42
Computer practical room Nov. 10 & Nov. 24: Physics Cip pool (ground floor) Starting Dec. 1: SR1 (A.01.101)

Computer practical room€¦ · • Protein structures ... Tertiary structure = 3D fold of one polypeptide chain OmpX (pdb 2M06) Protein(structures:(ter-ary(structure Alpha helices

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Computer practical room

    Nov. 10 & Nov. 24: Physics Cip pool (ground floor)

    Starting Dec. 1: SR1 (A.01.101)

  • 4 nm

    Molecular dynamics simulation of Aquaporin-1

  • i~@t (r, R) = H (r, R)

    He e(r;R) = Ee(R) e(r;R)

    Molecular Dynamics Simulations

    Schrödinger equation

    Born-Oppenheimer approximation

    Nucleic motion described classically

    Empirical Force field

    1

  • Molecular Dynamics Simulations

    Interatomic interactions

  • „Force-Field“

  • Molecular Dynamics SimulationMolecule: (classical) N-particle system


    Newtonian equations of motion:

    with

    Integrate numerically via the „leapfrog“ scheme:

    (equivalent to the Verlet algorithm)

    with

    Δt ≈ 1fs!

  • “Aquaporin” water channel

  • Human hemoglobin

  • Lipid membranes

  • Today’s lecture

    • Protein structures • Notes on force calculations • Setup of a simulation • Organize force field parameters • Algorithms used during simulation • Energy minimization and equilibration of

    initial structure

    • Analysis of a simulation

  • Protein structures: primary structure

    • 20 different amino acids encoded in the DNA

    • 3-letter and 1-letter codes

    www2.chemistry.msu.edu

    Primary structure = amino acid sequence

    KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGSTDYGILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVSDGNGMNAWVAWRNRCKGTDVQAWIRGCRL

    Lysozyme

    • From N- to C-terminus

  • Protein structures: secondary structure

    Secondary structure = 3D fold of local AA segments

    Lysozyme:

    alpha-helices, beta sheets, connected by loops

    • alpha helix

    • beta sheet

    • Turns, 310-helix,…

  • Protein structures: tertiary structureTertiary structure = 3D fold of one polypeptide chain

    Mainly alpha-helical

  • Protein structures: tertiary structureTertiary structure = 3D fold of one polypeptide chain

    Mainly beta sheets

  • Protein structures: tertiary structureTertiary structure = 3D fold of one polypeptide chain

    OmpX (pdb 2M06)

  • Protein  structures:  ter-ary  structure

    Alpha helices and beta sheets

  • Protein structures: quaternary structure

    Arrangement of multiple folded polypeptides

    Example: Haemoglobin• four subunits

    Interesting:
Cooperative oxygen binding 


    through quaternary transitions

  • Multiple Time Stepping

    H. Grubmüller, H. Heller, A. Windemuth, K. Schulten; Mol. Sim. 6 (1991) 121

  • 1. Taylor expansion

    Multipole Methods

    Exact for infinite multipole series

    O(N2)

    i

    i j

    j

  • Fast Multipole Method (FMM)

    + arbitrary accuracy - high order expansions required 
 to achieve moderate accuracy

    à O(N)

    L. Greengard and V. Rokhlin, J. Comp. Phys. 73 (1987) 325

  • Fast structure-adapted multipole methods: O(N)

    M. Eichinger, H. Grubmüller, H. Heller, P. Tavan, J. Comp. Chem. 18 (1997) 1729

  • Simulation system setup 1

    • Get PDB structure and check for ‣ missing atoms/groups ‣ inaccuracies (flipped histidine ring) ‣ missing ligands ‣ chemical plausibility ‣ mutations (e.g., to facilitate crystallization) ‣ read the paper!!

    • Choose force field ‣ “all-atom” or “united-atom”, e.g. CH2, CH3 as one atom ‣ implicit or explicit hydrogen atoms ‣ polarizable force field required? ‣ QM methods required (chemistry?)

    • Add hydrogen atoms to protonable (“titratable”) groups (Histidine!)

  • Simulation system setup 2

    • Choose periodic boundary conditions or not

  • Role of environment - solvent

    explicit

    or

    implicit?

    box

    or

    droplet?

  • periodic boundary conditions and the minimum image convention

    Surface (tension) effects?

  • ~xi(t = 0) done!

    Simulation system setup 2

    • Choose periodic boundary conditions or not • if membrane protein: add lipid membrane atoms • add water molecules • add ions as counter ions (if possible, according to Debye-

    Hückel)

  • b(i)0 ,K(i)b for all bonds

    �(j)0 ,K(j)� for all angles

    Simulation system setup 3

    • Define V(x1,...xN) via force field

    ‣ bond parameters

    ‣ angle parameters

    ‣ dihedrals, extraplanars

    ‣ partial charges

    ‣ Van-der-Waals parameters

    




    VLJ = 4✏

    ⇣�r

    ⌘12�⇣�r

    ⌘6�

    qi for all atoms

    �i, ✏i for all atoms

  • Simulation system setup 4• For frequently reoccurring chemical motifs 


    define atom types, e.g.: ‣ hydrogen HC ‣ carbon CH2

    • parameter file: list properties of atom 
types and their bonds, angles, ... 


    HC q=+0.2 m=1.0 # charge, massCH2 q=-0.4 m=12.0

    HC -CH2 K=200 b=1.1 # bondsCH2-CH2 K=500 b=1.5

    HC-CH2-HC K=20 118° # anglesHC-CH2-CH2 ...

  • Simulation system setup 5‣ Topology file: defines • atoms •bonds • angles •dihedrals etc. of the simulation system 


    [ atoms ]; nr type name … 1 HC HA1 
 2 HC HA2 
 3 HC HB1 
 4 HC HB2 
 5 CH2 CA 
 6 CH2 CB

    [ bonds ] 1 5 HC-CH2 2 5 HC-CH2 3 6 HC-CH2 4 6 HC-CH2 5 6 CH2-CH2

    [ angles ] 1 5 2 HC-CH2-HC 1 5 6 HC-CH2-CH2...

    1

    25

    3

    46

  • Simulation phase - algorithms

    ‣ Integration of Newton’s equations of motion 


    Integrate numerically via the „leapfrog“ scheme:

    (equivalent to the Verlet algorithm)

    with

    Δt ≈ 1fs!

    where

  • ~P =N

    atomsX

    i=0

    ~pi

    ~pi0 = ~pi �

    miM

    ~P

    Simulation phase - algorithms

    ‣ Integration of Newton’s equations of motion ‣ Constrain bond lengths (LINCS, SHAKE) 


    idea: eliminate fastest vibrations (C-H) to 
 increase the integration time step from 1fs to 2fs 
side-effect: better descriptions of QM vibrations

    ‣ Remove overall translation (and rotation): 
Avoid drift of the molecule: remove translation (and rotation) of the entire simulation system: 


    Remove overall
momentum:

    Remove angular 
momentum analogously

  • Simulation phase - algorithms

    ‣ Remove overall translation (and rotation): 
Avoid drift of the molecule: remove translation (and rotation) of the entire simulation system:

    0 1000 2000 3000 4000 5000

    Time (ps)

    0

    500

    1000

    1500

    2000

    Coord

    inate

    (nm

    )

    Center of mass

    0 1000 2000 3000 4000 5000

    Time (ps)

    -10000

    -8000P

    ote

    ntia

    l (kJ

    /mol)

    Numerical instability: Accumulation of kinetic energy in to one degree of freedom.

  • ~vi ~vi

    s

    1� �t⌧

    ✓T

    T0� 1

    T =2

    3

    1

    NkB

    NX

    i=1

    m

    2v2i

    Simulation phase - algorithms

    ‣ Choose thermodynamic ensemble 

NVE (microcanonical ensemble)
NVT (canonical ensemble, isochoric): T-coupling 
NPT (canonical ensemble, isobaric): T-coupling and 
 P-coupling

    ‣ T-coupling, e.g. Berendsen thermostat 
After each step Δt:

    ‣ P-coupling: analogous, by scaling volume ‣ Write out coordinates at some frequency 


    𝝉 = coupling time constant


    T0 = target temperature

  • Mimimization/equilibration: 1) Energy minimization

    ☞ Reduce the steric strain by a moving along the 
steepest descent in V (~x1, . . . , ~xN )

    ☞ Notes:

    • Protein moves in to local minimum



    • Attention: proteins don’t tend towards the local minimum in V(x), but towards the global minimum in the free energy!

☞ Entropy/ensembles are important!

  • BPTI: Minimization

  • Mimimization/equilibration: 2) Thermalization

    ☞ Heat the system to, e.g. 300K by assigning Maxwell-distributed velocities

    p(vx

    ) / e�mv

    2x

    2kB

    T , p(vy

    ) / · · ·

    Trick to avoid distortion of the protein: • assign velocities to to the system• keep protein backbone restrained• equilibrate for ~100ps

  • Mimimization/equilibration: 3) Equilibration

    How long? → Multiple checks:

    • Convergence of energy contributions (particularly Coulomb and 
Lennard-Jones) and box dimensions

    • Room-mean square deviation (RMSD) from the crystal/NMR structure

    RMSD(t) =

    ✓1

    N

    XNi=1

    [~xi(t)� ~xi(0)]2◆1/2

    Typically:

    0 1 2 3 4 5 6 7 8 9

    Time (ns)

    0.00

    0.05

    0.10

    0.15

    RM

    SD

    (n

    m)

    picosecond jumpconformationalsampling

    ?

  • Mimimization/equilibration: 3) Equilibration

    Reasons for RMSD increase/drift:

    • Fast fluctuations → picosecond jump ☞ OK• slow conformational motions 


    → nanosecond drift ☞ OK 



    • Conformational transitions → stairs ☞ OK




    • Structural drift due to ☞ NOT OK - bad X-ray structure- inaccurate force field- software bug- …

  • Mimimization/equilibration: 3) Equilibration

    Judgement of RMSD:

    • RMSD does not converge ⟹ simulation is not OK.• But: RMSD converges ⇏ simulation is OK.

    Better check, e.g., PCA projections

  • Simulation analysis

    Available after simulation:

    • Positions:


    e.g., T = 10ns, N = 100.000, Δt = 2fs 


    ☞ 5·106 × 105 × 3 × 4 Byte = 6 TByte !

    • Velocities

    • Temperature

    • Potential energies:

    • Anything you can program…

    ~x1(ti), . . . , ~xN (ti), ti = 0,�t, 2�t, . . . , T

    ~v1(ti), . . . ,~vN (ti)

    T (ti) =1

    (3N � 6)kB

    NX

    i=1

    miv2i (ti)

    Vbond

    (ti), Vangle(ti), Vdih(ti), VCoul(ti), VLJ(ti),

  • Simulation analysis

    Observables that may be interesting: everything that can be 
measured

    • Size of atomic fluctuations


    Note: ensemble average ⟨⋯⟩ ≠ time average

    • Anything that helps to understand the protein function:

    - Movie (!), motion of groups

    - interaction energies, hydrogen bonds, radial distribution 


    functions, transition rates, change in secondary structure 


    x̄j = M�1

    MX

    i=1

    ~xj(ti)

    h(~xj � h~xij)2i ⇡1

    M

    MX

    i=1

    ⇥~xj(ti)� x̄j

    ⇤2

  • BPTI: Molecular Dynamics (300K)