25
Computational NMR spectroscopy applied to bioglasses Alfonso Pedone Department of Chemical and Geological Sciences University of Modena and Reggio Emilia NIS Colloquia Turin 28-29 November 2013

Computational NMR spectroscopy applied to bioglasses

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Computational NMR spectroscopy applied to bioglasses

Computational NMR

spectroscopy applied

to bioglasses

Alfonso PedoneDepartment of Chemical and Geological SciencesUniversity of Modena and Reggio Emilia

NIS Colloquia

Turin 28-29 November 2013

Page 2: Computational NMR spectroscopy applied to bioglasses

Overview of the talk

o Introduction (bioglasses & NMR)

o Methodology:

o MD-GIPAW to simulate NMR spectra

o Application:

o 45S5 Bioglass (31P, 29Si, 17O, 23Na)

o Fluorinated bioglasses (19F, 29Si, 23Na)

o Conclusions

Page 3: Computational NMR spectroscopy applied to bioglasses

Prof. Larry Hench

Imperial College London

HA [Ca10(PO4)6(OH)2]

SBF [Na+, K+, Ca2+, Mg2+,

HPO42-, HCO3

-, Cl- and

SO42-]

®Bioglass 45S5 (Hench, 1971)

SiO2 45%

Na2O 24.5%

CaO 24.5%

P2O5 6%

Hench et al J. Biomed. Mater. Res. Symp. 1971, 2, 117

Bioglasses

Structure-bioactivity relationships

The crucial issue for the development of bioglasses is an improved

understanding of their fundamental structure–bioactivity

relationships.

Page 4: Computational NMR spectroscopy applied to bioglasses

Nuclear Magnetic Resonance spectroscopy is

extremely sensitive to chemical environment of

active nuclei :

o Topological disorder (bond distances and angles,

coordination numbers etc..)

o the nature of the 2nd coordination sphere (chemical disorder)

BONBO

Page 5: Computational NMR spectroscopy applied to bioglasses

ZEEMAN INT.

Anisotropic!! BROAD SOLID STATE SPECTRA

DIPOLAR INT. QUADRUPOLAR INT. (I>1/2)

CHEMICAL SHIFT

MAS

DAS

DOR

MQMAS

MAS

Improved

Resolution

Improved

Accuracy

Page 6: Computational NMR spectroscopy applied to bioglasses

β-CaSiO3 glassNMR of amorphous systems

Distribution of

structural features

Distribution of

NMR parametersBroad Spectra

29Si MAS

M. Edèn, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.,

2012,108, 177-221

Topological disorder

Chemical disorder

Page 7: Computational NMR spectroscopy applied to bioglasses

Our Approach

Charpentier, T. Menziani, M. C., Pedone A. RSC Advances 2013, 3 (27), 10550 - 10578

GLASS SAMPLE

3D structure

unknown

GLASS MODEL

3D structure

from MD

Collect NMR

spectra & extract

NMR parameters

Compute NMR

parameters

(DFT-GIPAW)

& theoretical

spectra (fpNMR)

Experiments verify theory

Theory explains experiments

No

Refine the

model

Agreement?

Yes

NMR - structure relationships

Structural Inversion

Peak assignments

Spectra

Interpretation

Page 8: Computational NMR spectroscopy applied to bioglasses

Glass Generation: Molecular Dynamics Simulations

• Models of crystalline (or random) systems are melted; the

melts are then quenched , freezing the structure into a

disordered glassy phase.

Pedone, A. J. Phys. Chem. C 2009, 113, 20773.

Page 9: Computational NMR spectroscopy applied to bioglasses

NMR CASTEP

QUANTUM ESPRESSO

DFT-PBE calculations

Plane waves Basis set

Pseudo-Potentials

NMR Calculations

GIPAW: C.J. Pickard, F. Mauri, Physical Review B 63 245101 (2001)

Spin ½ nuclei:δiso, ΔCSA, ηCSA

Spin > ½ nuclei:δiso, ΔCSA, ηCSA,

CQ, ηQ

fpNMR

nnmmv tottotnm HH ,

Pedone, A.; Charpentier, T.; Menziani, M. C.

Phys. Chem. Chem. Phys. 2010, 12, 5064.

(90°,MAS) 2D NMR

MQMAS

MAS

NMR parameters

Page 10: Computational NMR spectroscopy applied to bioglasses

Bioglasses

General Microscopic Structure

• very open silicate network dominated by Q2 and Q3 species

• phosphate groups are predominantly isolated Q0 units associated

with modifier cations.

• bioactivity appears for glasses with network connectivity (NC) < 3

45S5: 46.1% SiO2, 24.4% Na2O, 26.9%CaO, 2.6% P2O5

Page 11: Computational NMR spectroscopy applied to bioglasses

Bioglasses

General Microscopic Structure

• Fluoride prefers to form FMn moieties (M=Na/Ca)

• The high affinity of F for Na and Ca modifier cations determines the

separation of a highly polymerized phosphosilicate matrix from an

ionic phase rich in Na, Ca and F.

45S5F: 46.1% SiO2, 24.4% Na2O, 16.9%CaO, 10CaF2 2.6% P2O5

CaF2

CaO

Network

connectivity

increases

Lusvardi et al. J. Phys. Chem. B 2008, 112, 12730. Christie et al. J. Phys. Chem. B 2011, 115, 2038-2045.

Page 12: Computational NMR spectroscopy applied to bioglasses

Open Questions on the structure

Bi- or Trinomial Qn(Si) distributions?

Are P-O-Si bonds present in the glass?

Nature of Cation Mixing around NBOs.

Random or Non-Random distributions?

Fluorine environment? Are Si-F bonds

present in the glass?

Does Fluorine prefer to bond with Na or

Ca?

Page 13: Computational NMR spectroscopy applied to bioglasses

PHOSPHOROUS ENVIRONMENT

150 100 50 0 -50 -100 -150

MAS

Static

Inte

nsity (

Arb

. U

nits)

ppm

Exp.

Theor.

Q0

P

Q1

P

No Si-O-P bonds are present in the real structure

δiso = 8.7 ppm, CSA=-11.2 ppm

δiso = -0.7 ppm, CSA=-70.2 ppm

Pedone, A.; Charpentier, T.; Malavasi, G.; Menziani, M. C. Chem. Mater. 2010, 22, 5644.

45S5

Page 14: Computational NMR spectroscopy applied to bioglasses

-50 -60 -70 -80 -90 -100 -110

MAS

ppm

Exp.

Theor.

Q1

Si

Q2

Si

Q3

Si

SILICON ENVIRONMENT

Pedone, A. et al. Chem. Mater. 2010, 22, 5644.

45S5

-70.7 ppm -87.0 ppm

-79.5 ppm

Page 15: Computational NMR spectroscopy applied to bioglasses

Pedone, A. et al. Chem. Mater. 2010, 22, 5644.

Direct fitting of the 29Si MAS spectrum

𝑆𝑖 − 𝑁𝐵𝑂

𝑆𝑖 − 𝐵𝑂 − 𝑆𝑖=

3𝑄1 + 2𝑄2 + 𝑄3

0.5𝑄1 + 𝑄2 + 1.5𝑄3

Compositional constraints:

𝑄1 = −0.1087𝑄2 + 0.789𝑄3

10.5%

67.2%

22.3%

Page 16: Computational NMR spectroscopy applied to bioglasses
Page 17: Computational NMR spectroscopy applied to bioglasses

Good agreement between the experimental and theoretical 17O

NMR spectra

Analysis of the 17O NMR parameters for each oxygen species

17O NMR

Page 18: Computational NMR spectroscopy applied to bioglasses

Oxygen sites

MD-GIPAW assisted the deconvolution of 17O NMR

Page 19: Computational NMR spectroscopy applied to bioglasses

Si-O-P sites

Page 20: Computational NMR spectroscopy applied to bioglasses

The theoretical calculations have been used to guide the fitting

of the experimental 17O 3QMAS spectra

Site MQMAS

P-O(Ca,Na) 14.7%

P-O(Na) 5.9%

P-O(Ca) -

Si-O(Ca,Na)

Si-O(Na)

Si-O(Ca)

37.3%

6.5%

7.1%

Si-O-Si 28.1%

Site Populations

OXYGEN ENVIRONMENT

NON RANDOM DISTRIBUTION OF Na & Ca AROUND OXYGEN

Page 21: Computational NMR spectroscopy applied to bioglasses

19F MAS NMR

Experiment

Theory

The calculated spectra of the various F sites fall within the

experimental isotropic chemical shift ranges denoting a satisfactory

agreement. Pedone et al. J. Mater. Chem. 2012 22 12599

45S5F Bioglass

Page 22: Computational NMR spectroscopy applied to bioglasses

de-shielding due to the partial covalence of the Ca-F bonds.

F[Ca3Na] 8%

F

Na

F[Ca2Na2] 24%F[CaNa3] 12%

Highδiso

lowδiso

CaCa

Ca Ca

Ca

Ca

Page 23: Computational NMR spectroscopy applied to bioglasses

F[Ca2Si] 4%F[CaNaSi] 4%F[Na2Si] 8%

it is difficult to assess the presence of Si–F bonds by means of the

MAS NMR spectra only.

Contribution of Si-F bonds to 19F MAS spectra…

Page 24: Computational NMR spectroscopy applied to bioglasses

Conclusions

o NMR spectroscopy + MD-GIPAW is a powerfull tool to

improve amorphous system structural characterization

o P is present as orthophosphate units (No Si-O-P bonds in

the compositions studied)

o Trinomial distribution of Qn(Si) species

o Non-random distribution of Na/Ca around NBO

o Si-F bonds are not detectable by means of 29Si MAS

NMR but REDOR experiments must be used

o F atoms are coordinated to the modifiers in a mixed

state

Page 25: Computational NMR spectroscopy applied to bioglasses

Acknowledgments

Thank you all for your kind attention!

o E. Gambuzzi, G. Lusvardi, G. Malavasi, L.

Menabue & M. C. Menziani (UniMORE)

o T. Charpentier (CEA, FRANCE)

o A. Tilocca & J. Christie (UCL, UK)