49
Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University of Technology [email protected] http://www.emt.tu-graz.ac.at/~pinz

Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Embed Size (px)

Citation preview

Page 1: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Consistent Visual Information Processing

Axel Pinz

EMT – Institute of Electrical Measurement and Measurement Signal Processing

TU Graz – Graz University of Technology

[email protected]://www.emt.tu-graz.ac.at/~pinz

Page 2: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

“Consistency”• Active vision systems / 4D data streams

• Imprecision

• Ambiguity

• Contradiction

• Multiple visual information

Page 3: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

This Talk: Consistency in

• Active vision systems:– Active fusion– Active object recognition

• Immersive 3D HCI:– Augmented reality– Tracking in VR/AR

Page 4: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

AR as Testbed

Consistent perceptionin 4D:

• Space– Registration– Tracking

• Time– Lag-free– Prediction

Page 5: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Agenda

• Active fusion

• Consistency

• Applications– Active object recognition– Tracking in VR/AR

• Conclusions

Page 6: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Active Fusion

fusion, contro lin teraction

w orld

w orlddescription

sceneselection

scene

exposure

im age

im age proc.,segm entation

im age

description

grouping,3D m odeling

scenedescription

integration

Simple top level decision-action-fusion loop:

Page 7: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Active Fusion (2)

• Fusion schemes– Probabilistic– Possibilistic (fuzzy)– Evidence theoretic (Dempster & Shafer)

Page 8: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Probabilistic Active Fusion

N measurements, sensor inputs: mi

M hypotheses: oj , O = {o1, …, oM }

Bayes formula:

),...,(

)()|,...,(),...,|(

1

11

N

jjNNj

mmP

oPommPmmoP

Use entropy H(O) to measure the quality of P(O)

)(log)()(1

j

M

j

j oPoPOH

Page 9: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Probabilistic Active Fusion (2)Flat distribution: P(oj )=const. Hmax

• Measurements can be:• difficult,• expensive,

• N can be prohibitively large, …

Find iterative strategy to minimize H(O)

Pronounced distribution:P(oc ) = 1; P(oj ) = 0, j c H = 0

)(log)()(1

j

M

j

j oPoPOH

Page 10: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Probabilistic Active Fusion (3)

Start with A 1 measurements: P(oj|m1, … ,mA), HA

Iteratively take more measurements: mA+1, … ,mB

Until: P(oj|m1, … ,mB), HB Threshold

Page 11: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Summary: Active Fusion

• Multiple (visual) information, many sensors, measurements,…

• Selection of information sources

• Maximize information content / quality

• Optimize effort (number / cost of measurements, …)

Information gain by entropy reduction

Page 12: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Summary: Active Fusion (2)

• Active systems (robots, mobile cameras)– Sensor planning– Control– Interaction with the scene

• “Passive” systems (video, wearable,…)– Filtering– Selection of sensors / measurements

Page 13: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Consistency

• Consistency vs. Ambiguity– Unimodal subsets Ok

• Representations– Distance measures

Page 14: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Consistent Subsets

Hypotheses O = {o1 ,…, oM }

Ambiguity: P(O) is multimodal

Consistent unimodal subsets Ok O

• Application domains

• Support of hypotheses

• Outlier rejection

Benefits:

Page 15: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Distance Measures

Depend on representations, e.g.:

• Pixel-level SSD, correlation, rank• Eigenspace Euclidean• 3D models Euclidean• Feature-based Mahalanobis, …• Symbolic Mutual information• Graphs Subgraph isomorphism

Page 16: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Mutual Information

Shannon´s measure of mutual information:

O = {o1 ,…, oM }A O, B O

I(A,B) = H(A) + H(B) – H(A,B)

Page 17: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Applications

• Active object recognition– Videos– Details

• Tracking in VR / AR– Landmark definition / acquisition– Real-time tracking

Page 18: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Active vision laboratory

Page 19: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Active Object Recognition

Page 20: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Active Object Recognitionin Parametric Eigenspace

• Classifier for a single view

• Pose estimation per view

• Fusion formalism

• View planning formalism

• Estimation of object appearance at unexplored viewing positions

Page 21: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 22: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 23: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 24: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 25: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 26: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 27: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 28: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Applications

Active object recognition– Videos– Details

Control of active vision systems

• Tracking in VR / AR– Landmark definition / acquisition– Real-time tracking

Selection, combination, evaluation Constraining of huge spaces

Page 29: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Landmark Definition / Acquisition

corners blobs natural landmarks

What is a “landmark” ?

Page 30: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Automatic Landmark Acquisition

• Capture a dataset of the scene:– calibrated stereo rig

– trajectory (by magnetic tracking)– n stereo pairs

• Process this dataset– visually salient landmarks for tracking

Page 31: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Automatic Landmark Acquisitionvisually salient landmarks for tracking

• salient points in 2D image• 3D reconstruction• clusters in 3D:

– compact, many points– consistent feature descriptions

• cluster centers landmarks

Page 32: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Processing Scheme

Page 33: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Office Scene

Page 34: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Office Scene - Reconstruction

Page 35: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Office Scene - Reconstruction

Page 36: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Unknown Scene

Real-Time Tracking

LandmarkAcquisition

Page 37: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Real-Time Tracking

• Measure position and orientation of object(s) • Obtain trajectories of object(s)

• Stationary observer – “outside-in” – Vision-based

• Moving observer, egomotion – “inside-out”– Hybrid

• Degrees of Freedom – DoF– 3 DoF (mobile robot)– 6 DoF (head and device tracking in AR)

Page 38: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Outside-in Tracking (1)

stereo-rigIR-illumination

• wireless

• 1 marker/device:3 DoF

• 2 markers: 5 DoF• 3 markers: 6 DoF

devices

Page 39: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

2D B

lob

Tra

ckin

gE

pipo

lar

Geo

met

ry3D

Cor

resp

onde

nce

3D O bjects and Pose

2D Backpro jection

Epipolar G eom etry

C onstra in ts

3D C orrespondence

3D Prediction

B lob D etection

Tile Q uantisation

Prediction

B lob D etection

Tile Q uantisation

Prediction

W orkspace

O bject M odels

LEFT IM AG E R IG H T IM AG E

Outside-inTracking (2)

Page 40: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Consistent Tracking (1)

• Complexity– Many targets– Exhaustive search vs. Real-time

• Occlusion– Redundancy (targets | cameras)

• Ambiguity in 3D– Constraints

Page 41: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Consistent Tracking (2)

• Dynamic interpretation tree– Geometric / spatial consistency

• Local constraints– Multiple interpretations can happen– Global consistency is impossible

• Temporal consistency– Filtering, prediction

Page 42: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Consistent Tracking (3)

Page 43: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 44: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University
Page 45: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Hybrid Inside-Out Tracking (1)

• 3 accelerometers• 3 gyroscopes• signal processing• interface

Inertial Tracker

Page 46: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Hybrid Inside-Out Tracking (2)

• complementary sensors

• fusion

Page 47: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Summary: Consistency in

• Active vision systems:– Active fusion– Active object recognition

• Immersive 3D HCI:– Augmented reality– Tracking in VR/AR

Page 48: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Conclusion

Consistent processing of visual informationcan significantly improve

the performance ofactive and real-time vision systems

Page 49: Consistent Visual Information Processing Axel Pinz EMT – Institute of Electrical Measurement and Measurement Signal Processing TU Graz – Graz University

Acknowledgement

Thomas Auer, Hermann Borotschnig, Markus Brandner, Harald Ganster, Peter Lang, Lucas Paletta, Manfred Prantl, Miguel Ribo, David Sinclair

Christian Doppler Gesellschaft, FFF, FWF, Kplus VRVis, EU TMR Virgo