39
KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Experimentelle Kernphysik www.kit.edu Constraints on Supersymmetry using the latest LHC data C. Beskidt, W. de Boer, D. Kazakov, F. Ratnikov

Constraints on Supersymmetry using the latest LHC data

Embed Size (px)

DESCRIPTION

Constraints on Supersymmetry using the latest LHC data. C. Beskidt , W. de Boer, D. Kazakov, F. Ratnikov. Outline. Find allowed parameter space in CMSSM using a  2 based on LHC SUSY searches, Higgs discovery, relic density, flavour constraints, electroweak constraints, direct DM searches - PowerPoint PPT Presentation

Citation preview

Page 1: Constraints on Supersymmetry using the latest LHC data

KIT – Universität des Landes Baden-Württemberg undnationales Forschungszentrum in der Helmholtz-Gemeinschaft

Institut für Experimentelle Kernphysik

www.kit.edu

Constraints on Supersymmetry using the latest LHC data

C. Beskidt, W. de Boer, D. Kazakov, F. Ratnikov

Page 2: Constraints on Supersymmetry using the latest LHC data

2Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Outline

Find allowed parameter space in CMSSM using a 2 based on LHC SUSY searches, Higgs discovery, relic density, flavour constraints, electroweak constraints, direct DM searches

Problem 1: Free CMSSM parameters are highly correlated

Solution 1: Multi-step fitting approach → highly correlated parameters are fitted first for fixed other CMSSM parameters

Problem 2: Higgs of 125 GeV and large BR hard to accommodate in CMSSM

Solution 2: go to NMSSM

Page 3: Constraints on Supersymmetry using the latest LHC data

3Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Constraints used for the 2-function

Relic Density h2 = 0.1131 ± 0.0034

B → BRexp(B→) = (1.68 ± 0.31)·10-4

Myon g-2 Δa=(30.2 ± 6.3 ± 6.1) ·10-11

b →s BRexp(b→s) = (3.55 ± 0.24)·10-4

Bs→ BRexp(Bs→) < 4.5·10-9

Higgs Mass mh mh > 114.4 GeV

LHC direct searches had < 0.003 – 0.03 pb

XENON100 N < 8·10-45 - 2·10-44 cm2

Pseudo-scalar Higgs mA mA > 480 GeV for tanβ ~ 50

For more details see CB et al., arXiv: 1207.3185

Page 4: Constraints on Supersymmetry using the latest LHC data

4Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Combination of all constraints

2 = 2 – min2

For each 95% CL exclusion contour 2 = 5.99

Best fit point χmin2 = 4.1

95% CL → Δχ 2 < 5.99

Contour

1 2 3 4 5

68% CL → Δχ2 < 2.3

~LSP

For more details see CB et al., arXiv: 1207.3185 or backup slides

LHC direct searches Bs→ mh > 114.4 GeV mA XENON100

Page 5: Constraints on Supersymmetry using the latest LHC data

5Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Influence of g-2

Preferred region by g-2 if the errors are added quadratically or linearly

g-2 gives a light preference for light SUSY masses but light SUSY masses already excluded by the LHC direct searches → errors underestimated or additional loop contribution

LHCpreferred by g-2 tan

1001013

2

10

SUSY

SUSY

m

GeVa

52

2

TDDeviation from SM 2-3: for heavy mSUSY

Page 6: Constraints on Supersymmetry using the latest LHC data

6Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

(SM?) - Higgs found at the LHC

Both the CMS and ATLAS experiment measured a Higgs within the errors of about 126 GeV

What does this mean for the allowed CMSSM parameter space?

CMS (CMS-PAS-HIG-12-020) ATLAS (ATLAS-CONF-2012-093)

(125.3 ± 0.4 (stat) ± 0.5 (syst)) GeV (126.5 ± 0.4 (stat) ± 0.4 (syst)) GeV

Page 7: Constraints on Supersymmetry using the latest LHC data

7Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

125 GeV Higgs within the CMSSM

A 125 GeV light Higgs is possible within the CMSSM if the SUSY masses are heavy enough and if the trilinear coupling A0 is negative

The allowed parameter space is largely determined by the assigned error → strong dependence on the theoretical error

Exp. ~ 2GeV, theo. ~ 3GeV, non-Gaussian → lin. addition → 5GeV

best fit points for different errors

(2=5.99)

125123

121

119

Page 8: Constraints on Supersymmetry using the latest LHC data

8Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Summary so far

125 GeV Higgs hard to accomodate in CMSSM (unless one stretches the errors)

In addition, couplings have tendency to deviate from SM (see next slides)

Heavier Higgs and non-SM couplings easy to accomodate if mixing between Higgs doublet and additionally singlet, as proposed in NMSSM to solve -problem (Kim, Nilles Phys. Lett. B 138, 150 (1984))

Page 9: Constraints on Supersymmetry using the latest LHC data

9Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

NMSSM versus MSSM

NMSSM (Next to MSSM):

Mixing: larger Higgs mass couplings to up and down type fermions can be different

new free parameters: couplings , trilinear couplings A, A mixing parameter eff = <S>

(in addition to m0, m1/2, A0, tan)

...ˆ3

ˆˆˆ 3

,3,3,33

,2,2,22

,1,1,11

SHHSW

SSHSHSH

SSHSHSH

SSHSHSH

duNMSSM

suudd

suudd

suudd

MSSM

NMSSM

Higgs content

3 CP even 2 CP odd 1 singlet

Page 10: Constraints on Supersymmetry using the latest LHC data

10Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Fit to SM couplings (scale factors)

CF = scale factor for coupling to fermions

CV = scale factor for coupling to vector bosons

Best fit point: CF ≈ 0.5 CV ≈ 1.0

SM: CF = CV = 1

(CMS-PAS-HIG-12-020)

SM

Best fit point

Page 11: Constraints on Supersymmetry using the latest LHC data

11Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Higgs mass

MSSM

NMSSM: Mixing with singlet

Hall, Pinner, Ruderman,arXiv 1112.2703

loop corrections

2~

2

2~

2

2

2~

2

4

2222

121ln

4

32cos

t

t

t

t

t

ttZh m

X

m

X

m

m

v

mmm

Increases Higgs mass for large

2

222222

,,

,,2cos2sin

SS

SZ

mAMv

AMvMvM

2Zm 2130GeV

cot ttt AmX

Page 12: Constraints on Supersymmetry using the latest LHC data

12Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Benchmark points in NMSSM

Analyses have been done e.g. Ellwanger, Hugonie (arXiv:1203.5048 using GUT scale parameters), King et al. (arXiv:1201.2671 using low energy values of parameters)

Benchmark points fulfill Higgs mass and couplings, but one needs very specific singlet mixing to obtain simultaneously mH=125 GeV, large branching into , small branching into

M0 m1/2 A0 A A tan eff

600 600 -1550 -275 -625 2.40 0.545 0.253 120

960 525 -1140 -360 -575 2.290.600

0.321 122

E.g. Benchmark points (BM I and BM II) from Ellwanger, Hugonie, arXiv:1203.5048

Input at MSUSY

Input at MGUT

Page 13: Constraints on Supersymmetry using the latest LHC data

13Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Typical Higgs masses and couplings

126 126

Components of H2

Hd 0.26 0.04

Hu 0.85 -0.54

S -0.45 0.84

2HM

BM I II

100 121

Components of H1

Hd 0.39 0.50

Hu 0.34 0.74

S 0.86 0.45

1HM

BM I II

Strong mixing with singlet → R can be enchanced

It is possible that 126 GeV is not the lightest Higgs

Page 14: Constraints on Supersymmetry using the latest LHC data

14Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

2 including R, Mh and h2 constraint

Allowed region in -plane for BM I

Parameters strongly constrained by Mh=125, R=1.7, h2=0.11(all other parameters fixed)

2 including R and Mh constraint

Page 15: Constraints on Supersymmetry using the latest LHC data

15Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

2 including R, Mh and h2 constraint. Parameter , and eff have been varied, A0, A and A fixed large allowed region within m0m1/2-plane

Allowed region in m0m1/2-plane

02~ f

m

ex. by h2

excluded by R

Page 16: Constraints on Supersymmetry using the latest LHC data

16Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Allowed region in m0m1/2-plane

Even though other constraints have not been included to the previous fit, the result is in good agreement with b s, Bs, B and g-2

g-2

Bs b s

B

Similar to CMSSM:Including g-2 to 2 constantoffset at largeMsusy

Page 17: Constraints on Supersymmetry using the latest LHC data

17Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Summary

125 GeV Higgs within CMSSM only possible for high SUSY masses

Allowed CMSSM parameter space depends on total error of the Higgs mass

Within NMSSM one can get “naturally” a 125 GeV Higgs and in addition an enhancement/reduction in Rγγ/ττ because of large mixing with additional Higgs singlet

Other constraints fullfilled like in CMSSM, e.g. h2 ,b →s, Bs→, B →, and g-2 → good starting point to do same minimization as in CMSSM → work in progress…

Page 18: Constraints on Supersymmetry using the latest LHC data

18Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

BACKUP

Page 19: Constraints on Supersymmetry using the latest LHC data

19Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Details on χ2-function

Relic Density

B →τν

Myon g-2

b →sγ

Bs→μμ BRexp(Bs→μμ) < 4.5·10-9

Higgs Mass mh mh > 114.4 GeV

LHC direct searches σhad < 0.003 – 0.03 pb

DDMS σχN < 8·10-45 - 2·10-44 cm2

Pseudo-scalar Higgs mA mA > 480 GeV for tanβ ~ 50

Experimental Values

Defined in a straight forward way:

2

2exp2

XX SUSY

Page 20: Constraints on Supersymmetry using the latest LHC data

20Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Details on χ2-function?

Relic Density Ωh2 = 0.1131 ± 0.0034

B →τν BRexp(B→τν) = (1.68 ± 0.31)·10-4

Myon g-2 Δaμ=(30.2 ± 6.3 ± 6.1) ·10-11

b →sγ BRexp(b→sγ) = (3.55 ± 0.24)·10-4

Bs→μμ

Higgs Mass mh

LHC direct searches σhad < 0.003 – 0.03 pb

DDMS σχN < 8·10-45 - 2·10-44 cm2

Pseudo-scalar Higgs mA mA > 480 GeV for tanβ ~ 50

95% CL only added if XSUSY > X95% XSUSY

= model value of BR(Bs→μμ) or mh X95% can be determined from requirement Δχ2=5.99 at 95% CL exclusion limit

Page 21: Constraints on Supersymmetry using the latest LHC data

21Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Details on χ2-function?

Relic Density Ωh2 = 0.1131 ± 0.0034

B →τν BRexp(B→τν) = (1.68 ± 0.31)·10-4

Myon g-2 Δaμ=(30.2 ± 6.3 ± 6.1) ·10-11

b →sγ BRexp(b→sγ) = (3.55 ± 0.24)·10-4

Bs→μμ BRexp(Bs→μμ) < 4.5·10-9

Higgs Mass mh mh > 114.4 GeV

LHC direct searches

DDMS

Pseudo-scalar Higgs mA

95% CL exclusion contours Define χ2=(XSUSY - X95%)2/σ95%

2 XSUSY = model value of mA or hadronic cross section or χN elastic scattering cross section σ95% can be determined from 1σ band given by experiments X95% determined from requirement Δχ2=5.99 at 95% CL exclusion contour

Page 22: Constraints on Supersymmetry using the latest LHC data

22Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Typical Sparticle masses and LSP mixing (NMSSM)

Components of

0.20 0.25

-0.16 -0.20

0.48 0.52

-0.70 -0.70

0.46 0.37

0.10 0.10

01

BM I II

Sparticle masses

1388 1254

1318 1397

359 463

1001 1060

528 900

108 108

77 78

BM I II

gm~

qm~

1~tm

1~b

m

1~m

1

m

01

m

B~

W~

dH~

uH~

S~

2h

Page 23: Constraints on Supersymmetry using the latest LHC data

23Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Start with Relic Density Constraint

2/12 mmmA

f

f

A

χ

χ

~

~

tan(β)·mfd

mW

8

N1N3(4)

tan(β)·mfd ↔tan(β)mfu

f

f

A

χ

χ

~

~

tan(β)·mfd

mWmW

88

N1N3(4)

tan(β)·mfd ↔tan(β)mfu

1+( /mχ )2 – (mW/mχ )2

8

W

W+

χi+

χ

χ

~

~

~

Z

Z

χi

χ

χ

~

~

~

1

mχ+

i 1+( /mχ )2 – (mW/mχ )2

88

W

W+

χi+

χ

χ

~

~

~

W

W+

χi+

χ

χ

~

~

~

Z

Z

χi

χ

χ

~

~

~

Z

Z

χi

χ

χ

~

~

~

1

mχ+

i mχ+

i

f

f

Z

χ

χ

~

~

mχ mf

mZ2

8

(N3(4))2

_

f

f

Z

χ

χ

~

~

mχ mf

mZ2mZ2

88

(N3(4))2

_

f

f

f

χ

χ

~

~

~

mχmf

mf2~

8

_

f

f

f

χ

χ

~

~

~

mχmf

mf2~

8

f

f

f

χ

χ

~

~

~

mχmf

mf2~ mf2~

88

_

4

2tan

Am

Problem: for excluded first diagram too small. Last diagram also small → can get correct relic density by mA s-channel annihilation

qm~

mA can be tuned with tanβ for any m1/2 → tanβ ≈ 50 (see next slide)

Page 24: Constraints on Supersymmetry using the latest LHC data

24Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

tan 50

Co-annihilation

Relic Density Constraint – Dependence on tanβ

22

21

2 mmmA

arXiv:1008.2150

(Tree Level)

bh

2

21

222

2

2

1

22

2123

222

2

12121 28

..,2

HHg

HHgg

chHHmHmHmHHVtree

th

running < 0 → if ht and hb similar → small mA for tan= mt/mb 50

Fit of Ωh2 determines mA and tanβ

m1 runningm2 running

mAm1/2

Page 25: Constraints on Supersymmetry using the latest LHC data

25Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

tanβ ≈ 50

(CMS PAS HIG-11-009)Atlas similar

For tanβ ≈ 50mA > 440 GeV

What about Higgs mA limit?

Page 26: Constraints on Supersymmetry using the latest LHC data

26Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Examples for high correlation

χ2 for Bs → μμ and Ωh2

co-annihilation region

mA exchange

focus point region

Origin of correlation:Both strongly dependent ontanβ

Bs → μμ Ωh2

For given m0 only very specific values of tan

For given tan only very specific values of A0

Page 27: Constraints on Supersymmetry using the latest LHC data

27Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Origin of correlation

Upper Limit for Bs → μμ (LHCb, CMS)

exp. Value Ωh2

Upper limit for tanβ for upper limit on Bs → μμ

Best tanβ for Ωh2

A0=0

Page 28: Constraints on Supersymmetry using the latest LHC data

28Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Origin of correlation

Upper Limit for Bs → μμ exp. Value Ωh2

A0=1580 GeV

Best tanβ for Bs → μμ and Ωh2 simultaneously

Common tanβ can only be found for specific A0 value

Page 29: Constraints on Supersymmetry using the latest LHC data

29Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Reason for strong A0 dependence of Bs → μμ

Becomes small, ifcan be achieved by adjusting At, till mixing term ~ (At – μ/tanβ) becomes small.Important only for light SUSY masses (see blue region)

arXiv:hep-ph/0203069v2

21~~ tt

Stop mass difference

Page 30: Constraints on Supersymmetry using the latest LHC data

30Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Combination of Bs → μμ and Ωh2

Tension at large tan from Bs can be removed by large A0

Tension can’t be removed by varying A0 because A0 < 3m0, A0 not high enough to get small BR

Tension still there although A0 large enough to get small BR

Page 31: Constraints on Supersymmetry using the latest LHC data

31Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Why there‘s still a tension for large m0?

Small Stau masscontribute to Ωh2

Bs →μμ needs large A0 for large tanβ

Ωh2 too high for large A0

mA high → small cross section

Bs →μμ smaller than SM value, even at large tanβ

m0=1000 m1/2=250 SM value

Page 32: Constraints on Supersymmetry using the latest LHC data

32Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

How to treat theoretical errors?Theoretical errors can be treated as nuisance parameters and integrated over in the probability distribution (=convolution for symm. distr.)

If errors Gaussian, this corresponds to adding the experimental and theoretical errors in quadrature

Assume σtheo ~ σexp (only then important)

Convolution of 2 GaussiansConvolution of Gaussian + “flat top Gaussian” (expected if theory errors indicate a range)

Adding errors linearly more conservative approach for theory errors.

2exp

22 theo exp~ theo

Page 33: Constraints on Supersymmetry using the latest LHC data

33Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

SUSY particles can be produced in pp collisions at the LHC

Combination of the different cross sections of

Direct searches for SUSY particles

qqqgggpp ~~,~~,~~

qq~~

qg~~gg~~

95% CL exclusion by CMS + Atlas (Jets+MET)CMS PAS SUS-11-003

arXiv:1109.6572

Contribution to σtot=0,1pb

Parametrization of with σeff

2 that Δχ2 = χ2 – χ2

min = 5,99

222efftot

Page 34: Constraints on Supersymmetry using the latest LHC data

34Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Direct search for dark matter (DDMS)

Assume Neutralino is LSP and therefore perfect WIMP candidate

Direct detection of WIMPs through elastic scattering on heavy nuclei

Coherent scattering: σ ~ N2 and effective coupling on proton/neutron fp/fn

Effective coupling includes

couplings of WIMPs on

quarks fqn/fq

p

90% CL → Δχ2 = 4,21(arXiv:1005.0380)

Page 35: Constraints on Supersymmetry using the latest LHC data

35Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Including DDMS constraint into χ2

UncertaintiesLocal DM density (0,3/1,3 GeV/cm³)

Effective coupling (especially s-quark) because of different calculations

;02.0

;026.0

;02.0

ps

pd

pu

f

f

f

;02.0

;036.0

;014.0

ps

pd

nu

f

f

f

;26.0

;033.0

;023.0

ps

pd

pu

f

f

f

;26.0

;042.0

;018.0

ps

pd

nu

f

f

f

lattice πN

conservative

Page 36: Constraints on Supersymmetry using the latest LHC data

36Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Excluded parameter space by XENON100

Scattering cross section is proportional to the product of gaugino und higgsino component → Increase of the cross section if higgsino component is increasing

Higgsino component increases for high values of m0 → DDMS is sensitive for high m0 in contrast to the direct searches at the LHC

Page 37: Constraints on Supersymmetry using the latest LHC data

37Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Comparison to other groups

Strong correlation between A0 and tanβ

Buchmueller et al. arXiv: 1110.3568

If one include the exclusion limit of the LHC, the difference between the 95% CL contour of the quadratic and linear addition of the errors vanishes.

Page 38: Constraints on Supersymmetry using the latest LHC data

38Conny Beskidt, IEKP SUSY 2012, Beijing, 16.08.2012

Exclusion because of Ωh2 for large values of m1/2

Excluded region for large values of m1/2 and small m0 because of the relic density

For this combination of m0 and m1/2 one needs a high value of tanβ for the correct relic density

For such high values of tanβ the Neutralino is not the LSP anymore

Χ2 contribution of Ωh2

m0=500 GeV m1/2=1300 GeV

LSP~

Page 39: Constraints on Supersymmetry using the latest LHC data

Contributors to CF and CV