15
Observatoire de Paris BNM-SYRTE Franck Pereira Dos Santos Arnaud Landragin David Holleville André Clairon Patrick Cheinet Julien Le Gouët Kasper Therkildsen Construction of an absolute gravimeter using atom interferometry with cold 87 Rb atoms

Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Franck Pereira Dos SantosArnaud LandraginDavid HollevilleAndré Clairon

Patrick Cheinet Julien Le GouëtKasper Therkildsen

Construction of an absolute gravimeter using atom interferometry with cold

87Rb atoms

Page 2: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Summary

Use of the gravimeter: The Watt Balance

Principle of our gravimeter, atom interferometry

Lasers frequency locks…

Sensitivity to phase noise

Sensitivity to vibrations and rejection method

Advancement : the traps

Conclusion

Page 3: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

The Watt Balance project

BIPM standard Kg

Objective :

Why :

Mass metrology:

Principle :

replace the standard Kg with a definition linked to

the Planck’s constant h

the standard Kg is the last artifact of the international

system, observed drift on the primary and secondary

standards of 5.10-8 Kg over 30 years

goal of 10-8 of relative precision

Balance a mechanical power

with an electrical power

Page 4: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

The Watt Balance projectstatical Phase Dynamical Phase

constant speed motion

B

i

Fg = m × g

L

B × i × L = m gB × i × L = m g

L

v

E = B × L × vE = B × L × v

m g v = E im g v = E i

hvg

fkm J

×=

2

FLaplace = i L × B

Planck’sConstant

JosephsonFrequency

B

Necessity of a precise g mesurement

Page 5: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Push beam

π/2

π/2

π

Raman laser Beams

Detection

Raman pulses2T=100 ms

Total interaction time=

interferometer

87Rb atoms cooledIn a 2D-MOT

108 atoms trapped in 100 msCooled to a few µK

In a 3D-MOT

109 to 1010

atoms.s-1

State selection|5S1/2, F=1, m F=0 >

∆Φ= keff .g.T 2

Raman laser Beams

General Principle

Page 6: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Trappingsame lasers for trapping and Raman

π/2 pulse : Atomic beam Splitter

π pulse : Atomic mirror

Tran

sitio

n P

roba

bilit

y

ΩRabiτπ/2 π

The lasers couple the |f1> and |f2> states in a quantum superposition

=> Rabi oscillations

- k2

k1

k2

k1

optkkkp 221 ≈−=

During the transition, the atom takes two photon recoils and

change its trajectory

|5S1/2 >

|5P3/2 >

|f1 >

|f2 >

|e0 >

|e1 >|e2 >

|e3 >

virtual state |i >

≤2 GHz

6.8 GHz

δ => Doppler cooling

87Rb780 nm

Stimulated Raman Transitions

Raman

Detection

Page 7: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Optical Bench1 single bench for cooling and Raman pulses

ECL1Réf HYPER

ECL2 MOPA 2

ECL3 MOPA 1

F-LOCK

AOM

F or φ-LOCK

RAMANSTRAPS

DETECTION

4.8 à 6.8 GHz (YIG)

6.8 GHz

Locked onspectroscopy line

Page 8: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Transition to φ-lock

0 5 10 15 20 25 30 35 40 45 5050

100

150

200

250

300

-1500

-1000

-500

0

500

1000

1500

Err

or S

igna

l (M

Hz)

Time (ms) F

requ

ency

cha

nge

(MH

z)

2 GHz Sweep in 800µs, lasers unlocked

MasterRepumperYIG

0 1 2 3 4 5 6 7 8 9 10-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

-1500

-1000

-500

0

500

1000

1500

Err

or S

igna

l (M

Hz)

Time (ms)

2 GHz Sweep in 800µs, lasers locked

Fre

quen

cy c

hang

e (M

Hz)

MasterRepumperYIG

Fixed rampsapplied on lasers

controls

-2 0 2 4 6 8-4

-2

0

2

4

6

8

Pha

se e

rror

(mra

d)

Time (ms)

0.8 ms to sweep by 2 GHz

3 ms to reach the 1 mrad level

Page 9: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

|5S1/2 >

|5P3/2 >

|f1 >

|f2 >

|i >2 GHz

6.8 GHz

87Rb

780 nm

π/2

π

π/2

0)0( =φ

2

21)( gTkT eff=φ

22)2( gTkT eff=φ

)2()(2)0( TT φφφ +−=Φ

ϕ1(t) = k1z(t) +ϕ10(t)

Interferometer’s phase shift

ϕ2(t) = −k2z(t) +ϕ20(t)

φ(t) =ϕ2(t) −ϕ1(t)is printed on the

atomic phase

Atomic interferometer

2)cos(1 Φ+

=•P)2()(2)0(.. 0002 TTTgkeff φφφ +−+=Φ

T=50ms => ~106 rad

Page 10: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Transfer function H(ω) for laser phase noise

101 102 103 104 105 1061E-3

0,01

0,1

1

10

<H(f

)2 >

Frequency (Hz)

2/(2πf/Ω) 2

σΦ2 = H(ω)∫ 2

Sϕ(ω)dω

Theory (T=5ms):

Experiment (gyroscope)

0 100 200 300 400 500 6001E-4

1E-3

0,01

0,1

1

10

H(f)

²

Frequency (Hz)

)(ωϕS Phase power spectral density

TheoryExperiment

13100 13150 13200 13250 133001E-4

1E-3

0,01

0,1

1

10

H(f)

2

Frequency (Hz)))

2sin()

2)2()(cos(

2)2(sin(4)( 22

TTTiH RR ωω

τωτωω

ωω Ω+

++Ω−Ω

−=

Page 11: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Raman laser phase noiseTwo possible sources:

Total contribution: = 1.75 mrad => 9 ng/shot

Experimental result

Weighted with H(ω): 2T=100ms and τ=10 µs

σΦ =1.3 mrad

Reference frequency phase stability: 1.2 mradσΦ =

Residual noise of the Phaselock loop:Estimated for state of the art quartz oscillator

σΦ

1 10 100 1000 10000 100000 1000000 1E71E-12

1E-11

1E-10

1E-9

1E-8

Sφ(

f) (r

ad2 .H

z-1)

Frequency (Hz)

Page 12: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Sensitivity to vibrations

∫=Φ ωωωωσ dSHk aeff )()(

4

222phase/position

δφ <=> keffδz

Required vibration noise level (>0.3 Hz) :1 ng/Hz1/2

Noise level in the labWeighted noise

Up to 80 Hz :

Need for vibration isolationand compensation

0,1 1 10 1001E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

acce

lera

tion

nois

e (m

2 s-4/H

z)

Frequency (Hz)

Page 13: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Vibration rejection

Act on the Raman phase difference to compensatefor vibrations

Method tested on auxiliary experiment

With a seismometer

ECL

PLL

Seismometer

Interferometer

Raman laser

Page 14: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Progress report

0,0 0,5 1,00,0

5,0x108

1,0x109

1,5x109

2,0x109

Atom

s lo

aded

Time (s)0 20 40 60 80

0

1x108

2x108

3x108

4x108

5x108

flux

dens

ity (a

t.m-1)

speed (m.s-1)

Detection Photodiode

2D-MOT 3D-MOT

2D-MOT total flux =1010 atoms.s-1

Cold atomstrapping lasers

3D-MOT loading rate = 3.109 atoms.s-1

3D-MOT 2D-MOT

Page 15: Construction of an absolute gravimeter using atom ...physics.uq.edu.au › ACQAO › workshops › LesHouches › Cheinet.pdfFranck Pereira Dos Santos Arnaud Landragin David Holleville

Observatoire de Paris BNM-SYRTE

Conclusion

- Cold atom sources obtained- Raman lasers phase-locked

-First atom interferometry signals: early 2005Limited by vibrationsPreliminary vacuum chamber => test the system

-Implement the vibration isolation platform and the vibration rejection

Expected sensitivity : 10-9 g after a few secondsExpected accuracy : 10-9 g