7
Improving understanding of energetic materials: Compression behavior and co-crystal synthesis Przemyslaw Dera University of Hawaii School of Ocean and Earth Science and Technology Hawaii Institute of Geophysics & Planetology ARL Summer Meeting Honolulu, HI, August 20, 2015 Partnership for eXtreme Xtallography: https://sites.google.com/site/partnershipx2/ ThinkTech Hawaii interview about extreme conditions research at HIGP: https://www.youtube.com/watch?v=tM0sErJ6rKg Our research is supported by: NSF (Geophysics, GeoInformatics, EarthCube and SISI) CDAC/DOE-NNSA NASA (ASTID and SERA)

Compression behavior and co- crystal synthesis · 2017-08-31 · Improving understanding of energetic materials: Compression behavior and co- crystal synthesis Przemyslaw Dera University

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Improving understanding of energetic materials: Compression behavior and co-crystal synthesis

    Przemyslaw DeraUniversity of Hawaii

    School of Ocean and Earth Science and TechnologyHawaii Institute of Geophysics & Planetology

    ARL Summer MeetingHonolulu, HI, August 20, 2015

    Partnership for eXtreme Xtallography:https://sites.google.com/site/partnershipx2/

    ThinkTech Hawaii interview about extreme conditions research at HIGP:https://www.youtube.com/watch?v=tM0sErJ6rKg

    Our research is supported by:NSF (Geophysics, GeoInformatics, EarthCube and SISI)CDAC/DOE-NNSANASA (ASTID and SERA)

    http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=CMrSHp--QuUGjM&tbnid=Ny-F8893IF9c9M:&ved=0CAUQjRw&url=http%3A%2F%2Fmanoa.hawaii.edu%2Freis%2Fpartners%2F&ei=1RqlUcv9B9DsqQG_7oDABw&bvm=bv.47008514,d.aWc&psig=AFQjCNFonMRLmh_RSXo6sZ93KgUE-QRpTg&ust=1369861196943743http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=CMrSHp--QuUGjM&tbnid=Ny-F8893IF9c9M:&ved=0CAUQjRw&url=http%3A%2F%2Fmanoa.hawaii.edu%2Freis%2Fpartners%2F&ei=1RqlUcv9B9DsqQG_7oDABw&bvm=bv.47008514,d.aWc&psig=AFQjCNFonMRLmh_RSXo6sZ93KgUE-QRpTg&ust=1369861196943743https://sites.google.com/site/partnershipx2/https://www.youtube.com/watch?v=tM0sErJ6rKg

  • Structural, electronic and magnetic phase transitions have consequences on physical properties and behavior of technologically-relevant materials and play important role in the energy release from explosives.

    These phenomena can significantly affect mechanical/elastic and transport properties, which are often critical for the material’s performance in the field setting. In particular, some phase transitions may lead to catastrophic mechanical failure of armor ceramics or may affect sensitivity of molecular explosives or solid propellants.

    Factors that can trigger phase transitions include:• Pressure• Temperature• Stress anisotropy (shear component)• Stress/strain rate

    Structural transformations and energetic materials

    Polymorphic pressure-induced transformation in Be(OH)2, hydrogen-bonded analog of silicaShelton, Dera et. al. in press

  • • Effects of temperature and hydrostatic pressure defining stable phase diagrams are fairly routine to measure, and for most fundamental systems have already been established.

    • The effects of stress anisotropy and stress/strain rate are even more important/realistic for technological applications, but they are also much more elusive (e.g. path-dependent), harder to quantitatively control and often lead to metastable behavior.

    • All of these effects can be measured using novel synchrotron in situ X-ray diffraction techniques developed by our group.

    Stress anisotropy and stress/strain rate are capable of:• changing pressure/temperature at which known stable phase

    transitions take place (e.g. SiO2 quartz)• inducing new metastable phase transitions (e.g. CuGeO3)• suppressing known phase transitions (e.g. SiO2 cristobalite)• changing deformation mechanism (e.g. SiO2 quartz)

    Stress-rate controlled metastability

    Polymorphic pressure-induced transformation in SiO2 cristobalite can be suppressed by rapid compression Dera et. al. Phys. Chem. Mineral. (2011)

    0.1mm

    Ruby sphere

    Explosive samples

  • Polymorphism related to hydrogen bond transformations plays important role in controlling explosive materials stability

    • Stable and unstable molecules that have compatible molecular geometries and H-bond formation capabilities can often be combined in co-crystals that inherit a combination of properties of the parent compounds.

    • Hydrothermal conditions (high p and T) often promote co-crystal formation

    • This route offers possibility for synthesis of hybrid molecular materials with improved properties (e.g. high energy storage and high stability)

  • Stable molecular analogs of explosives provide convenient test cases to understand hydrogen bond transformations

    • s-triazine ring• 6 out of 9 non-H atoms are nitrogen • The molecule in the crystal is not flat because of extensive

    intermolecular hydrogen bonding• Stable, fire-retardant properties (used for kitchen laminate

    applications)• Molecular geometry compatible with TATB and TNB• Forms co-crystals with some molecular explosives• Synchrotron in situ single crystal X-ray diffraction (below)

    provides unparalleled insight into the atomic details of compression behavior

    Melamine

  • 0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 10 20 30 40

    Series1Series2Series3Series4Power (Series1)Log. (Series1)

    benzene

    graphite

    melamine

    • Two experiments carried out in Ne and He pressure media• No symmetry change or volume discontinuity detected up to 35 GPa• Displacive phase transition at 35 GPa to a triclinic phase• Amorphisation observed above 45 GPa

    V/V0

    31 32 33 34 35 36

    x10^3

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0[ _p _ ]

    P=40 GPa P=45 GPa

    p [GPa]P=30 GPa

    P=1 GPa

    de-distance to the nearest atom outside Normalized contact distance dnorm

    Synchrotron single-crystal X-ray diffraction and Hirshfeld surface analysis

    In situ Raman spectroscopy

    Chart1

    0000

    0.960.611

    2.86122

    4.731.333

    7.722.855

    10.468.21010

    16.8210.31515

    19.8132020

    23.5414.82525

    253030

    37.573535

    4040

    1

    1

    1

    1

    0.9059001477

    0.9

    0.8929387755

    0.9740888383

    0.8013417286

    0.83

    0.8388979592

    0.9530182232

    0.7326292658

    0.72

    0.8022857143

    0.9353644647

    0.6790151321

    0.7

    0.752244898

    0.9068906606

    0.6331297264

    0.644

    0.68

    0.8562072893

    0.5764365966

    0.63

    0.6366530612

    0.8208997722

    0.5619532013

    0.62

    0.6057142857

    0.7935649203

    0.5347782344

    0.61

    0.5820408163

    0.7713553531

    0.5246928855

    0.5628571429

    0.7525626424

    0.4838305356

    0.5465306122

    0.736332574

    0.5327346939

    0.7218109339

    Sheet1

    Melamine

    C1C1b

    #p1p2abcbetasasbscsbetaVV/V0# peaksp1p2acsascc/aVV/V0# peaks

    010.34837.495027.29499108.464676.53980464571

    10.960.969.961017.455227.13241107.0620.00580.00250.0110.059612.8775089240.90590014772660

    22.622.869.488937.38876.95258105.5320.00460.0020.00710.043542.13957649180.80134172862.622.862.459466.475270.000670.00282.632801509333.9209526808

    34.734.739.157997.330196.82412104.360.00230.00110.00420.022495.65286035970.73262926584.734.73

    47.367.728.890467.273656.7111103.4370.00310.00170.00540.037459.38076483390.67901513217.367.72

    59.910.468.687697.238716.5531102.4530.00370.0020.00430.031428.33746143740.63312972649.910.46

    616.4416.828.384567.14916.40551101.7890.00670.00270.00660.051389.98230243720.576436596616.4416.82

    719.5619.88.303737.123096.36673101.8850.00540.00210.00630.053380.18370900220.561953201319.5619.8

    822.8923.548.156847.101756.27903101.4460.00240.00110.00350.028361.79876225080.534778234422.8923.54

    9258.106237.061286.23778101.471354.97562222140.5246928855025

    1037.577.88356.985096.0816100.6010.00240.000830.00210.022327.33061606270.483830535677937.57

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    10.697.537.36111.9549.6950595483

    01

    0.60.9

    10.838.6666666667

    1.30.72

    2.80.7

    8.20.644

    10.30.63

    130.62

    14.80.61

    water

    23.94.212.3Fei

    Graphite eos

    0.58333333330.6BM33.88.935.12

    Benzene eos

    1.2661.293V5.58.5245

    1.3681.362

    benzenegraphite

    1.3611.25802451035.121

    1.4491.3491218.770.8929387755134.210.9740888383

    2205.530.8388979592233.470.9530182232

    1.3091.3333196.560.8022857143332.850.9353644647

    1.3621.3545184.30.752244898531.850.9068906606

    10166.60.681030.070.8562072893

    15155.980.63665306121528.830.8208997722

    20148.40.60571428572027.870.7935649203

    25142.60.58204081632527.090.7713553531

    30137.90.56285714293026.430.7525626424

    35133.90.54653061223525.860.736332574

    7.6637.2720.94897559740130.520.53273469394025.350.7218109339

    7.4957.0580.941694463

    6.1765.4130.8764572539

    6.1235.3180.8685284991nitrobenzene

    0592.91

    0.49555.40.9367515601

    1.35517.80.8733344578

    2.08497.60.8392646315

    2.99479.10.8080620678

    3.984630.7809074043

    5.024530.7640411537

    6.11446.10.7524034407

    Sheet1

    ��

    0.00580.0058

    0.00460.0046

    0.00230.0023

    0.00310.0031

    0.00370.0037

    0.00670.0067

    0.00540.0054

    0.00240.0024

    Sheet2

    Sheet3

    65

    4

    N1 2 0.005616 0.478949 0.196635 11.00000 0.01326N1 2 -0.005055 0.481724 0.195127 11.00000 0.01870N1 2 0.001399 0.483324 0.191255 11.00000 0.02299N1 2 0.006239 0.487550 0.184555 11.00000 0.02509

    N2 2 0.033455 0.796978 0.115475 11.00000 0.01276N2 2 0.029757 0.799934 0.113758 11.00000 0.01753N2 2 0.018045 0.799036 0.117675 11.00000 0.02098N2 2 0.030143 0.805559 0.113076 11.00000 0.02324

    N3 2 0.707571 0.639271 0.058783 11.00000 0.01405N3 2 0.693899 0.647397 0.066185 11.00000 0.02441N3 2 0.699652 0.650523 0.062718 11.00000 0.02817N3 2 0.740326 0.651525 0.054217 11.00000 0.02031

    C1 1 0.833214 0.788465 0.064139 11.00000 0.01509C1 1 0.825320 0.795812 0.066598 11.00000 0.01648C1 1 0.828915 0.797313 0.064005 11.00000 0.01323C1 1 0.808847 0.798337 0.072983 11.00000 0.01691

    C2 1 0.795297 0.487087 0.132713 11.00000 0.01984C2 1 0.808720 0.490667 0.123755 11.00000 0.01353C2 1 0.799406 0.496328 0.127269 11.00000 0.01622C2 1 0.810320 0.504261 0.122625 11.00000 0.01468

    C3 1 0.147620 0.631376 0.163122 11.00000 0.01478C3 1 0.139921 0.635541 0.163381 11.00000 0.01355C3 1 0.122298 0.640362 0.169399 11.00000 0.01657C3 1 0.112577 0.643568 0.170377 11.00000 0.01865

    N4 2 0.727265 0.952758 0.020076 11.00000 0.02394N4 2 0.723529 0.957020 0.022047 11.00000 0.02504N4 2 0.724895 0.959673 0.020398 11.00000 0.02220N4 2 0.736925 0.960662 0.016413 11.00000 0.01439

    217

    N1 2 -0.009735 0.492546 0.188979 11.00000 0.01968N1 2 -0.001734 0.496340 0.181615 11.00000 0.03971N1 2 0.008071 0.473628 0.198305 11.00000 0.00772

    N2 2 0.019432 0.806662 0.114229 11.00000 0.02452N2 2 0.022875 0.808356 0.123924 11.00000 0.00788N2 2 0.034763 0.791486 0.117089 11.00000 0.01235

    N3 2 0.678334 0.655231 0.075310 11.00000 0.02381N3 2 0.709455 0.666819 0.062674 11.00000 0.00585N3 2 0.705494 0.637070 0.057545 11.00000 0.01249

    C1 1 0.827587 0.803060 0.063936 11.00000 0.01946C1 1 0.818940 0.809762 0.070509 11.00000 0.02459C1 1 0.843508 0.788554 0.058878 11.00000 0.01704

    C2 1 0.802760 0.503756 0.125009 11.00000 0.01794C2 1 0.822695 0.506484 0.123043 11.00000 0.00027C2 1 0.807157 0.486879 0.125400 11.00000 0.01497

    C3 1 0.125019 0.646246 0.162784 11.00000 0.01996C3 1 0.087118 0.641708 0.174496 11.00000 0.04355C3 1 0.139286 0.629702 0.168954 11.00000 0.01552

    N4 2 0.732660 0.961679 0.018565 11.00000 0.03245N4 2 0.729616 0.946478 0.010639 11.00000 0.05239N4 2 0.717801 0.954352 0.026667 11.00000 0.015081.5610.6987466428

    2.234

    0010.50430.18130111

    0.96-0.00170.99830.49630.18160.960.99830.98413642671.0016547159

    2.86-0.00970.99030.49250.18892.860.99030.97660122941.0419194705

    4.730.0061.0060.48750.18454.731.0060.96668649611.0176503034

    7.720.0011.0010.48330.19127.721.0010.95835812021.054605626

    10.46-0.0050.9950.48170.195110.460.9950.95518540551.0761169333

    16.820.0051.0050.47890.196616.821.0050.94963315491.084390513

    19.80.00811.00810.473620.198319.81.00810.93916319651.0937672366

    23.54

    -27-29

    -27-18.3333333333-20.3333333333

    8.6666666667-9.6666666667-11.6666666667

    -1-3

    7.66666666675.6666666667

    16.333333333314.3333333333

    25

  • PX2 Partnership for eXtreme XtallographyNew Advanced Experimental Facility of HIGP at Argonne National Laboratory

    X-ray beam: Bending magnet source, 30 keV fixed energy, 10x15 micrometers focal spot size

    Goniometer: Unique six-circle diffractometer high rotation speed (up to 15deg/sec), high precision of rotation ( less than 10 micrometers sphere of confusion)High load capacity (up to 25 lb)

    Detectors: Mar165 CCDUltrafast Perkin Elmer XRD1642 flat panel pixel array detector (30 exposures/sec)

    Laser optics: Online Raman spectroscopyUnique laser heating system for single crystal experiments including 200 W NIR fiber laser

    Mission: Advanced research at conditions of extreme pressure, temperature and strain rates, exploring structure, defects, strain, and transformations of minerals and materials of technological interest

    Access: Up to 50% beam time available for high pressure experiments

    In house facilities for extreme conditionsresearch at HIGP:

    Diamond anvil cellsDynamic compression membrane setup NIR laser heating CO2 laser heating In situ ambient and high temperature Raman

    spectroscopy in DACLarge volume presses for sample synthesis

    Our facilities

    Improving understanding of energetic materials: Compression behavior and co-crystal synthesisSlide Number 2Slide Number 3Polymorphism related to hydrogen bond transformations plays important role in controlling explosive materials stabilityStable molecular analogs of explosives provide convenient test cases to understand hydrogen bond transformationsSlide Number 6Slide Number 7