56
Constraining QCD transport coefficients in hadron colliders Akihiko Monnai (KEK, Japan) with Gabriel Denicol (UFF, Brasil) and Björn Schenke (BNL, USA) 20th InternaLonal Symposium on Very High Energy Cosmic Ray InteracLons May 24, 2018, Nagoya, Japan G. Denicol, AM, B. Schenke, Phys. Rev. LeY. 116, 212301 (2016)

Constraining QCD transport coefficients in hadron colliders€¦ · Constraining QCD transport coefficients in hadron colliders Akihiko Monnai (KEK, Japan) with Gabriel Denicol (UFF,

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

  • Constraining QCD transport coefficients in hadron colliders

    Akihiko Monnai (KEK, Japan)

    with Gabriel Denicol (UFF, Brasil) and Björn Schenke (BNL, USA)

    20th InternaLonal Symposium on Very High Energy Cosmic Ray InteracLons May 24, 2018, Nagoya, Japan

    G. Denicol, AM, B. Schenke, Phys. Rev. LeY. 116, 212301 (2016)

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  Cosmic ray and nuclear collisions

    Transverse momentum spectra

    UHECR Nuclear collisions

    h

    Energy scale:

    AIRES by COSMOS, U. Chicago

    h

    CMS, CERN

    √sNN = 300 TeV √sNN = 13 TeV (pp)

    UHECR is higher in energy; nuclear colliders allow detailed analyses in a controlled environment

    2 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  High-energy nuclear colliders momentum spectra

    RelaLvisLc Heavy Ion Collider (RHIC)@BNL (2000-)

    √sNN = 7.7-200 GeV

    AA collisions: Cu-Cu, Cu-Au, Au-Au, U-U

    pA, dA, hA collisions: √s = 20-200 GeV

    pp collisions: √s = 200, 510 GeV

    3 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  High-energy nuclear colliders momentum spectra

    RelaLvisLc Heavy Ion Collider (RHIC)@BNL (2000-)

    √sNN = 7.7-200 GeV

    AA collisions: Cu-Cu, Cu-Au, Au-Au, U-U

    pA, dA, hA collisions: √s = 20-200 GeV

    Large Hadron Collider (LHC)@CERN (2009-)

    AA collisions: Xe-Xe, Pb-Pb

    √sNN = 2.76-5.44 TeV

    pp collisions: √s = 200, 510 GeV

    pA collisions: √s = 5.02, 8.16 TeV

    pp collisions: √s = 0.9-13 TeV

    3 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  AA collisions: creaLon of a thermal QCD medium called quark-gluon plasma (QGP) above √sNN ~ 20-200 GeV

    Transverse momentum spectra

    p/n (in A)

    π+ pK+

    π-Δ++

    γ

    γ

    Low-momentum hadrons are produced from the medium

    γ

    γ

    K+

    π+

    p

    4 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  AA collisions: creaLon of a thermal QCD medium called quark-gluon plasma (QGP) above √sNN ~ 20-200 GeV

    Transverse momentum spectra

    p/n (in A)

    π+ pK+

    π-Δ++

    γ

    γ

    Low-momentum hadrons are produced from the medium

    γ

    γ

    K+

    π+

    p

    QGP: a high T phase of QCD where quarks are deconfined from hadrons (T > 2×1012 K)

    4 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  AA collisions: creaLon of a thermal QCD medium called quark-gluon plasma (QGP) above √sNN ~ 20-200 GeV

    Transverse momentum spectra

    p/n (in A)

    π+ pK+

    π-Δ++

    γ

    γ

    Low-momentum hadrons are produced from the medium

    γ

    γ

    K+

    π+

    p

    QGP: a high T phase of QCD where quarks are deconfined from hadrons (T > 2×1012 K)

    4 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  How would the QGP affect collider physics?

    5 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  How would the QGP affect collider physics?

    SpaLal anisotropy

    y

    x

    5 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  How would the QGP affect collider physics?

    SpaLal anisotropy

    y

    x

    In-medium InteracLon

    5 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  How would the QGP affect collider physics?

    Momentum anisotropySpaLal anisotropy

    py

    px

    y

    x

    In-medium InteracLon

    5 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  How would the QGP affect collider physics?

    Momentum anisotropySpaLal anisotropy

    py

    px

    y

    x

    In-medium InteracLon

    Characterized by Fourier harmonics of azimuthal distribuLon

    : ellipLc flow

    5 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  Experimental data

    Kolb et al., PLB 500, 232 (2001)

    Consistent with the nearly-perfect liquid picture up to pT ~ 2 [GeV]

    GasGasGas

    Liquid: strong-coupling limit

    Gas: weak-coupling limit

    6 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  Experimental data

    Kolb et al., PLB 500, 232 (2001)

    Consistent with the nearly-perfect liquid picture up to pT ~ 2 [GeV]

    GasGasGas

    Liquid: strong-coupling limit

    Gas: weak-coupling limit

    - The QGP is strongly-coupled near the quark-hadron transiLon

    - We may use hydrodynamics for an effecLve theory of QGP

    6 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  Cosmic ray and nuclear collisions

    Transverse momentum spectra

    Collider physics has its roots in cosmic ray physics and the study of mulL-parLcle producLon

    Fermi, Prog. Theor. Phys. 5, 570 (1950)

    7 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  Cosmic ray and nuclear collisions

    Transverse momentum spectra

    Collider physics has its roots in cosmic ray physics and the study of mulL-parLcle producLon

    Fermi, Prog. Theor. Phys. 5, 570 (1950)

    Landau model Landau and Belenkii, Uspekhi Fiz. Nauk 56, 309 (1955)

    First introducLon of hydrodynamics to nuclear collisions (*in the context of pp collisions)

    7 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  A modern view of relaLvisLc nuclear collisions

    Nuclei (saturated gluons)

    Local equilibraLon

    Collision

    Color glass condensate

    Hadronic transport

    Freeze-out

    Hydrodynamic evoluLon

    Glasmaτ < 1 fm

    τ = 1-10 fm

    τ > 10 fm

    τ < 0 fm

    8 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  A modern view of relaLvisLc nuclear collisions

    Nuclei (saturated gluons)

    Local equilibraLon

    Collision

    Color glass condensate

    Hadronic transport

    Freeze-out

    Hydrodynamic evoluLon

    Glasmaτ < 1 fm

    τ = 1-10 fm

    τ > 10 fm

    τ < 0 fm

    8 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  A modern view of relaLvisLc nuclear collisions

    Nuclei (saturated gluons)

    Local equilibraLon

    Color glass condensate

    Hadronic transport

    Freeze-out

    Hydrodynamic evoluLon

    Glasmaτ < 1 fm

    τ = 1-10 fm

    τ > 10 fm

    τ < 0 fm

    Collision

    8 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  A modern view of relaLvisLc nuclear collisions

    Glasma(Longitudinal color magneLc & electric fields)

    Local equilibraLon

    Collision

    Color glass condensate

    Hadronic transport

    Freeze-out

    Hydrodynamic evoluLon

    Glasmaτ < 1 fm

    τ = 1-10 fm

    τ > 10 fm

    τ < 0 fm

    8 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  A modern view of relaLvisLc nuclear collisions

    Local equilibraLon

    Collision

    Color glass condensate

    Hadronic transport

    Freeze-out

    Hydrodynamic evoluLon

    Glasma

    QGP fluid(Aer local thermalizaLon)

    τ < 1 fm

    τ = 1-10 fm

    τ > 10 fm

    τ < 0 fm

    9 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  A modern view of relaLvisLc nuclear collisions

    Local equilibraLon

    Collision

    Color glass condensate

    Hadronic transport

    Freeze-out

    Hydrodynamic evoluLon

    Glasma

    Thermal hadrons

    τ < 1 fm

    τ = 1-10 fm

    τ > 10 fm

    τ < 0 fm

    9 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  A modern view of relaLvisLc nuclear collisions

    Local equilibraLon

    Collision

    Color glass condensate

    Hadronic transport

    Freeze-out

    Hydrodynamic evoluLon

    Glasma

    Decay hadronsThermal hadrons

    τ < 1 fm

    τ = 1-10 fm

    τ > 10 fm

    τ < 0 fm

    9 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Overview of the modeln  Constraining QCD transport coefficients in hadron colliders

    IniLal condiLons

    RelaLvisLc hydrodynamics

    Observables

    Hadronic transport

    10 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Overview of the modeln  Constraining QCD transport coefficients in hadron colliders

    IniLal condiLons

    RelaLvisLc hydrodynamics

    Observables

    EquaLon of state

    Transport coefficients

    ,

    InformaLon of QCD

    Hadronic transport

    10 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Overview of the modeln  Constraining QCD transport coefficients in hadron colliders

    IniLal condiLons

    RelaLvisLc hydrodynamics

    Observables

    EquaLon of state

    Transport coefficients

    ,

    InformaLon of QCD

    Hadronic transport

    Experimental dataComparison

    10 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Overview of the modeln  Constraining QCD transport coefficients in hadron colliders

    IniLal condiLons

    RelaLvisLc hydrodynamics

    Observables

    EquaLon of state

    Transport coefficients

    ,

    InformaLon of QCD

    Hadronic transport

    Experimental dataComparison

    Indirect constraining

    10 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Transport coefficientsn  Dynamical responses to the gradients of flow ; effecLve

    correcLons to the pressure

    Shear viscosity = response to deformaLon

    Bulk viscosity = response to volume change

    11 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Transport coefficientsn  Dynamical responses to the gradients of flow ; effecLve

    correcLons to the pressure

    relaLvisLc terms relaLvisLc terms

    Shear viscosity = response to deformaLon

    Bulk viscosity = response to volume change

    linear responselinear response

    11 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Transport coefficientsn  Dynamical responses to the gradients of flow ; effecLve

    correcLons to the pressure

    relaLvisLc terms relaLvisLc terms

    = DerivaLve of = DerivaLve of

    Shear viscosity = response to deformaLon

    Bulk viscosity = response to volume change

    linear responselinear response

    11 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Transport coefficientsn  Dynamical responses to the gradients of flow ; effecLve

    correcLons to the pressure

    relaLvisLc terms relaLvisLc terms

    = DerivaLve of = DerivaLve of

    Shear viscosity = response to deformaLon

    Bulk viscosity = response to volume change

    Bulk viscosity in the conformal limit; shear viscosity dominates

    linear responselinear response

    11 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    n  No first principle (laÄce QCD) calculaLons so far

    Transport coefficients

    12 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    n  No first principle (laÄce QCD) calculaLons so far

    Transport coefficients

    n  AnL-de SiYer/conformal field theory (AdS/CFT) duality

    “The universal lower bound”

    Kovtun, Son, Starinets, PRL 94 (2005) 111601

    5-dimesional AdS black hole 4-dimensional

    super Yang-Milles theory

    12 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    n  No first principle (laÄce QCD) calculaLons so far

    Transport coefficients

    n  AnL-de SiYer/conformal field theory (AdS/CFT) duality

    “The universal lower bound”

    Kovtun, Son, Starinets, PRL 94 (2005) 111601

    5-dimesional AdS black hole 4-dimensional

    super Yang-Milles theory

    Is it applicable to QCD? – What would be the temperature dependence?

    12 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Observable sensiLve to viscosityn  EllipLc flow v2

    Kolb et al., PLB 500, 232 (2001)

    Shear viscosity can account for deviaLon from local equilibrium at higher pT

    13 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Observable sensiLve to viscosityn  EllipLc flow v2

    COLD COLDHOT

    z

    x

    Kolb et al., PLB 500, 232 (2001)

    Shear viscosity can account for deviaLon from local equilibrium at higher pT

    We use rapidity dependence of v2 to extract the temperature dependence of η/s(T)

    13 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Observable sensiLve to viscosityn  ParameterizaLon of shear viscosity

    0

    1

    2

    3

    4

    5

    0 0.1 0.2 0.3 0.4 0.5

    ηT

    /(ε+

    P)

    T[GeV]

    (ηT/(ε+P))min=0.04, a=0, b=10 (ηT/(ε+P))min=0.12, a=0, b=0 (ηT/(ε+P))min=0.04, a=10, b=0 (ηT/(ε+P))min=0.04, a=10, b=2

    *In the vanishing density limit,

    14 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Observable sensiLve to viscosityn  ParameterizaLon of shear viscosity

    0

    1

    2

    3

    4

    5

    0 0.1 0.2 0.3 0.4 0.5

    ηT

    /(ε+

    P)

    T[GeV]

    (ηT/(ε+P))min=0.04, a=0, b=10 (ηT/(ε+P))min=0.12, a=0, b=0 (ηT/(ε+P))min=0.04, a=10, b=0 (ηT/(ε+P))min=0.04, a=10, b=2

    *In the vanishing density limit,

    The rise in the QGP phase moLvated by perturbaLve QCD;The decrease in the hadronic phase by chiral perturbaLon theory

    Csernai, Kapusta and McLerran, PRL 97, 152303 (2006)

    14 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IniLal condiLonsn  Phenomenological approach

    Glauber model (2D):

    Nucleons are distributed according to a Woods-Saxon funcLon

    Nucleons in different nuclei are in the distance = Sub-collision

    Loizides et al., arXiv: 1408.2549

    15 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IniLal condiLonsn  Phenomenological approach

    Glauber model (2D):

    Nucleons are distributed according to a Woods-Saxon funcLon

    Nucleons in different nuclei are in the distance = Sub-collision

    Loizides et al., arXiv: 1408.2549

    Glauber-Lexus model (3D): AM and Schenke, Phys. LeY. B 752, 317 (2016) Jeon and Kapusta, Phys. Rev. C 56, 468 (1997)

    Rapidity is exchanged if there is a sub-collision

    Valence quark PDF for the rapidity distribuLon before collisions

    15 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Resultsn  EllipLc flow v2, Au-Au collisions at √sNN = 200 GeV

    0

    1

    2

    3

    4

    5

    0 0.1 0.2 0.3 0.4 0.5

    ηT

    /(ε+

    P)

    T[GeV]

    (ηT/(ε+P))min=0.04, a=0, b=10 (ηT/(ε+P))min=0.12, a=0, b=0 (ηT/(ε+P))min=0.04, a=10, b=0 (ηT/(ε+P))min=0.04, a=10, b=2

    Large viscosity in the hadronic phase and small viscosity in the QGP phase favored

    The minimum is as small as 0.04 (below the lower bound 1/4π)

    16 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Resultsn  Triangular flow v3, Au-Au collisions at √sNN = 200 GeV

    Large viscosity in the hadronic phase and small viscosity in the QGP phase favored

    The minimum is as small as 0.04 (below the lower bound 1/4π)

    y

    x

    ψ3

    17 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Summary and outlookn  We have probed collecLve properLes of the hot QCD maYer

    RelaLvisLc AA collision can produce the quark-gluon plasma, which behaves as a fluid

    QCD shear viscosity is constrained using rapidity dependence of v2 and v3- Large hadronic viscosity and small QGP viscosity

    We can explore the QCD transport properLes at finite density for the Beam Energy Scan programs

    - The minimum can be smaller than the universal lower bound conjectured in AdS/CFT duality

    G. Denicol, C. Gale, S. Jeon, AM, B. Schenke, C. Shen, arXiv:1804.10557 [nucl-th]

    18 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Summary and outlookn  We have probed collecLve properLes of the hot QCD maYer

    RelaLvisLc AA collision can produce the quark-gluon plasma, which behaves as a fluid

    QCD shear viscosity is constrained using rapidity dependence of v2 and v3- Large hadronic viscosity and small QGP viscosity

    We can explore the QCD transport properLes at finite density for the Beam Energy Scan programs

    - The minimum can be smaller than the universal lower bound conjectured in AdS/CFT duality

    G. Denicol, C. Gale, S. Jeon, AM, B. Schenke, C. Shen, arXiv:1804.10557 [nucl-th]

    18 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Summary and outlookn  We have probed collecLve properLes of the hot QCD maYer

    RelaLvisLc AA collision can produce the quark-gluon plasma, which behaves as a fluid

    QCD shear viscosity is constrained using rapidity dependence of v2 and v3- Large hadronic viscosity and small QGP viscosity

    We can explore the QCD transport properLes at finite density for the Beam Energy Scan programs

    - The minimum can be smaller than the universal lower bound conjectured in AdS/CFT duality

    G. Denicol, C. Gale, S. Jeon, AM, B. Schenke, C. Shen, arXiv:1804.10557 [nucl-th]

    18 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Summary and outlookn  We have probed collecLve properLes of the hot QCD maYer

    RelaLvisLc AA collision can produce the quark-gluon plasma, which behaves as a fluid

    QCD shear viscosity is constrained using rapidity dependence of v2 and v3- Large hadronic viscosity and small QGP viscosity

    We can explore the QCD transport properLes at finite density for the Beam Energy Scan programs

    - The minimum can be smaller than the universal lower bound conjectured in AdS/CFT duality

    G. Denicol, C. Gale, S. Jeon, AM, B. Schenke, C. Shen, arXiv:1804.10557 [nucl-th]

    18 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    OutroducLonn  Would there be a QGP in pp and pA collisions?

    NO, it is the effect of iniLal state

    YES, it is a QGP liquid E.g. Weller and Romatschke, PLB 774,351 (2017)

    E.g. Mace, Quark MaYer 2018 talk

    19 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    OutroducLonn  Would there be a QGP in pp and pA collisions?

    NO, it is the effect of iniLal state

    YES, it is a QGP liquid E.g. Weller and Romatschke, PLB 774,351 (2017)

    E.g. Mace, Quark MaYer 2018 talk

    19 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    OutroducLonn  Would there be a QGP in pp and pA collisions?

    NO, it is the effect of iniLal state

    YES, it is a QGP liquid E.g. Weller and Romatschke, PLB 774,351 (2017)

    E.g. Mace, Quark MaYer 2018 talk

    19 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    The end

    Thank you for listening!

    20 / 20

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  Rapidity distribuLon at Pb-Pb collision in LHC

    Transverse momentum spectra

    Centrality

    central0-5 %

    peripheral80-90 %

    y = 0 y = 5Rapidity √sNN (eV) systems yp notes

    1.3×1013 p-p 9.54 LHC

    5.02×1012 Pb-Pb 8.59 LHC

    2×1011 Au-Au 5.36 RHIC

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  How would the QGP affects collider physics? (= Evidence of QGP)

    Jet quenching

    (GeV/c)T

    p1 2 3 4 5 6 7

    )3 c-2

    (mb

    GeV

    3/d

    p3

    ) or E

    d3 c

    -2(G

    eV3

    N/d

    p3

    Ed

    -710

    -610

    -510

    -410

    -310

    -210

    -110

    1

    10

    210

    310

    4104AuAu Min. Bias x10

    2AuAu 0-20% x10

    AuAu 20-40% x10

    p+p

    Turbide et al. PRC69

    J/Ψ supression

    (radians)! "

    -1 0 1 2 3 4

    )!

    " d

    N/d

    (T

    RIG

    GE

    R1/N

    0

    0.1

    0.2

    d+Au FTPC-Au 0-20%

    p+p min. bias

    Au+Au Central

    )!

    " d

    N/d

    (T

    rig

    ger

    1/N

    STAR, PRL 91, 072304 (2003)

    Thermal photonsPHENIX, PRL 98, 232301 (2007)

    PHENIX, PRL 104, 132301 (2010)

    PHENIX, PRL 91, 182301 (2003)

    Δφ

    ×medium absorpLon

    In-medium melLng

    c

    c_

    so thermal radiaLon

    azimuthal momentum anisotropy

    EllipLc flow

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    Observablesn  Low-momentum light quarks (u,d,s) are thermalized Transverse

    momentum spectra

    ObservablesSources

    Prompt Thermal Decay

    Light-flavor hadrons (π, K, p etc.) ✗ ️

    Heavy-flavor hadrons (D, B etc.)

    (as quarks) ? ?

    High-pT hadrons (jets) ✗ ️✗

    Leptons and photons (e±, μ±, γ)

    (by medium)

    Weak bosons (W±, Z0) ✗ ✗

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    IntroducLonn  Is the QGP a gas or a liquid?

    Transverse momentum spectra

    Physicists's predicLon

    Liquid: InteracLve parLclesDense

    Free parLclesDilute

    ✓ ✗

    Gas:

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    RelaLvisLc hydrodynamicsn  Energy-momentum tensor (in the local rest frame)

    : energy density

    : pressure

    : bulk pressure

    : shear stress tensor

    where

    n  EquaLon of moLon:

    CorrecLons to the pressure

  • Akihiko Monnai (KEK), ISVHECRI 2018, May 24th 2018

    EquaLon of staten  Hadron resonance gas + laÄce QCD

    LaÄce: Taylor expansion up to the 4th order

    HotQCD, PRD 86, 034509 (2012), PRD 90, 094503 (2014), PRD 92, 074043 (2015)

    where

    Connect to HRG at low T: