Conceptual Design Document - University of Calgarypeople.ucalgary.ca/~wongjg/documents/CDD.pdf · Conceptual Design Document (CDD) Design Methodology and Application (ENME 538 / ENMF

  • Upload
    dangnhi

  • View
    229

  • Download
    0

Embed Size (px)

Citation preview

  • Conceptual Design Document Project # 23

    DocumentHistoryDate Author Version ChangeReference DocumentPropertiesItem DetailsDocumentTitle ConceptualDesignAuthor CreationDate LastUpdated

  • Table of Contents

    1.0 Project Information ........................................................................................................ 1 1.1 Project Title and Acronym ....................................................................................... 1 1.2 Project Customer(s) ................................................................................................... 1 1.3 Group Members ......................................................................................................... 1 1.4 Useful Definitions and Acronyms ........................................................................... 1

    2.0 Conceptual Design Summary ..................................................................................... 2 3.0 Background .................................................................................................................... 2 4.0 Functional Objectives and Requirements .................................................................. 3

    4.1 Functional Objectives ................................................................................................ 3 5.0 Concept Combination Tables ...................................................................................... 4 6.0 Overview of Conceptual Solution Alternatives........................................................ 5

    6.1 Large Flume Tests ...................................................................................................... 5 6.1.1 Description ................................................................................................. 5 6.1.2 Advantages ................................................................................................. 5 6.1.3 Disadvantages ............................................................................................ 6

    6.2 Small Flume Tests ...................................................................................................... 6 6.2.1 Description ................................................................................................. 6 6.2.2 Advantages ................................................................................................. 6 6.2.3 Disadvantages ............................................................................................ 6

    6.3 Small Flume Tests with Turbine Substitute ........................................................... 7 6.3.1 Description ................................................................................................. 7 6.3.2 Advantages ................................................................................................. 7 6.3.3 Disadvantages ............................................................................................ 7

    6.4 Potential Flow Analysis ............................................................................................ 7 6.4.1 Description ................................................................................................. 7 6.4.2 Advantages ................................................................................................. 8 6.4.3 Disadvantages ............................................................................................ 8

    6.5 Computational Fluid Dynamics .............................................................................. 8 6.5.1 Description ................................................................................................. 8 6.5.2 Advantages ................................................................................................. 8 6.5.3 Disadvantages ............................................................................................ 8

    7.0 System Architecture ..................................................................................................... 9 8.0 Feasibility ...................................................................................................................... 10

    8.1 Small Flume Tests .................................................................................................... 10 8.1.1 Effect of Approach Geometry on Turbine Flow Conditions ............. 10

    8.1.1.1 Measuring Power with a 300mm Scale Model ............................................... 10 8.1.1.2 Conducting Dye Visualization Tests with a Turbine Substitute ................. 11 8.1.1.3 Conducting Pressure Profile Tests with a Turbine Substitute ..................... 11

    8.1.2 Effect of Installation Angle on Turbine Flow Conditions .................. 11 8.1.2.1 Measuring Power with a 300mm Scale Model ............................................... 11

    8.2 Computational Fluid Dynamics ............................................................................ 11 8.2.1 Resources .................................................................................................. 11

    8.2.1.1 ANSYS Fluid Dynamics (CFX and FLUENT) ................................................ 11 8.2.1.2 SolidWorks Flow Simulation (FloWorks) ....................................................... 12

    8.2.2 Time ........................................................................................................... 12 8.2.3 Cost ............................................................................................................ 12

  • 8.2.4 Summary ................................................................................................... 12 9.0 Testing and Verification .............................................................................................. 13

    9.1 Small Flume Tests .................................................................................................... 13 9.2 CFD ............................................................................................................................ 13

    10.0 Required Engineering Expertise .............................................................................. 14 11.0 Resources and References ......................................................................................... 15

    11.1 Facilities .................................................................................................................. 15 11.2 Additional Advisors .............................................................................................. 15 11.3 Funds ....................................................................................................................... 15

    Appendix A Concept Evaluation ..................................................................................... 17 Appendix B Cost Estimates .............................................................................................. 18 Appendix C Similitude Relationships ............................................................................. 19

  • 28/10/2010 1

    Conceptual Design Document (CDD) DesignMethodologyandApplication(ENME538/ENMF512)Fall2010/Winter2011

    1.0 Project Information

    1.1 Project Title and Acronym OptimizationofaVeryLowHeadTurbine(VLHT)isaprojectthatinvolvesoptimizingkeyoperationalaspectsofaverylowheadwaterturbine.

    1.2 Project Customer(s)

    WesDick (403)5081560 [email protected] (403)2203349 [email protected]

    1.3 Group Members ColinHartloper (403)9718454 [email protected] (403)8163238 [email protected] (403)9934274 [email protected] (403)7014663 [email protected] (403)3898465 [email protected] (403)6201644 [email protected]

    1.4 Useful Definitions and Acronyms VLHTVeryLowHeadTurbineCFDComputationalFluidDynamicsEFDExperimentalFluidDynamicsCADComputerAidedDesignUniversityUniversityofCalgary

  • 28/10/2010 2

    2.0 Conceptual Design Summary Withpublicenvironmentalawarenessincreasingdaily,renewableenergysourcessuchashydropowerarebecomingmoreimportant.TheVeryLowHead(VLH)Turbineisawaterturbinethatisdesignedtobeaslowimpactaspossiblewhilestilloutputtingausefulamountofenergy.InorderforittobeinstalledinNorthAmerica,severalkeyperformancequestionshavetobeanswered.Thisdocumentoutlineshowourteamplanstogoaboutansweringtwoofthosekeyperformancequestions,whichinthisdocumentarereferredtoasourteamobjectives.Thetwoobjectivesare:

    1) Findtheeffectofapproachgeometryonturbinepower2) Findtheeffectofturbineinstallationangleonturbinepower

    Thedocumentdescribesthefiveconceptualtestingmethodswhichourteamcameupwith,aswellastheconceptualrequirementsandfeasibilitycriteriaonwhicheachconceptwouldbescored.Aftercomparingthefiveconceptualtestingmethods,twostoodoutashavingahigherscorethantheothers.Thetwohighestscoringconceptswere:

    Runningtestsona300mmscalemodelusingasmallflume PerforminganalysisusingCFD

    Thesystemarchitectureofthescalemodeltestsusingthesmallflumeisoutlined,andthefeasibilityofthetwoconceptslistedaboveisexaminedindetail.Teststhatcouldberuntovalidatecertainassumptionsmadewhenscoringthesetwoconceptsaredescribed,andtheresourcesandcostsassociatedwithallconceptsareestimated.Thecostofperformingtestsona300mmscalemodelusingthesmallflumeisestimatedtobe$3700,whilethecostofusingCFDisfreeattheUniversity.

    3.0 Background TheVeryLowHeadTurbineisavariablespeedwaterturbinedesignedforheadsrangingfrom1.4to3.2metersandlowflowconditionsfrom10to30cubicmeterspersecond.Theturbineisinstalledonaliftingcablesystem.Thisallowsforvariableanglesofoperationaswellascompleteremovalfromthesluicepassagewayformaintenance,orduringhighflowconditions.WhiletheVLHTurbinehasbeentestedinFrance,CoastalHydropowerCorporationisinvestigatinginstallingtheseturbinesinseverallocationsthroughoutNorthAmerica.Theseturbinesareideallyinstalledwhereinfrastructuresuchasweirs,canalsordamsalreadyexist.TheVLHTurbineisconsideredaneconomicalsourceforgreenpowergeneration.Becauseitisinstalledwherecurrentinfrastructureexists,itreducesenvironmentalimpactandresourcesrequiredthatarecommonwithotherpowergenerationsystems.Aswell,theflowconditionsandlowrotationalspeedoftheturbinemakeitfishfriendly.

  • 28/10/2010 3

    4.0 Functional Objectives and Requirements

    4.1 Functional Objectives Thisprojecthastwotoplevelfunctionalobjectives,eachwhichthreerequirementsforthoseobjectivestobemet.Bothobjectiveswillevaluatethepowergeneratedbytheturbineforarangeofsituations.

    Table 1: Top-Level Functional Objectives

    Objective Description VerificationMethodFUNC.1: EffectofApproachGeometry

    onTurbinePowerAnalysiscompletedonFlat,Step,CarslandandLock25approachprofiles

    FUNC.2: EffectofInstallationAngleonTurbinePower

    Analysiscompletedatinstallationanglesof90,70,55,40,and30

    Table 2: Top-Level Requirements

    Requirement DescriptionSPC.1: ResultsareeasilyobtainedSPC.2: ResultsobtainedareaccurateSPC.3: Resultsobtainedareusefulto

    sponsor

  • 28/10/2010 4

    5.0 Concept Combination Tables FiveconceptshavebeengeneratedtoaddressthetwotoplevelfunctionalobjectivesthatwerelistedinTable2.Eachconceptisamethodthatwouldbeusedtomeeteachobjective.Adetaileddescriptionoftheseconceptscanbefoundinsection6.0.

    Table 3: Concept Combination Table TopLevelConcept Func.1 Func.21)LargeFlumeTestswithexistingmodel

    Measuringpowerwitha900mmVLHturbinemodel

    Measuringpowerwitha900mmVLHturbinemodel

    2)SmallFlumeTestsscaledmodel

    Measuringpowerwitha300mmscaledmodel

    Measuringpowerwitha300mmscaledmodelatvariousangles

    3)SmallFlumeTestswithTurbineSubstitute

    ConductingdyevisualizationtestsConductingpressureprofiletests

    Measuringpressuredropovertheturbinesubstitute

    4)PotentialFlowAnalysis Constructingeachapproachgeometryandconductingpressureprofileanalysis

    Analyzingthepressureprofileupstreamanddownstreamatvariousangles

    5)CFD ConductingpressureprofileanalysiswithamovingmeshrepresentingtheturbineConductingpressureprofileanalysiswithastationarypressuredroprepresentingtheturbine

    AnalyzingthepressureprofilewithamovingmeshrepresentingtheturbineatvariousanglesAnalyzingthepressureprofilewithastationarypressuredroprepresentingtheturbineatvariousangles

  • 28/10/2010 5

    6.0 Overview of Conceptual Solution Alternatives ThissectiondescribeseachoftheconceptslistedinTable3,alongwiththeiradvantagesanddisadvantages.Inaddition,eachconceptfromTable3wasscoredonascalefrom0to3representinghowstronglyeachofthetoplevelrequirementsfromTable2ismet.ThescoreswereaddedandthetotalscoresforeachconceptareshownbelowinTable4.ScoresweregivenforeachobjectiveasitisverypossiblethatoneconceptcouldbeusedtosatisfyObjective1whileanotherconceptisusedforObjective2.AmoredetailedsummaryofhowthesenumberswerecalculatedcanbefoundinAppendixA.

    Table 4: Concept Total Scores for Objective 1 and 2

    ConceptNumber

    Objective1Score

    Objective2Score

    (1) 11(F) 11(F)(2) 12 12(3) 12 8(4) 12 4(F)(5) 13 12

    Notethatthe(F)besidesomeofthevaluesinTable4signifythatthisconceptscoredazeroforoneofthecriteria,andthereforewouldmostlikelynotbeusednomatterwhatthetotalscoreis.

    6.1 Large Flume Tests

    6.1.1 Description Thismethodwouldinvolveperformingtestsona900mmmodeloftheVLHTwhichhadpreviouslybeentestedatthehydraulicmachineslaboratory(LAMH)atLavalUniversity.Forupstreamgeometryteststheprofileswouldbebuiltandinstalledintheflumeandthepowergeneratedbytheturbinewouldberecordedusingadynamometer.Fortheinstallationangleteststheangleoftheturbinewouldbevariedandthepowerwouldberecorded.RefertoFigures1and2inSection7.0fordiagramofpossibleexperimentalsetup.

    6.1.2 Advantages Performingtestsonthe900mmmodelusingthelargeflume,provideditcouldbemodifiedtoaccommodatethetestparameters,wouldmeetbothobjectivesrequirementsverywell.Youcouldvarytheflowrateandseveralotherparameterstogetthedesiredpowercurves.The900mmmodelisalsowithintheminimumsizeforascalemodelofaturbinetomeetModelStandards.Dataobtainedfromthesetestswouldbeofmostvalueandaccuracy.

  • 28/10/2010 6

    6.1.3 Disadvantages Unfortunately,theUniversitydoesnotcurrentlyhavealaboratoryequippedtotestturbomachinery.ThelargeflumeintheCivilEngineeringlaboratorydoesnotsupplyhighenoughflowratestoperformtestswith,andtheflumeanditsfoundationwerenotstructurallydesignedforlargeloadings.Thetimeandbudgetrequiredtoremediatetheseissuesseemstobenotfeasiblewithinthescopeofthefourthyeardesignproject,andthereforethesetestsdonotseempossibleatthispointintime.

    6.2 Small Flume Tests

    6.2.1 Description Thismethodwouldinvolvethedesign,constructionandassemblyofa300mm(approximatelyonefoot)modeloftheVLHTforthesameteststhataredescribedinSection6.1.1,butusingthesmallflumeintheCivilEngineeringlaboratoryattheUniversity.RefertoFigures1and2inSection7.0foradiagramofpossibleexperimentalsetup.

    6.2.2 Advantages Muchlikethetestsonthe900mmmodel,testsrunonthe300mmmodelwouldyieldthepowergeneratedgivenspecificconditions.Unlikethelargeflumetests,wheremanymodificationswouldhavetobemadeinordertorunthetestsproperly,thesmallflumeintheCivilEngineeringlaboratoryistheproperdimensionsandcouldprovideadequateflowforthetests(seeAppendixCfordetails).

    6.2.3 Disadvantages Whileconstructingandassemblingthe300mmmodeloftheVLHTwouldbeconsiderablycheaperthanmodifyingthelargeflume,thecostisstillsignificant(estimatedat$3700,seeAppendixBfordetails).Inadditiontothis,thegroupdoesnotcurrentlypossesdrawingsoftheVLHT,whichwouldberequiredforaccuratedesign.Aswell,a300mmsizeturbineisnotwithintheminimumsizetomeetmodelingstandardsandtheresultsobtainedfromthesetestwouldrequiremoreinvestigation.Resultswouldhavetobeusedattheclientsdiscretion.

  • 28/10/2010 7

    6.3 Small Flume Tests with Turbine Substitute

    6.3.1 Description ThismethodwouldinvolveusingthesameapparatusastheoneoutlinedinSection6.2butsimulatingthe300mmturbinewithapotentialdrop.Thiscouldbedonemanyways,andhasyettobeinvestigatedclosely.Thepressureprofileoftheflowjustupstreamanddownstreamoftheturbinewouldthenbemeasuredforvariousapproachgeometriesandturbineinstallationangles.Thepressurevaluesandpressureprofileuniformitywouldbeusedtoinfertherelativepoweroutputsofthevariousconditions.Qualitativedyemixingtestscouldalsoberuntogainbetterunderstandingoftheflowprofiles.RefertoFigures1and2inSection7.0forageneralideaofwhattheexperimentalsetupwouldlooklike.TheturbineinFigure2couldbereplacedbyapressuredropsuchasafinesteelmesh.

    6.3.2 Advantages

    Thesmallflumetestswithaturbinesubstituteallowustorunexperimentaltestsonareasonablebudget.Althoughexactpowermeasurementswillnotbeobtained,theresultscouldstillbeinterpretedandfoundtobeuseful.

    6.3.3 Disadvantages Theobviousdisadvantageofusingaturbinesubstituteisitwouldnotbepossibletogetactualpowermeasurementsatvariousflowrates,andwouldthereforebeimpossibletogetaturbineefficiencycurve.Inadditiontothis,findingasuitableturbinesubstitutewouldtakeseriousinvestigation,andtakingdownstreammeasurementswouldbedifficultandtheresultswouldbequestionable.

    6.4 Potential Flow Analysis

    6.4.1 Description Thismethodwouldinvolvecreatinga2Drepresentationofthewaterflowapproachingtheturbine,andpossiblydownstreamoftheturbineaswell,usingacombinationofbasicpotentialflows(sources,sinks,vortices,etc).Fromthisrepresentationyoucouldfindthedynamicpressureatvariouspointsintheflowfordifferentapproachgeometriesandturbineangles.

  • 28/10/2010 8

    6.4.2 Advantages Usingpotentialflowsinthiswaycangiveaverygoodbasicunderstandingofwhatisgoingastheflowprogressesoveragivengeometry.Onceyouhaveitsetup,itisveryeasytogetinformationforthebehavioroftheflowoveralargearea.Potentialflowmodelingwouldbesuitableforvalidationofresultsandtoincreasetheunderstandingofthebasicflowprofile.

    6.4.3 Disadvantages Settingupthepotentialflowmodelwouldrequiremanyassumptions,andunfortunatelythiswouldhaveanegativeeffecttheaccuracyoftheresults.Inadditiontothis,potentialflowsdonthandleturbulenceverywell(noflowcancrossoverastreamline)sotheresultswouldonlybeapplicableiftheflowwaslaminar.Inadditiontothis,becauseofits2Dnature,apotentialflowmodelcouldnotrepresenttheswirlinducedintheflowbyaturbine.Insummary,apotentialflowmodelcouldbeusefulforenhancingtheunderstandingoftheproblem,butwouldprobablynotyieldusefulresultsasastandalonemethod.

    6.5 Computational Fluid Dynamics

    6.5.1 Description Thismethodwouldinvolvecreatinga3DmeshmodeloftheturbinesystemusingaCFDpackagesuchasFluent,CFX,orFloWorks.Theturbinecouldeitherberepresentedbyaconstantpressuredrop,oramovingmeshcouldbeusedtomoreaccuratelysimulatetheturbinebehavior.Acomputerwouldbeusedtosolvethesystemforvariousapproachgeometries,turbineinstallationangles,andflowconditions.

    6.5.2 Advantages

    Ifsetupproperly,CFDmodelingcouldproduceusefulinformation.Moreover,themodelcouldbeaveryaccuraterepresentationofhowtheactualsystemworks,anditwouldbepossibletogetactualpowermeasurementsfromthesimulation.

    6.5.3 Disadvantages AtthemomentthelicensingfortheCFXandFluentsoftwareattheUniversityhasnotyetbeenupdated.FloWorksshouldbeavailable,butasasimplersoftwarepackagewithlimitedcapabilities.EvenifCFXandFluentbecameavailableforourusage,settingupCFDmeshesandrunningthesimulationscanbetimeconsuming.TimewouldalsoberequiredtolearnadvancedCFDmethods.

  • 28/10/2010 9

    7.0 System Architecture ProposedsystemarchitectureforConcepts1through3isshownbelow.Figure1isasystemdiagramoftheflume,pumps,andwaterbasins.Thewaterwouldbepumpedatthedesiredflowratebyeitherasinglepumporaseriesofpumps.Itwouldthentravelthroughapipetoalargeinlettank,wheretheflowwouldberemovedofallofitsturbulence.Itwouldentertheflumeasauniform,laminarflow,andthenexitintoalargereservoir,fromwhichitwouldbepumpedbackintothesystem.

    Figure 1: Flume system flow diagram

    Figure2showsacloserlookattheconfigurationoftheapparatusintheflume.Thewaterwouldinletfromtheleftandflowovertheapproachgeometrybeforepassingthroughtheturbineandexitingtheflumeontheright.Asyoucanseeinthediagram,therewouldbesomemechanismforchangingtheangleoftheturbinesomultipleinstallationanglescouldbetested.ForConcept3,theturbinewouldbereplacedbyavariablepotentialdrop.

    Figure 2: Flume apparatus configuration

  • 28/10/2010 10

    8.0 Feasibility SinceitisverypossibleforustousemorethanoneoftheconceptslistedinTable3,thefeasibilityofmultipleconceptswasinvestigated.Thesefeasibilitieswereweighedagainstthestrengthofeachconceptasdetailedin(Section6.0)tohelpmakeadecisiononthefinalconceptstopursue.ThefeasibilityofconductingtestsonthesmallflumeaswellasusingCFDarepresentedbelowastheyscoredthehighestscoreinourdecisionmakingprocess(SeeAppendixA).Notethatthesmallflumetestswiththe300mmscalemodelandwiththeturbinesubstitutearecontainedundersmallflumetests.Thefeasibilityoftheconceptsisexaminedunderthreemaincriteria:

    Totalmonetarycostofconcept Timetoimplementconcept Resourcesrequiredforconcept

    TheorganizationoftheSmallFlumeTestssectiondiffersfromthatoftheCFDsectionaswelookedatthesmallflumetestfeasibilityonasubconceptlevel.

    8.1 Small Flume Tests

    8.1.1 Effect of Approach Geometry on Turbine Flow Conditions Allthreetestingmethodsonthesmallflumewillrequirethefabricationofthethreedifferentapproachflowprofiles,whicharedescribedintheGeneralModelConfigurationProfiledrawingdistributedinthefirstsponsormeeting.Theprofileswouldmostlikelybeconstructedwithawoodenframeanduseawaterprooffabrictoformtheprofile.Thecostoffabricationofallthreeprofileswouldbeapproximately$100andwouldtakenolongerthan16hours.

    8.1.1.1 Measuring Power with a 300mm Scale Model Fabricationofthe300mmmodelwouldrequireabudgetofapproximately$3700(detailedinAppendixB),whichwouldneedtobeprovidedbythesponsor.Thedesign,fabricationandassemblyofthe300mmmodelwouldtakeapproximatelytwomonthsfromthetimedetaileddrawingsareobtained.Thesedetaileddrawingsoftheturbine,whicharenecessarytocompletethe300mmmodeldrawings,havenotyetbeenobtained.Inadditiontothis,adynamometerwouldberequiredtomeasurethepoweroutputoftheturbine,whichwouldeitherhavetobepurchasedorborrowedfromtheCivilEngineeringLab.Thevalidityofconductingpowertestsonsuchasmallscalemodelwouldhavetobeinvestigatedviasimilituderelationships.Afteralloftheaforementionedconcernsareaddressed,webelievetestingwouldtakearound2weeks.

  • 28/10/2010 11

    8.1.1.2 Conducting Dye Visualization Tests with a Turbine Substitute Choiceofanappropriateturbinesubstitutewouldrequiresomeinvestigationandtesting.Thecostofanappropriatesubstituteiscurrentlyunknown.Thecostofdyewouldbeunder$50,andahighspeedcameratocapturetheflowprofilecouldbeborrowedforlittletonocost.Onceanappropriateturbinesubstituteisfound,testingwouldtakenolongerthan16hours.

    8.1.1.3 Conducting Pressure Profile Tests with a Turbine Substitute AsmentionedinSection8.1.1.2,choiceofanappropriateturbinesubstitutewouldrequiresomework.Totakethepressureintheflow,Pitottubes(oranalternativepressuresensor)andassociatedinstrumentationwouldhavetobepurchasedorborrowed.Thecostofpurchasingsuchequipmentisroughlyestimatedtobearound$750.Thetimespenttestingthepressureprofilewoulddependonthenumberofpointsthatitisdeemedwillproperlydescribethepressureprofile.ThisprecisioncouldbedevelopedfromthedyevisualizationtestsdescribedinSection8.1.1.2.Testingshouldtakeabout2weeks.

    8.1.2 Effect of Installation Angle on Turbine Flow Conditions

    8.1.2.1 Measuring Power with a 300mm Scale Model Thefabricationprocessandotherconcernsassociatedwiththe300mmmodelaredescribedinSection8.1.1.1.Assumingthesearealladdressed,amechanismtotesttheturbineatmultipleangleswouldhavetobedesignedandimplementedbeforetestingcouldcommence.Afterthisisdone,testingshouldtakeabout2weeks.

    8.2 Computational Fluid Dynamics

    8.2.1 Resources ResourcesforComputationalFluidDynamicsAnalysisarelimited.TheonlytwocommercialsoftwarepackageswithfluidanalysiscapabilitiesavailabletostudentsareANSYSandSolidWorks.BothofthesepackagesarecurrentlyinstalledinalllaboratorycomputersintheMechanicalEngineeringBuilding.

    8.2.1.1 ANSYS Fluid Dynamics (CFX and FLUENT) ThelicensesfortheANSYSfluidanalysistools(CFXandFLUENT)arecurrentlyunavailable.TheSchulichSchoolofEngineeringITgroup(SSEIT)iscurrentlycontactingtheANSYSlicenseadministratorinordertoresolvethisissue.Formodelingthefluidflow,itisprobablethatANSYSFluidDynamicswillhavethe

  • 28/10/2010 12

    capabilitiesneededtogiveinsightinansweringthequestionsregardingtheVLHturbine.

    8.2.1.2 SolidWorks Flow Simulation (FloWorks) TheSolidWorkssoftwarehasaCFDmoduleaddinwhichallowsfluidflowsimulationandanalysis.Thereisnomissinglicenseforthissoftware.However,SolidWorksFlowSimulationmaynothavethesamelevelofcapabilitiesasANSYSFluidDynamics.IfANSYSFluidDynamicslicensescannotbeobtained,SolidWorksFlowSimulationisthebestfeasibleoption.

    8.2.2 Time TimewillbeneededtolearnhowtousetheCFDAnalysistoolbeforeanymodelingfortheVLHTurbineprojectcanbemade.Theamountoftimeneededdependsonthecomplexityofthesoftwarebeingused.SoftwaresuchasANSYSFluidDynamicsmayrequirelongerthanSolidWorks,whichrequiresonlyafewweeks.HelpfromDr.DavidWoodsgraduatestudentmayreducethetimeneededtolearnANSYSFluidDynamics,andlikewisewithDr.XuefortheFlowSimulationinSolidWorks.AdditionaltimeforANSYSFluidDynamicswillbeneededtoacquirenecessarylicensingandinstallationbeforeanylearningcanbegin.Theamountofadditionaltimeisunknown,astheSSEITgroupisstillwaitingforaresponsefromANSYSregardingthelicensing.ThetimefeasibilityforSolidWorksFlowSimulationisbetterthanforANSYSFluidDynamics.

    8.2.3 Cost PurchasingCFDsoftwareisafeasibleoption,howeverthiswillonlybedoneiflicensingforANSYSFluidDynamicsisunavailable,andifSolidWorksisincapableofmodelinganykindoffluidflowusefulfortheVLHTurbineproject.ThecostforCFDsoftwarewillrangeinthehundredsofdollars,whileusingANSYSFluidDynamicsandSolidWorkswillhavenocost.

    8.2.4 Summary SolidWorksFlowSimulationisthemostfeasibleoptionatthispointintime.Itisreadilyavailabletouse,easiertolearn,andhasnocostattached.ANSYSFluidDynamicsrequiresmoretimetolearnanduse,andisalsomissingnecessarylicensing.

  • 28/10/2010 13

    9.0 Testing and Verification Belowisanoutlineofsometeststhatcouldbeperformedpriortotheactualgatheringofdatatoverifythatourconceptswillgivegoodresults.Asthetwostrongestconcepts,thesmallflumetestsandCFDwillbeanalyzed.Inordertoverifytheresultsoftheactualexperimentsoranalysis,theuseofmultipleconceptsonthesameobjectiveisrecommended.Anexampleofthiswouldbeusingpotentialflowstoverifythepressurefieldobtainedusingpitottubesinthesmallflumetests.

    9.1 Small Flume Tests Simpleflumecharacteristicssuchastheflowratecouldbetestedbysettingittoagivenflowrateandrecordingthemassofwaterthatflowsintoabucketinaperiodoftime.Iftheturbinesubstitutetestsarepursued,rigoroustestingwillhavetobeperformedonthepotentialdropacrossthesubstitute.Ifpossible,theswirlingbehaviorofthesubstituteshouldbeexaminedaswell.Thiscouldbedonebyplacingthesubstituteintheflumeanddyingashortburstofwatertoseeifitswirlsasitpassesthroughtheturbinesubstitute.

    9.2 CFD ThemethodologyofobtainingresultsfromCFDcouldbetestedbyattemptingtomodelaverysimplesystemusingCFDtowhichanaccurateanalyticalsolutionisknown.Agoodexampleofthiswouldbegettingthepressureprofileoflaminarflowthroughapipe.

  • 28/10/2010 14

    10.0 Required Engineering Expertise

    Table 5: Required Expertise TechnicalArea TeamMemberResponsible LevelofExpertiseCFD Colin,Jamie,Matias AbilitytouseofCFX,FluentorFloWorksEFD Brenda,Alex,Matias,John Abilitytouselawsofsimilitudetodesign

    experimentsandinterpretresultsCAD Colin,John AbilitytodesignscalemodelofVLHT

    usingSolidworksandproducedrawingsforamachineshop

    PotentialFlowAnalysis Alex,Matias Abilitytogeneratesimplegeometriesandanalyzepressureprofiles

    ProjectManagement Brenda,Colin AbilitytousemanagementtoolssuchasGanttchartstokeeptheprojectonschedule

    Communication All Abilitytousewrittenandverbalcommunicationtoeffectivelytranslateknowledgeinternallyandexternally

    Construction John Abilitytoconstructgeometryprofiles,flumemodifications,andturbinecomponents

  • 28/10/2010 15

    11.0 Resources and References

    11.1 Facilities ThefacilitiesrequiredforeachconceptaresummarizedinTable6below.RefertoSection5.0foradescriptionofwhichconceptnumbercorrespondstowhichconcept.

    Table 6: Facilities Required for each Concept

    ConceptNumber

    FacilitiesRequired

    (1) StructurallysoundlargeflumeHardwarerequiredfortestingsuchasapproachgeometriesDynamometerPumpcapableofdeliveringuptoone1m3/sflowrate900mmmodel

    (2) SmallflumeHardwarerequiredfortestingsuchasapproachgeometriesDrawingsoftheVLHTDynamometer300mmmodel

    (3) SmallflumeHardwarerequiredfortestingsuchasapproachgeometriesSuitableturbinesubstitutePressuremeasuringdevicesuchasapitottube

    (4) Nofacilitiesrequired(5) UsableCFDsoftwaresuchasFluent,CFX,orFloWorks

    11.2 Additional Advisors Dr.DavidRival(403)2203349 [email protected] (403)2203637 [email protected]

    11.3 Funds TheestimatedcostsassociatedwitheachconceptarelistedinTable7below.SeeAppendixBforadescriptionofwheretheestimatedcostscomefrom.

  • 28/10/2010 16

    Table 7: Estimated Cost of each Concept

    ConceptNumber EstimatedCost(1) $42,000(2) $3700(notincludingdynamometer)(3) $750(4) $0(5) $0

    Theprojectcoursesupplies$300$500perproject.TheadditionalfundswouldbemadeavailablebytheprojectsponsorsProjectsCanadaandCoastalHydropower.

  • 28/10/2010 17

    Appendix A Concept Evaluation Eachoftheconceptsweregivenamarkoutofthreeforhowwellitmetthethreerequirements(aslistedinTable2),aswellashowfeasibleitwas(asdescribedinSection8.0).Thevalueswerethensummedtocomeupwiththefinalconceptstrength.Tables8and9below,showhowwelleachconceptscoredforallsixcategoriesforbothobjectives.NotethatR01toR03aretherequirementsandF01toF03arethefeasibilitycriteria.

    Table 8: Concept Strength for Objective 1

    ConceptNumber

    R01 R02 R03 F01 F02 F03 Total

    (1) 3 3 3 0 2 0 11(2) 3 3 2 1 2 1 12(3) 3 3 2 2 1 1 12(4) 3 3 1 3 1 1 12(5) 3 2 2 3 2 1 13

    Table 9: Concept Strength for Objective 2

    ConceptNumber

    R01 R02 R03 F01 F02 F03 Total

    (1) 3 3 3 0 2 0 11(2) 3 3 2 1 2 1 12(3) 2 1 1 2 1 1 8(4) 1 0 0 3 0 0 4(5) 2 2 2 3 2 1 12

  • 28/10/2010 18

    Appendix B Cost Estimates

    Table 10: Cost summary for Concept 1

    Item EstimatedCostApparatushardwarenewwalls,supports,waterproofing,etc.

    $500

    Plumbing12(orgreater)diameterpvcpipe

    $500

    Pumpmaxflowofaround1m3/s $20,000Dynamometer $20,000TestingStandardsIEC60193(describesproceduresforconductingtestsonhydroturbines)

    $300

    Total $41,300

    Table 11: Cost summary for Concept 2 (excluding dynamometer)

    Item EstimatedCostMaterialsfor300mmModel $500MachiningCost(at$35/hour) $1500Othermechanicalcomponents(bearings,etc)

    $1000

    Woodforframeandapproachgeometries $200OtherSupplies(silicone,waterproofpaint,dye,rotatingmechanism)

    $200

    Total $3700ThecostforConcept3wasgeneratedfromthewoodandothersuppliescostplusanadditional$450fortheturbinesubstitute.

  • 28/10/2010 19

    Appendix C Similitude Relationships ItseemslikethemodelatLavalUniversitytookintoaccountReynoldsnumberandFroudesnumberintermsofsimilitude.Inhydromechanicalexperiments,onemustalwaysbeawareofReynoldsnumber,Froudesnumber,andWebersnumber.ReynoldNumberSimilitudeThereweretwomaindimensionlessnumbersthatwereusedtoscaledownthemodelscaleReynoldsnumber:

    Thetargetednominaldesignpointswere .ThesenumbersseemtobeanaveragefortherangeofdesignparametersfortheactualVLHturbines.Therefore,weshouldcontinuewiththisreasoning.Inoursmallflumeinthecivillab,thewidthofthechannelisabout0.3mandtheheightisabout0.6m.Ifweassumethattherunnerdiameterwillbejustunder0.3m,weshouldbeabletogetabout0.5mofhead.Sofromthetargetednominaldesignpoints,

    Consideringwehaveatleast42L/sofcapacityinourcivillab,weshouldbeOKintermsofwaterflowrate.FroudeNumberSimilitude

    Where:v=meanaxialvelocityG=gravityD=runnerdiameter

  • 28/10/2010 20

    Sincetheheadisproportionaltothevelocitysquared,iftheheadscalefactorfollowsthediameterscalefactor,thenFroudesimilitudewillberespected.Inotherwords,

    Usingaveragevaluesfromtherangesgiveninpapersfortheprototype,

    ForLaval, .ThereforeFroudesimilitudewassatisfied.Inourcase,

    assumingH=0.6andD=0.3,weget .ItshouldbenotedthattheLaval

    modelhadacylindricaloutletpipetoreach1mhead.Thiswasneededbecauseproportionsbetweenrunnerdiameterandheadwerentrespected.Wemayhavetodosomethingsimilartoobtainourcorrectproportion.WeberNumberSimilitudeWebersnumberwasconsidered,butitseemsthatthisshouldntplayamajorfactorinouropensurfacetypeflowsthatwearedealingwith.TheASMEprovidesaguidecalledTheGuidetoHydropowerMechanicalDesignwhichoutlinesthemostusefulrelationshipswhenitcomestosimilitude:

  • 28/10/2010 21

    Equations3and4arederivedfromReynoldsdimensionlessnumber,andtheyareusedinLavalsscalingcalculations.Weshouldcontinuetoverifythatourexperimentsobeysimilitudelaws,andoneofthestepswouldbetoconfirmthatweareobeyingtherestoftheequationsthatASMErecommends.