.to.chaos..Quite.different.systems.in.their.physical.appearance.exhibit.the.same.route..The.main.thing.is.the.universality..There.are.two.broad.classes.of.transitions.to.chaos:.the local and global bifurcations..In.the.first.case,.for.example,.one.EP.or.one.LC.loses.its.stability.as.a.system.parameter.is.changed..The.local.bifurcation.has.three.subclasses:.period.doubling,.quasi-periodicity,.and.intermit-tency..The.most.frequent.route.is.the.period.doubling.

    In.the.second.case,. the.global.bifurcation.involves. larger.scale.behavior. in.state.space,.more.EPs,.and/or.more.LCs.lose.their.stability..It.has.two.subclasses,.the.chaotic.transient.and.the.crisis..In.this.section,.only.the.local.bifurcations.and.the.period-doubling.route.is.treated..Only.one.short.comment.is.made.both.on.the.quasi-periodic.route.and.on.the.intermittency.

    In.quasi-periodic route,.as.a.result.of.alteration.in.a.parameter,.the.system.state.changes.first.from.EP.to.LC.through.bifurcation..Later,.in.addition,.another.frequency.develops.by.a.new.bifurcation.and.the.system.exhibits.quasi-periodic.state..In.other.words,.there.are.two.complex.conjugate.eigenvalues.within.the.unit.circle.in.this.state..By.changing.further.the.parameter,.eventually.the.chaotic.state.is.reached.from.the.quasi-periodic.one.

    In.the. intermittency route. to.chaos,.apparently.periodic.and.chaotic.states.alternately.develop..The.system.state.seems.to.be.periodic.in.certain.intervals.and.suddenly.it.turns.into.a.burst.of.chaotic.state..The.irregular.motion.calms.down.and.everything.starts.again..Changing.the.system.parameter.further,.the.length.of.chaotic.states.becomes.longer.and.finally.the.periodic.states.are.not.restored.

    1.8.2 Period-Doubling Bifurcation

    Considering.now.the.period-doubling.route,.let.us.assume.a.LC.as.starting.state.in.a.three-dimensional.system.(Figure.1.21a)..The.trajectory.crosses.the.Poincar.plane.at.point.P..As.a.result.of.changing.one.system.parameter,.the.eigenvalue.1.of.the.Jacobian.matrix.of.PMF.belonging.to.FP.P.is.moving.along.the.negative.real.axis.within.the.unit.circle.toward.point.1.and.crosses.it.as.1.becomes.1..The.eigenvalue.1.moves.outside.the.unit.circle..FP.P.belonging.to.the.first.iterate.loses.its.stability..Simultaneously,.two.new.stable.FPs.P1.and.P2.are.born.in.the.second.iterate.process.having.two.eigenvalues.2.=.3.(Figure.1.21b)..Their.value.is.equal.+1.at.the.bifurcation.point.and.it.is.getting.smaller.than.one.as.the.system.parameter.is.changing.further.in.the.same.direction..2.=.3.are.moving.along.the.positive.real.axis.toward.the.origin.

    Continuing.the.parameter.change,.new.bifurcation.occurs.following.the.same.pattern.just.described.and.the.trajectory.will.cross.the.Poincar.plane.four.times.(2..2).in.one.period.instead.of.twice.from.the.new.bifurcation.point..The.period-doubling.process.keeps.going.on.but.the.difference.between.two.consecutive.parameter.values.belonging.to.bifurcations.is.getting.smaller.and.smaller.

    1.8.3 Period-Doubling Scenario in General

    The.period-doubling.scenario.is.shown.in.Figure.1.22.where.. is.the.system.parameter,.the.so-called.bifurcation parameter,.x.is.one.of.the.system.state.variables.belonging.to.the.FP,.or.more.generally.to.the.intersection.points.of.the.trajectory.with.the.Poincar.plane..The.intersection.points.belonging.to.the.transient.process.are.excluded..For.this.reason,.the.diagram.is.called.sometime.final state diagram..The.name.bifurcation.diagram.refers.to.the.bifurcation.points.shown.in.the.diagram.and.it.is.more.generally.used.

    Feigenbaum.[7].has.shown.that.the.ratio.of.the.distances.between.successive.bifurcation.points.mea-sured.along.the.parameter.axis..approaches.to.a.constant.number.as.the.order.of.bifurcation,.labeled.by.k,.approaches.infinity:

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-25

    .

    = = .

    +

    limk

    k

    k 14 6693

    .(1.36)

    where..is.the.so-called.Feigenbaum constant..It.is.found.that.the.ratio.of.the.distances.measured.in.the.axis.x.at.the.bifurcation.points.approaches.another.constant.number,.the.so-called.Feigenbaum.

    .

    = = .

    +

    limk

    k

    k 12 5029

    .(1.37)

    .is.universal.constant.in.the.theory.of.chaos.like.other.fundamental.numbers,.for.example,.e.=.2.718,.,.and.the.golden.mean.ratio.( )5 1 2 / .

    (a)

    (b)

    Limitcycle

    Newlimitcycle

    Before bifurcation

    After bifurcation

    Parameterchange

    Poincarplane

    Poincarplane

    P

    P1

    P2

    P

    FIGURE 1.21 Period-doubling.bifurcation..(a).Period-1.state.before,.and.(b).period-2.state.after.the.bifurcation.

    x Final state ofstate variable

    1 2 3S

    Parameter

    2

    1

    3

    FIGURE 1.22 Final.state.or.bifurcation.diagram..S.=.Feigenbaum.point.

    2011 by Taylor and Francis Group, LLC

  • 1-26 ControlandMechatronics

    1.9 Chaotic State

    1.9.1 Introduction

    The.recently.discovered.new.state.is.the.chaotic.state..It.can.evolve.only.in.nonlinear.systems..The.condi-tions.required.for.chaotic.state.are.as.follows:.at.least.three.or.higher.dimensions.in.autonomous.systems.and.with.at.least.two.or.higher.dimensions.in.non-autonomous.systems.provided.that.they.are.described.by.CTM..On.the.other.hand,.when.DTM.is.used,.two.or.more.dimensions.suffice.for.invertible.iteration.functions.and.only.one.dimension.(e.g.,.logistic.map).or.more.for.non-invertible.iteration.functions.are.needed.for.developing.chaotic.state..In.addition.to.that,.some.other.universal.qualitative.features.com-mon.to.nonlinear.chaotic.systems.are.summarized.as.follows:

    . The.systems.are.deterministic,.the.equations.describing.them.are.completely.known.. They.have.extreme.sensitive.dependence.on.initial.conditions.. Exponential.divergence.of.nearby.trajectories.is.one.of.the.signatures.of.chaos.. Even.though.the.systems.are.deterministic,.their.behavior.is.unpredictable.on.the.long.run.. The.trajectories. in.chaotic.state.are.non-periodic,.bounded,.cannot.be.reproduced,.and.do.not.

    intersect.each.other.. The.motion.of.the.trajectories.is.random-like.with.underlying.order.and.structure.

    As. it. was. mentioned,. the. trajectories. setting. off. from. initial. conditions. approach. after. the. transient.process.either.FPs.or.LC.or.Qu-P.curves.in.dissipative.systems..All.of.them.are.called.attractors.or.clas-sical attractors.since.the.system.is.attracted.to.one.of.the.above.three.states..When.a.chaotic.state.evolves.in.a.system,.its.trajectory.approaches.and.sooner.or.later.reaches.an.attractor.too,.the.so-called.strange attractor.

    In.three.dimensions,.the.classical.attractors.are.associated.with.some.geometric.form,.the.station-ary.state.with.point,.the.LC.with.a.closed.curve,.and.the.quasi-periodic.state.with.surface..The.strange.attractor.is.associated.with.a.new.kind.of.geometric.object..It.is.called.a.fractal structure.

    1.9.2 Lyapunov Exponent

    Conceptually,.the.Lyapunov.exponent.is.a.quantitative.test.of.the.sensitive.dependence.on.initial.condi-tions.of.the.system..It.was.stated.earlier.that.one.of.the.properties.of.chaotic.systems.is.the.exponential.divergence.of.nearby.trajectories..The.calculation.methods.usually.apply.this.property.to.determine.the.Lyapunov.exponent..

    After.the.transient.process,.the.trajectories.always.find.their.attractor.belonging.to.the.special.initial.condition.in.dissipative.systems..In.general,.the.attractor.as.reference.trajectory.is.used.to.calculate...Starting.two.trajectories.from.two.nearby.initial.points.placed.from.each.other.by.small.distance.d0,.the.distance.d.between.the.trajectories.is.given.by

    . d t d et( ) = 0 . (1.38)

    where..is.the.Lyapunov.exponent..One.of.the.initial.points.is.on.the.attractor..The.equation.can.hold.true.only.locally.because.the.chaotic.systems.are.bounded,.i.e.,.d(t).cannot.increase.to.infinity..The.value..may.depend.on.the.initial.point.on.the.attractor..To.characterize.the.attractor.by.a.Lyapunov.expo-nent,.the.calculation.described.above.has.to.be.repeated.for.a.large.number.of.n.of.initial.points.distrib-uted.along.the.attractor..Eventually,.the.average.Lyapunov.exponent..calculated.from.the.individual.n.values.will.characterize.the.state.of.the.system..The.criterion.for.chaos.is..>.0..When...0,.the.system.is.in.regular.state.(Figure.1.23).

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-27

    1.10 Examples from Power Electronics

    1.10.1 Introduction

    Power.electronic.systems.have.wide.applications.both.in.industry.and.at.home..The.structure.of.these.systems. keeps. changing. due. to. consecutive. turn-on. and. turn-off. processes. of. electronic. switches..They. are. variable structure,. piece-wise. linear,. nonlinear. dynamic. controlled. systems.. The. primary.source.of.nonlinearity.in.these.systems.is.that.the.switching.instants.depend.on.the.state.variables.[1]..Furthermore,.the.frequent.nonlinearities.can.also.be.found.in.the.systems..In.order.to.show.the.applica-tions.of.the.theory.of.nonlinear.dynamics.summarized.in.the.previous.sections,.five.examples.have.been.selected.from.the.field.of.power.electronics.[15,16]..Various.system.states.and.bifurcations.will.be.pre-sented.without.the.claim.of.completeness.in.this.section..Our.main.objective.is.to.direct.the.attention.of.the.readers,.engineers.to.the.possible.strange.phenomenon.that.can.be.encountered.in.power.electronics.and.explained.by.the.theory.of.nonlinear.dynamics.

    1.10.2 High-Frequency time-Sharing Inverter

    1.10.2.1 the System

    It. is.applied. for. induction.heating.where.high-frequency.power.supply. is. required.with. frequency.of.several.thousand.hertz.Figure.1.24.shows.the.inverter.configuration.in.its.simplest.form..I+.and.I,.the.so-called.positive.and.negative.sub-inverters,.are.encircled.by.dotted.lines.

    The. parallel. oscillatory. circuit. LpCpRp. represents. the. load.. The. supply. is. provided. by. a. center-tapped.DC.voltage.source..In.order.to.explain.the.mode.of.action.of.the.inverter,.ideal.components.are.assumed..The.basic.operation.of.the.inverter.can.be.understood.by.the.time.functions.of.Figure.1.25..In.Figure.1.25a,.the.high.frequency.approximately.sinusoidal.output.voltage.v0,.the.inverter.output.current.pulses.i0,.and.the.condenser.voltage.vc.can.be.seen..Thyristors.T1.and.T2.are.alternately.fired.at.instants.located.at.every.sixth.zero.crossings.on.the.positive.and.on.the.negative.slope.of.the.output.voltage,.respectively..After.firing.a.thyristor,.an.output.current.pulse.i0.is.flowing.into.the.load,.which.changes.the.polarity.of.the.series.condenser.voltage.vc,.for.instance,.from.Vcm.to.Vcm..The.thyristor.turn-off.time.can.be.a.little.bit.longer.than.two.and.half.cycles.of.the.output.voltage.(Figure.1.25b)..Figure.1.26.presents.a.configuration.with.three.positive.and.three.negative.sub-inverters..Here,.the.respective.input.and. output. terminals. of. the. sub-inverters. are. paralleled.. The. numbering. of. the. sub-inverters. corre-sponds.to.the.firing.order..Each.sub-inverter.pair.works.in.the.same.way.as.it.was.previously.described.

    x2

    x3

    x1

    d0

    d(t) =d0et

    >0Chaotic

    x2

    x3

    x1

    d0

    d(t) =d0et

  • 1-28 ControlandMechatronics

    1.10.2.2 results

    One.of.the.most.interesting.results.is.that.by.using.an.approximate.model.assuming.sinusoidal.output.voltage,.no.steady-state.solution.can.be.found.for.the.current.pulse.and.other.variables.in.certain.opera-tion.region.and.its. theoretical.explanation.can.be.found.in.Ref..[6]..The.laboratory.tests.verified.this.theoretical.conclusion..To.describe.the.phenomena.in.the.region.in.quantitative.form,.a.more.accurate.model.was.used..The.independent.energy.storage.elements.are.six.Ls.series.inductances,.three.Cs.series.capacitances,.one.Lp.inductance,.and.one.Cp.capacitance,.altogether.11.elements,.with.11.state.variables..The.accurate.analysis.was.performed.by.simulation.in.MATLAB.environment.for.open-.and.for.closed-loop.control.

    Ls

    Ls

    vL

    vT1Cs/2

    Cs/2vT2

    vC

    I+

    I

    Loadiip

    iin

    io

    vi

    +

    vivo

    iCp

    iLp

    Cp

    Lp

    RpT1

    T2

    FIGURE 1.24 The.basic.configuration.of.the.inverter.

    io vc

    vT1

    Vom

    t

    (a)

    (b)

    t

    vo

    Vcm

    vi

    vcritic=(vi+Vom) Vcm

    t1 Vcm+ viVom

    Vcm> (vi+Vom)

    Vcm1 2 1

    2

    To

    FIGURE 1.25 Time.functions.of.(a).output.voltage.vo,.output.current.io, condenser.voltage.vc, and.(b).thyristor.voltage.vT1.in.basic.operation.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-29

    1.10.2.3 Open-Loop Control

    Bifurcation.diagram.was.generated.here,.the.peak.values.of.the.output.voltage.Vom.were.sampled,.stored,.and.plotted.as.a.function.of.the.control.parameter.To,.where.To.is.the.period.between.two.consecutive.fir-ing.pulses.in.the.positive.or.in.the.negative.sub-inverters.(Figure.1.27)..Having.just.one.single.value.Vom.for.a.given.To,.the.output.voltage.vo.repeats.itself.in.each.period.To..This.state.is.called.period-1..Similarly,.period-5.state.develops,.for.example,.at.firing.period.To.=.277.s..Now,.there.are.five.consecutive.distinct.Vom.values..vo.is.still.periodic,.it.repeats.itself.after.5To.has.elapsed.(Figure.1.28).

    1.10.2.4 Closed-Loop Control

    A.self-control.structure.is.obtained.by.applying.a.feedback.control.loop..Now,.the.approximately.sinu-soidal.output.voltage.vo.is.compared.with.a.DC.control.voltage.VDC.and.the.thyristors.are.alternatively.fired.at.the.crossing.points.of.the.two.curves..The.study.is.concerned.with.the.effect.of.the.variation.of.the.DC.control.voltage.level.VDC.on.the.behavior.of.the.feedback-controlled.inverter..Again,.the.bifur-cation.diagram.is.used.for.the.presentation.of.the.results.(Figure.1.29)..The.peak.values.of.the.output.

    Ls

    T1 T3 T5 Csio iL

    iC

    Lp

    Rp

    Cp

    T4 T6 T2

    vT1

    Ls Ls

    Ls Ls Ls

    iip

    iin

    vovC1 vi

    vi

    0

    +

    io5+ io2

    io3+ io6

    io1+ io4

    FIGURE 1.26 The.power.circuit.of.the.time-sharing.inverter..(Reprinted.from.Bajnok,.M..et.al.,.Surprises.stem-ming.from.using.linear.models.for.nonlinear.systems:.Review..In.Proceedings of the 29th Annual Conference on Industrial Electronics, Control and Instrumentation (IECON03),.Roanoke,.VA,.vol..I,.pp..961971,.November.26,.2003..CD.Rom.ISBN:0-7803-7907-1...[2003].IEEE..With.permission.)

    500

    450

    400

    V om [V

    ]

    350

    300265 270 275 280

    Period-5

    To [s]285 290

    FIGURE 1.27 Bifurcation.diagram.of.inverter.with.open-loop.control.

    2011 by Taylor and Francis Group, LLC

  • 1-30 ControlandMechatronics

    voltage.Vom.were.sampled,.stored,.and.plotted.as.a.function.of.the.control.parameter.VDC..The.results.are.basically.similar.to.those.obtained.for.open-loop.control..As.in.the.previous.study,.the.feedback-controlled.inverter.generates.subharmonics.as.the.DC.voltage.level.is.varied.

    1.10.3 Dual Channel resonant DCDC Converter

    1.10.3.1 the System

    The.dual.channel.resonant.DCDC.converter.family.was.introduced.earlier.[3]..The.family.has.12.members..A.common.feature.of.the.different.entities.is.that.they.transmit.power.from.input.to.output.through.two.channels,.the.so-called.positive.and.negative.ones,.coupled.by.a.resonating.capacitor..The.converter.can.operate.both.in.symmetrical.and.in.asymmetrical.mode..The.respective.variables.in.the.two.channels.

    800

    600

    400

    200

    0v o [V

    ], i o1

    [A]

    200

    400

    0.092 0.094 0.096 0.098

    3T5

    To

    voio1T5= 5To

    t [s]0.1

    FIGURE 1.28 vo(t).and.io1(t)..To.=.277.s..Period-5.state..(Reprinted.from.Bajnok,.M..et.al.,.Surprises.stemming.from.using.linear.models.for.nonlinear.systems:.Review..In.Proceedings of the 29th Annual Conference on Industrial Electronics, Control and Instrumentation (IECON03),.Roanoke,.VA,.vol..I,.pp..961971,.November.26,.2003..CD.Rom.ISBN:0-7803-7907-1...[2003].IEEE..With.permission.)

    500

    450

    400

    350

    30020 0 20

    VDC [V]

    V om [V

    ]

    40 60 80

    FIGURE 1.29 Bifurcation. diagram. of. inverter. with. feedback. control. loop.. (Reprinted. from. Bajnok,. M.. et. al.,.Surprises.stemming.from.using. linear.models. for.nonlinear.systems:.Review..In.Proceedings of the 29th Annual Conference on Industrial Electronics, Control and Instrumentation (IECON03),.Roanoke,.VA,.vol..I,.pp..961971,.November.26,.2003..CD.Rom.ISBN:0-7803-7907-1...[2003].IEEE..With.permission.)

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-31

    vary.symmetrically.or.asymmetrically.in.the.two.modes..The.energy.change.between.the.two.channels.is.accomplished.by.a.capacitor. in.asymmetrical.operation..There. is.no.energy.exchange.between. the.positive.and.the.negative.channels.in.the.symmetrical.case..Our.description.is.restricted.to.the.buck.configuration.(Figure.1.30).in.symmetrical.operation..Suffix.i.and.o.refer.to.input.and.output.while.suf-fix.p.and.n.refer.to.positive.and.negative.channel,.respectively..Two.different.converter.versions.can.be.derived.from.the.configuration..The.first.version.contains.diodes.in.place.of.clamping.switches.Scp.and.Scn..The.second.one.applies.controlled.switches.conducting.current.in.the.direction.of.arrow..To.sim-plify,.the.configuration.capacitance.C.is.replaced.by.short.circuit.and.Scp,.Scn.are.applied..The.controlled.switches.within.one.channel.are.always.in.complementary.states.(i.e.,.when.Sp.is.on,.Scp.is.off,.and.vice.versa)..By.turning.on.switch.Sp,.a.sinusoidal.current.pulse.iip.is.developed.from.t.=.0.to.p.( = /1 LC .in.circuitSp,.L,.vop,.C,.and.vip.(Figure.1.31))..The.currents.are.iip.=.iop.=.icp.in.interval.0.

  • 1-32 ControlandMechatronics

    current..In.DCM,.the.current.is.zero.between.ep.and.Ts..In.the.continuous.current-conduction.mode.(CCM).of.operation,.the.inductor.current.flows.continuously.(iop.>.0)..The.inductor.current.iop.decreases.in.both.cases.in.a.linear.fashion..After.turning.on.Scp,.the.capacitor.voltage.vc.stops.changing..It.keeps.its.value.Vcp.

    The.same.process.takes.place.at.the.negative.side,.resulting.in.a.negative.condenser.current.pulse.and.voltage.swing.after.turning.on.Sn.

    1.10.3.2 the PWM Control

    For.controlling.the.output.voltage.vo.=.vop.+.von.by.PWM.switching,.a.feedback.control. loop.is.applied.(Figure.1.32a)..The.control.signal.vcon.is.compared.to.the.repetitive.sawtooth.waveform.(Figure.1.32b)..The.control.voltage.signal.vcon. is.obtained.by.amplifying.the.error,.the.difference.between.the.actual.output.voltage.vo,.and.its.desired.value.Vref..When.the.amplified.error.signal.vcon.is.greater.than.the.sawtooth.wave-form,.the.switch.control.signal.(Figure.1.32c).becomes.high.and.the.selected.switch.turns.on..Otherwise,.the.switch.is.off..The.controlled.switches.are.Sp.and.Sn.(the.switches.within.one.channel,.e.g.,.Sp.and.Scp.are.in.complementary.states),.and.they.are.controlled.alternatively,.i.e.,.the.switch.control.signal.is.generated.for.the.switch.in.one.channel.in.one.period.of.the.sawtooth.wave.and.in.the.next.period,.the.signal.is.gener-ated.for.the.switch.in.the.other.channel..The.switching.frequency.of.these.switches.is.half.of.the.frequency.of.the.sawtooth.wave.

    Vref

    (a)

    Kvvcon

    vramp

    voComparator ConverterSwitchcontrol

    VU

    (b)

    VL T t

    vconvramp

    (c)

    t

    Switch controlHigh

    Low

    FIGURE 1.32 PWM.control:.(a).Block.diagram,.(b).input.and.(c).output.signals.of.the.comparator.

    49.8

    49.7

    49.673.4 73.6 73.8

    Kv

    v ok (

    V)

    74 74.2

    FIGURE 1.33 Enlarged.part.of.the.bifurcation.diagram.

    2011 by Taylor and Francis Group, LLC

  • NonlinearDynamics 1-33

    1.10.3.3 results

    The. objective. is. the. calculation. of. the. controlled. variable. vo. in. steady. state. in.order.to.discover.the.various.possible.states.of.this.nonlinear.variable.structure.dynamical. system.. The. analysis. was. performed. by. simulation. in. MATLAB.environment..The.effect.of.variation.Kv.was.studied..A.representative.bifurcation.diagram.is.shown.in.Figure