12
Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January – May, 2014) Jeerasak Pitakarnnop , Ph.D. [email protected] [email protected] March 29, 2014 Aerodynamics II 1

Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

Embed Size (px)

Citation preview

Page 1: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

Compressible Flow: Supersonic Wind Tunnels

Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014 (January – May, 2014)

 Jeerasak Pitakarnnop , Ph.D.

[email protected] [email protected]

   

March  29,  2014   Aerodynamics  II   1  

Page 2: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

How  to  generate  Mach  2.5  flow?  

March  29,  2014   Aerodynamics  II   2  

High  pressure  supplied  

require  a  large  reservoir  which  

is  costly.   Shock  free  expansion  pe  =  pB  

Page 3: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

More  efficient  way  with  less  cost!  

March  29,  2014   Aerodynamics  II   3  

Normal  shock  is  the  strongest  shock  which  

create  huge  loss.  

Extremely  difficult  to  hold  the  shock  exactly  at  the  exit  of  the  duct.  Test  SecPon  

When  introduce  a  test  model,  complex  shock  wave  will  form,  the  normal  shock  wave  could  not  exist  is  such  flow.  

Page 4: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

Final  SoluPon  –  Oblique  Shock  Diffuser  

March  29,  2014   Aerodynamics  II   4  

The  waves  propagate  downstream  and  

interacts  with  the  shock  in  the  diffuser       Large  p0  or  small  pB  

(vacuum)  or  combinaPon  of  both  

At,2At,1

=p0,1p0,2

Page 5: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

Ex1:  Supersonic  Wind  Tunnel  

•  For   the   preliminary   design   of   a   Mach   2  supersonic  wind   tunnel,   calculate   the  raPo  of  the   diffuser   throat   area   to   the   nozzle   throat  area.  

March  29,  2014   Aerodynamics  II   5  

Page 6: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

EX2:  Exhaust  Nozzle  •  Consider   a   rocket   engine   burning   hydrogen   and  oxygen;   the   combusPon   chamber   temperature   and  pressure   are   3517   K   and   25   atm,   respecPvely.   The  molecular  weight  of  the  chemically  reacPng  gas  in  the  combusPon  chamber   is  16,  and  γ  =  1.22.  the  pressure  at  the  exit  of  the  convergent-­‐divergent  rocket  nozzle  is  1.174   x   10-­‐2   atm.   The   area   of   the   throat   is   0.4   m2.  Assuming  a  calorically  perfect  gas  and  isentropic  flow,  calculate:  –  The  exit  Mach  no.  –  The  exit  velocity  –  The  are  of  the  exit  –  The  mass  flow  through  the  nozzle  

March  29,  2014   Aerodynamics  II   6  

Page 7: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

EX3:  Convergent-­‐Divergent  Nozzle  

•  Consider   the   flow   through   a   convergent-­‐divergent   duct   with   an   exit-­‐to-­‐throat   area  raPo  of  2.  The  reservoir  pressure  is  1  atm,  and  the   exit   pressure   is   1   atm,   and   the  exitpressure   is   0.95   atm.   Calculate   the  Mach  nos.  at  the  throat  and  at  the  exit.  

March  29,  2014   Aerodynamics  II   7  

Page 8: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

EX4:  Convergent-­‐Divergent  Nozzle  

•  Consider  a  convergent-­‐divergent  duct  with  an  exit-­‐to-­‐throat   area   raPo   of   1.6.   Calculate   the  exit-­‐to-­‐reservoir   pressure   raPo   required   to  achieve  sonic  flow  at  the  throat,  but  subsonic  flow  everywhere  else.  

March  29,  2014   Aerodynamics  II   8  

Page 9: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

EX5:  Convergent-­‐Divergent  Nozzle  

•  Consider   a   convergent-­‐divergent   nozzle   with  an   exit-­‐to-­‐throat   area   raPo   of   3.   A   normal  shock  wave  is  inside  the  divergent  porPon  at  a  locaPon  where  the  local  area  raPo  is  A/At  =  2.  Calculate  the  exit-­‐to-­‐reservoir  pressure  raPo.  

March  29,  2014   Aerodynamics  II   9  

Page 10: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

Shock  LocaPon  –  IteraPve  SoluPon  

•  Assume  shock  locaPon  (As/At)  •  Calculate  pressure  raPo  (pe/pi)  •  Check  whether  pe/pi  is  agree  with  the  specified  value  or  not.  

•   If  not,  assume  another  As/At  

•   Repeat  unPl  accurate  pe/pi  is  found.  

March  29,  2014   Aerodynamics  II   10  

pi  

pe  

pt,s1   pt,s2  At  

A*s1   A*s2  

Ae  

Normal  Shock  

Throat  

Page 11: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

Shock  LocaPon  –  Direct  SoluPon  

March  29,  2014   Aerodynamics  II   11  

pi  

pe  

pt,s1   pt,s2  At  

A*s1   A*s2  

Ae  

Normal  Shock  

Throat  

Me2 = −

1γ −1

+1

γ −1( )2+2

γ −12

γ +1"

#$

%

&'

γ+1γ−1"

#$

%

&' pt,eAe

*

peAe

"

#$

%

&'

2

•  From  given  pressure  and  area,  calculate  Me  

•  Then  calculate  total  pressure  across  the  shock  

•  Ms1  could  be  determined  from  total  pressure  across  the  shock.  

•  As/At  can  be  found  from  Ms1.  

Page 12: Compressible Flow - · PDF file09.06.2013 · Compressible Flow: Supersonic Wind Tunnels Aerospace Engineering, International School of Engineering (ISE) Academic year : 2013-2014

EX6:  Convergent-­‐Divergent  Nozzle  

•  Consider   a   convergent-­‐divergent   nozzle   with  an   exit-­‐to-­‐throat   area   raPo   of   3.   The   inlet  reservoir  pressure   is  1  atm  and  the  exit  staPc  pressure   is  0.5  atm.  For   this  pressure   raPo,  a  normal  shock  will  stand  somewhere  inside  the  divergent  porPon  of   the  nozzle.  Calculate   the  locaPon  of  the  shock  wave  using  – A  trial-­‐and-­‐error  soluPon  – The  exact  soluPon  

March  29,  2014   Aerodynamics  II   12