24
Compost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program Kelly Gravuer, PhD Candidate, Graduate Group in Ecology and Graduate Student Assistant University of California, Davis California Department of Food and Agriculture Prepared in coordination with Amrith (Ami) Gunasekara, PhD Liaison to the Environmental Farming Act Science Advisory Panel California Department of Food and Agriculture, Sacramento A report for the Environmental Farming Act Science Advisory Panel Draft (Version 2.0 – 7/22/2016)

Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

Embed Size (px)

Citation preview

Page 1: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

CompostApplicationRatesforCaliforniaCroplandsandRangelandsforaCDFAHealthySoilsIncentivesProgram

KellyGravuer,PhDCandidate,GraduateGroupinEcologyandGraduateStudentAssistant

UniversityofCalifornia,DavisCaliforniaDepartmentofFoodandAgriculture

PreparedincoordinationwithAmrith(Ami)Gunasekara,PhD

LiaisontotheEnvironmentalFarmingActScienceAdvisoryPanelCaliforniaDepartmentofFoodandAgriculture,Sacramento

AreportfortheEnvironmentalFarmingActScienceAdvisoryPanel

Draft(Version2.0–7/22/2016)

Page 2: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

1

TableofContents

ExecutiveSummary 2

Introduction 3

Methodology 4

Results 4Definitionofcomposteligiblefortheprogram 4Figure1.Distributionofapplicationratestodefine 6Compostapplicationratesforcroplands 6Table1.Averagepoundsofnitrogenpertondrycompostandaveragemoisturecontentforhigherandlowernitrogencomposttypes 7Figure2.Thenitrogencycle 8Box1.Exampleofcalculationstodeterminethepercentageoftotalplantrequirednitrogenrepresentedbycompost 9Table2.Proposedcompostapplicationratesforcroplands 10Compostapplicationratesforrangelands 10Table3.Literaturereviewoforganicamendmentadditionstosemi-aridrangelands 12Table4.Proposedcompostapplicationrateforrangelands 13Table5.Typesofsitesforrangelandcompostapplication 14Summaryofcompostapplicationratesforcroplandsandrangelands 15Table6.Recommendationsofthesubcommitteeforcompostapplicationtoagriculturallandsdistributedbytypeofagriculturalsystem,C:Nratioandtypeoffarming 15

OtherConsiderations 15Nitrousoxide(N2O)emissions 15Organically-managedcroplands 15Pathogens 16Monitoring 16Lifecycleconcerns 16Rangelandsiteassessments 17Technicalassistanceforprogramapplicants 17Primarypotentialenvironmentalimpactsofcompostapplicationtorangelands 171.Potentialimpactsonnitrate 172.Potentialimpactsonplantdiversity 173.NutrientRun-off 18Additionalconsiderationsforrangelands 18

LiteratureCited 20

ListofparticipantsforEnvironmentalFarmingActScienceAdvisoryPanelcompostsubcommittee23

Page 3: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

2

ExecutiveSummaryAspartofGovernorBrown’sHealthySoilsInitiative,theCaliforniaDepartmentofFood

andAgriculture(CDFA)isplanningtoestablishafinancialincentiveprogramforCalifornia’sfarmersandrancherstoimplementpracticesthatimprovesoilhealthandreducegreenhousegas(GHG)emissions.Theseincentives,asproposed,wouldbebasedontheUSDANaturalResourcesConservationService(NRCS)ConservationPracticesthatareincludedinCOMET-Planner.COMET-PlannerisatooldevelopedbyNRCStoestimatesGHGreductionsfrommanagementpracticechanges.CDFArecognizesthattheAirResourcesBoard(ARB)isresponsiblefordevelopingthequantificationmethodology(QM)associatedwithanyprogramfundedthroughtheCaliforniaClimateInvestmentsprogram,alsoknownastheGreenhouseGasReductionFund.Assuch,thisreportdescribesanalysesthatmaysupportthedevelopmentofaQMfortheCDFAincentiveprogram,ratherthanfurnishingtheQMtoolthatwillbeused.

OneagriculturalpracticewithconsiderablesoilhealthimprovementandGHGreductionpotentialisnotyetrepresentedasastand-aloneConservationPracticeintheCOMET-Plannertool:theapplicationofcomposttocroplandsandrangelands,animportantconservationpracticethatcanimprovesoilhealth.InordertomakethismanagementpracticeincludedinanyfutureincentiveprogrambyCDFA,compostapplicationratesthatwouldbecost-sharedbytheprogramneedtobeestablished. AttherecommendationoftheEnvironmentalFarmingActScienceAdvisoryPanel,CDFAconvenedasubcommitteeofscientiststoproposebest-availablescience-basedapplicationratesforcompost.Thissubcommitteeproposeddistributingcompostsintotwomajorcategories:thosewithhighernitrogen(C:N≤11)andthosewithlowernitrogen(C:N>11)content.ThegroupalsoproposeddividingCaliforniacroppingsystemsintotwomajortypes(annualcropsandtreecrops)andconsideringcroplandsandrangelandsseparately.

Basedonscientificliteraturereviews,therecommendationsofthesubcommittee,andpubliccomments,amaximumapplicationrateof8moist(i.e.,aspurchased)tonsofcompost/acre/yearwasdetermined.Applicationratesofmoistcompostapplicationforcroplandswere:forannualcrops,3-5tons/acre/yearforhighernitrogen(C:N≤11)compostand6-8tons/acre/yearforlowernitrogen(C:N>11)compost;andfortreecrops,2-5tons/acre/yearforhighernitrogencompostand6-8tons/acre/yearforlowernitrogencompost. BecausespecificfielddataonrangelandcompostapplicationinCaliforniaisstillverylimited,veryconservativeestimateswereusedinsettingrangelandapplicationratesto6-10tons/acreoflowernitrogencompostonly.Prioritysitetypesfortheseapplicationshavebeenidentified,consistentwithpubliccomment,andincluderangelandsthathavebeendepletedoftheirbaselinesoilorganicmatterthroughavarietyofagronomicpracticesorthathavebeenotherwisemanagedsuchthatnaturalplantcommunitiesareeithernolongerpresentorareofatypethatwouldnotbethreatenedbysoilamendments.Itisvitaltocontinuedocumentingeffectsofthispracticeandadjustingapplicationratesaccordingtositespecificconditions.Higherapplicationratesmaybepossibleoncemoredataisacquiredthroughongoingstudiesofthispractice.

Additionalinformationonthescienceofhowtheseratesweredeterminedisdescribedinthisreport.Also,wenotethatproducersparticipatingintheprogramwouldbeabletoapplycompostathigherratesthanthoseputforwardhere;however,theCDFAfinancialincentivewouldbelimitedtotheratesinthisreport.

Page 4: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

3

IntroductionInthe2015-16proposedbudget,GovernorBrownrecognizedtheimportanceofsoil

healthanddirectedtheCaliforniaDepartmentofFoodandAgriculture(CDFA)tocoordinateanewinitiativetosupportandenhancethiscriticalresource.Thebudgetlanguagestated“Astheleadingagriculturalstateinthenation,itisimportantforCalifornia’ssoilstobesustainableandresilienttoclimatechange.Increasedcarboninsoilsisresponsiblefornumerousbenefitsincludingincreasedwaterholdingcapacity,increasedcropyieldsanddecreasedsedimenterosion.Intheupcomingyear,theAdministrationwillworkonseveralnewinitiativestoincreasecarboninsoilandestablishlongtermgoalsforcarbonlevelsinallCalifornia’sagriculturalsoils.CDFAwillcoordinatethisinitiativeunderitsexistingauthorityprovidedbytheEnvironmentalFarmingAct”.

ConsistentwiththeGovernor’sinitiative,nowtitledtheHealthySoilsInitiative,CDFAworkedwithseveralstateagenciestoidentifyshortandlong-termactionsthatcouldimprovesoilhealthinCaliforniatoensureagriculturalsustainabilityandfoodsecurity(https://www.cdfa.ca.gov/EnvironmentalStewardship/pdfs/ShortTermActions.pdf).Oneoftheactionsidentifiedwastoincentivizemanagementpracticesthatbuildthecarboncontentinsoils.Increasingthecarboncontentofsoilshasbeenscientificallyshowntoleadtogreateragriculturalsustainabilityandensurefoodsecurity,especiallyinlightofclimatechange.CDFAplanstoimplementacost-shareincentivesprogramusingConservationPracticeStandardsestablishedbytheUnitedStatesDepartmentofAgriculture(USDA)NaturalResourcesConservationServices(NRCS).TheCDFAprogramwouldincludesoilhealth-promotingmanagementpracticesthatalsoreducegreenhousegas(GHG)emissions.MostcandidatepracticesthatcouldmeetthesegoalsareidentifiedintherecentlydevelopedCOMET-Plannertool1.COMET-PlannerprovidesestimatesofGHGreductionsfromeachincludedpractice,whichserveasaninputtotheCaliforniaAirResourcesBoard(ARB)’sprocessofdevelopingaquantificationmethodology(QM)thatwillmeettheneedsoftheCaliforniaClimateInvestmentsprogram.

OneagriculturalpracticewithconsiderablesoilhealthimprovementandGHGreductionpotentialistheapplicationofcomposttocroplandsandrangelands.IncentivizingtheuseofthispracticecanindirectlyachievelargeGHGemissionreductions2byincreasingdemand,spurringexpansionofcompostingfacilitiesandorganicwastediversionfromlandfillsthatproducemethane.MethaneisaGHGwitha100-yearglobalwarmingpotential28timesthatofcarbondioxide.Aerobiccompostingallowsthecarboninplantandanimalsourcematerialstobestabilizedintocarboncompoundsthatgenerallydecomposeslowlyafterthecompostisappliedtoland.Landapplicationofcompostalsodirectlystimulatesbiologicalprocesses,includingincreasesinsoilmicrobialandplantbiomass3,4,thatsequestercarbonintostablelong-termorganicmatterfractions5,6.Increasesintheseorganicmatterfractionsoffernumerousbenefitssuchasincreasingthewaterandnutrientretentioncapacityofsoils,providingareservoirofnutrientsforplants,improvingaeration,improvingwaterinfiltration,reducingsoilerosion,andsupportingtheabundanceanddiversityofsoilorganisms,whichcanimproveplanthealth.

CDFAmustdetermineapplicationratesofcompostthatwouldbesupportedbyanincentiveprogram.CDFAwillnotbeabletosupportunlimitedratesofcompostapplicationrequestedbyfarmersandranchersgiventhelimitedamountoffundingavailableasincentives,aswellastheneedtoensurethatenvironmentalconcernsareaddressed.Theamountof

Page 5: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

4

anticipatedgreenhousegasreductioncorrespondingtodevelopedapplicationratescanthenbeestimatedbasedonamodelrecognizedbyARB7.

CDFArecognizesthatARBisultimatelyresponsiblefordevelopingthequantificationmethodology(QM)associatedwithanyprogramfundedthroughtheCaliforniaClimateInvestmentsprogram,alsoknownasfundingfromtheGreenhouseGasReductionFund.Assuch,thisreportdescribessomequantitativeanalysesthatmaysupportthedevelopmentofaQMfortheCDFAincentiveprogram,ratherthanfurnishingtheQMtoolthatwillbeused.Methodology

OnJuly17,2015,CDFAconvenedameetingoftheEnvironmentalFarmingActScienceAdvisoryPanel(EFASAP)todiscusstheapplicationofcomposttoCaliforniacroplandsandrangelands.TheEFASAPisagroupoffarmersandscientistswhoprovidescientificguidancetotheSecretaryofCDFAandisaplatformforpubliccomment.TheEFASAPfunctionsundertheauthorityoftheEnvironmentalFarmingActof1995(https://www.cdfa.ca.gov/oefi/efasap/docs/Environmental_Farming_Act.pdf).TheJuly17thmeetingwasopentothepublicandattendedbyavarietyofstakeholders.AttendeesatthemeetingrecommendedthatCDFAconveneasubcommitteeofcompostexperts(fromacademiaandstateagencies)toevaluateandproposecompostapplicationrates,whichcouldthenbeconsideredforreviewbytheEFASAP,subjecttopubliccommentandproposedtotheSecretaryofCDFAtoimplementaspartofanyfutureHealthySoilsIncentiveProgram.

OnAugust28,2015,CDFAconvenedameetingofacompostsubcommittee.Thegroupconsistedofuniversityresearchersinsoilscience,compostmanagementandagronomyandincludedscientistsfromseveralpertinentstateagenciessuchasCalRecycle,CDFAandtheCentralValleyRegionalWaterQualityControlBoard(acompletelistofparticipantscanbefoundattheendofthisreport).ThegoalofthismeetingwastodeterminecompostapplicationratesthatcouldbesupportedbyaCDFAIncentivesProgramgiventhediversityofcroppingsystemsinCalifornia.AsecondmeetingofthesubcommitteewasheldonSeptember30,2015.SeveralliteraturereviewswereconductedtoevaluatethebestavailablesciencethatwouldsupportcompostapplicationratesforaCDFAIncentivesProgramfordiscussionatthetwosubcommitteemeetings.

AsecondEnvironmentalFarmingActScienceAdvisoryPanel(EFASAP)meetingonthistopicwasconvenedonJanuary15,2016.Adraftreportoftheresultsfromthesubcommitteemeetingswaspresentedtothemembers.Publiccommentonthereportwassolicitedatthismeeting,aswellasthroughafour-weekpubliccommentperiodextendingthroughFebruary12,2016.

TheResultssectionbelowsummarizestheproposedcompostapplicationratesrecommendedbythesubcommitteeandtakesintoconsiderationpubliccommentsreceived.ResultsDefinitionofcomposteligiblefortheprogram

ForthepurposesoftheCDFAHealthySoilsIncentivesProgram,compostisdefinedasallofthefollowing:

Page 6: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

5

• Theproductresultingfromthecontrolledbiologicaldecompositionoforganicwastesthataresourceseparatedfromthemunicipalsolidwastestream,orwhichareseparatedatacentralizedfacility.Feedstocksmayincludegreenmaterials,foodmaterials,woodwaste,yardtrimmings,agriculturalmaterialsorbiosolidsasdefinedin14CCRSection17852(www.calrecycle.ca.gov/laws/regulations/title14/ch31.htm)

• Mustbeproducedbyafacilitypermittedorotherwiseauthorizedbystateandlocalauthoritiesthatcandemonstratecompliancewithallstateregulationsregardinginspectionofincomingfeedstocks,finished-producttestingrequirementsincludingtheProcesstoFurtherReducePathogens(PFRP)asdescribedin14CCRSection17868.3,maximummetalconcentrationsforheavymetalsper14CCRSection17868.2,andphysicalcontaminationlimitsper14CCRSection17868.3.1.(14CCRSection17868:www.calrecycle.ca.gov/laws/regulations/title14/ch31a5.htm#article7)

• Note:STAcertifiedorCDFA-OIMcompostisrecommended.STAcertifiedcompostmeansthecomposthasbeentestedfornumerousproductparametersbyaSTA-certifiedlabwhichusesstandardizedtestingmethodologies(TMECC,developedbytheUnitedStatesCompostingCouncil),andtheresults(inatechnicaldatasheet)arereportedtothecompostproducer.Compoststowhichbiocharwasaddedduringthecompostingprocessasaprocess

amendmentarealsoeligiblefortheprogramaslongastheymeetalloftherequirementsabove.Biocharmaterialsaloneorbiocharmaterialsthathavebeenaddedtocompostincontextsotherthanasanamendmenttofacilitatethecompostingprocessarenoteligibleforthisincentivesprogram.ThereasonforexcludingbiocharintheCDFAIncentiveProgramatthistimeisbecauseregulatorystandardsareintheprocessofbeingdevelopedandtherearefewexperimentalfieldtrialsthatexaminetheapplicationrateofbiocharalongwithevaluatingitsbenefitsandlimitations.

Eachincentiveprogramparticipantmustensurethatthecompostproductstheyuseareincompliancewithanyadditionalregulationsthatmayapplytotheirparticularproductionsystem.Theseinclude,butarenotlimitedto,NationalOrganicProgramguidanceforUSDAcertifiedorganicgrowersandFoodSafetyModernizationAct(FSMA)ProduceSafetyRulerequirementsforgrowersoffreshproducethatiscoveredunderthisRule.Determiningapplicationrates

ThesubcommitteemeetingonAugust28,2015,reachedconsensusthatthereistoomuchvariationinthescientificdatawithinboth“croplands”and“compost”todefineasingleapplicationratetoallagriculturallands.Thesubcommitteefeltthat“croplands”couldbeusefullydividedintoannualcropsandtreecropsandthatbothconventionalandorganicmanagementsystemsshouldbeconsideredforeachoftheseproductionsystems.Rangelandshavedifferentconsiderationsandwarrantedtheirownseparatecategory.Compost,asdefinedabovecanbedividedintotwofurthercategories(carbon[C]:nitrogen[N]ratio[C:Nratio]lessthan11andC:Nratiogreaterthan11).Thisdifferentiationseparatescompoststhatprovidemorenitrogenatafasterrate(lowC:N)andthosethatprovidelessnitrogenataslowerrate(highC:N).

Page 7: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

6

C:Ntypicallyreflectsboththefeedstocksusedtoproducecompost(e.g.,manure-basedcompoststendtohavelowerC:Nthanplantwaste-basedcomposts)andthematurityofthecompostproduct(immaturecompostscanhavehigherC:Nthanmaturecomposts).Becauseonly“fullyfinished”compostswillbeeligibleforthisprogram,C:Ndifferencesamongeligiblecompostswillprimarilyrelatetodifferencesinthefeedstocksusedtoproducethem.Inadatasetof1364southwesternU.S.compostsamples(sharedwithCalRecyclebySoilControlLabs,Watsonville,CA),C:Ncorrelatedwithcompostpercentnitrogen(r=-0.44).Basedonthisobservationandtherecommendationofthesubcommittee,C:Nappearstobeareasonablemetriconwhichtobasecompostapplicationrates.Intotal,thesubcommitteeidentifiedtenapplicationratesforaCDFAIncentivesProgramonbuildingsoilcarbon(Figure1).

Figure1.Distributionofapplicationratestodefine,asestablishedatAugust28,2015subcommitteemeeting.Thesubcommitteeagreedtosettingtheupperlimitofeachapplicationraterangebasedonbest-availablescientificdataonthepotentialenvironmentalimpact(s)ofgreatestconcern.Thisstrategyisnotmeanttoimplythattheprimaryresultofcompostapplicationtocroplandsandrangelandswouldbeoneofenvironmentalimpact;rather,theintentwastofocusonthesignificantsoilhealthbenefitsthatcomposthasbeenshowntoprovidewhileatthesametimeminimizingpotentialforenvironmentalimpacts.Compostapplicationratesforcroplands

Forcroplands,thesubcommitteedeterminedleachingofnitrogen(intheformofnitrate)fromcomposttogroundwatertobetheenvironmentalimpactofgreatestconcern.ManyparticipatinggrowersintheCDFAIncentiveProgrammaychoosetoreducetheirsyntheticnitrogenfertilizerapplicationsastheygainexperiencewiththenitrogencontentin

APPLICATIONRATES

Rangeland2

Tree2crops

Annual2 crops

Conventional

Organic

Conventional

Organic

C:N2≤211 (Higher(Nitrogen)

C:N2>211 (Lower(Nitrogen)

C:N2≤2112(Higher(Nitrogen)

C:N2>2112(Lower(Nitrogen)

C:N2≤2112(Higher(Nitrogen)

C:N2>2112(Lower(Nitrogen)

C:N2≤2112(Higher(Nitrogen)

C:N2>2112(Lower(Nitrogen)

C:N2≤2112(Higher(Nitrogen)

C:N2>2112(Lower(Nitrogen)

1

Page 8: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

7

compoststominimizenitratesinsurfaceandgroundwater;however,noassumptionsaboutsuchbehaviorsweremadewhendevelopingcompostapplicationrates.

Compostscontainasmall(often<0.1%)percentagebyweightofnitrateaswellaslarger(often1-3%)percentagesbyweightofothernitrogencompoundsthatcouldeventuallybeconvertedtonitratebyresidentsoilmicrobes.Ascientificliteraturereviewwascompletedtoestimatethetotalnitrogenavailableovertimeinthetwotypesofcomposts.Estimatingnitrogenmineralizationfromcompost:Nitrogenincompostcanbedividedintothreemaintypes.Themajority(usually>95%)ofcompostNisorganicallybound(attachedtocarbon).Mostcompostalsocontainssmallamountsofinorganic(non-carbonbased)Nintheformofnitrate(NO3

-)andammonium(NH4+).Residentmicrobescanquicklyconvert

ammoniumtonitrate,andcanslowlyconvertorganicnitrogentoammoniumandthennitrateovertime(Figure2).Scientificliteraturewasreviewedtodevelopestimatesoftherateammonium+nitratereleasebycompost. Inadditiontoslowlyreleasingammonium+nitrate,compostwilllikelyaltersoilpropertiessuchthatlessnitrateleachesintogroundwaterperpoundofammonium+nitrateinthesoilascomparedtounamendedfields8,9.Forexample,compostgenerallyimprovessoilwaterholdingcapacity,suchthatlesswater–potentiallycarryingnitrate–mayleachbelowthecroprootzoneincompost-amendedfields.However,becausetheamountofthisreductionishighlydependentonsoiltype9alongwitharangeofothermanagementfactors,wecouldnotreliablyquantifyitatthistime.

Estimatingtherateofammonium+nitratereleasebycompostrequiresthreepiecesofinformation.Theyare:1.theamount(byweight)ofammonium+nitrateinthecompost,2.theamount(byweight)oforganically-boundnitrogeninthecompost,and3.amodelfortherateatwhichthisorganically-boundnitrogenwillbeconverted(mineralized)toammonium+nitrate.Estimatesforthefirsttwoinformationneedsabovewereobtainedusinglabanalysesfor1364SouthwesternU.S.compostsamplesfromavarietyoffeedstocksthatwasprovidedbySoilControlLabs(Watsonville,CA).Compostswerefirstdividedintotwocategories(C:N≤11andC:N>11)andaveragevaluesofthesequantitieswerecalculatedforeachcategoryseparately(Table1).

Table1.Average(median)pounds(lbs)ofnitrogenpertonofdrycompostandaveragemoisturecontentforhighernitrogen(C:N≤11)andlowernitrogen(C:N>11)composttypes,ascalculatedfromdataon1364compostsamplesprovidedbySoilControlLabs(Watsonville,CA).

HigherNcompost(C:N≤11) LowerNcompost(C:N>11)LbsNasammonium(NH4

+) 1.43 0.51LbsNasnitrate(NO3

-) 0.12 0.07LbsNasorganically-boundN 38.12 26.43Moisturecontent 27.11% 34.14%

Amodelfortherateatwhichorganically-boundnitrogenincompostismineralizedtoammonium+nitratewasdeveloped.Themodelwasdevelopedusinginformationfrom

Page 9: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

8

publicationsthatsynthesizedmanyindividualstudiesand/orstudiesthatwerespecifictoCalifornia10–15.Publicationsthatmetthesecriteriawerefairlyconsistentintheirmineralizationrateestimates,suggestingthattheseestimatesareareasonablebasisonwhichtodetermineapplicationrates.However,asadditionalCalifornia-specificstudiesbecomeavailable,theseratesshouldberevisited.Inaddition,itwouldbeusefultoconductaformalmeta-analysisofallavailablestudies,throughwhichtheinfluenceoffactorssuchasclimateandcomposttypecouldbequantified,andanalternativemethodofcalculatingCalifornia-appropriateestimatescouldbeemployedusingthoserelationships.Suchameta-analysiswasnotfeasiblewiththeresourcesavailableforthisstudy.

Figure2.Thenitrogencycleshowingthatorganically-boundnitrogen(suchasthatinplantresiduesandanimalmanures)ismineralizedtoammoniumandnitrate.

Forcompostwithhighernitrogen(C:N≤11),studiessuggestedthat5-15%(average≈10%)oftheorganically-boundnitrogenwouldbemineralizedinthefirstyearofapplication.Eachsubsequentyear,additionalremainingorganically-boundnitrogenwouldbemineralized,ataratethatwoulddeclinebyhalfeachyeartoaminimumofapproximately2%untilalloftheorganicNinthecomposthadbeenconsumed10.Asanexample,approximately10%oftheorganically-boundnitrogenwouldbemineralizedinthefirstyear,5%oftheremainingorganically-boundnitrogeninthesecondyear,2.5%oftheremainingorganically-boundnitrogeninthethirdyear,and2%oftheremainingorganically-boundnitrogeninthefourthyearandsubsequentyears.Forcompostwithlowernitrogen(C:N>11),studiessuggestedthat2-7%(average≈5%)oftheorganically-boundnitrogenwouldbemineralizedinthefirstyear,withasimilarpatternofmineralizationinsubsequentyears,includinga2%minimum.AtasecondscientificsubcommitteemeetingheldonSeptember30,2015,thesubcommitteeverifiedthatthemodelwasinagreementwithexistingscientificfindings.

Source:IPNIpublicationnumber4;www.ipni.net/publications

Page 10: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

9

Comparingnitrogenfromcomposttorecommendedplantnitrogenrequirements:Theamountofammonium+nitratereleasedfromcompostinagivenyearfollowingitsapplicationcanbeestimatedandcomparedwithplantrequirednitrogenrecommendations.PlantrequirednitrogenrecommendationsareavailableonCDFA’sFertilizerResearchandEducationProgram(FREP)andareaccessibleathttp://apps.cdfa.ca.gov/frep/docs/Guidelines.html.Forthisanalysis,plantrequirednitrogenrecommendationswereaveragedacrosstwomajorcroptypes:annualcropsandtreecrops.Forannualfruitandvegetablecrops(includingprocessingtomatoes,broccoli,lettuce,strawberries,cauliflower,andcorn),anaverageof161lbsofnitrogenperacreperyearwascalculated(withahighof270lbs/acreforcorn).Forestablishedtreecrops(includingestablishedalmonds,walnuts,citrus,pistachios,andplums),anaverageof115lbsofnitrogenperacreperyearwascalculated(withahighof380lbs/acreforalmonds).Usingthesevalues,theamountofammonium+nitratereleasedfromcompostcanbeexpressedinunitsofpercentageoftotalplantrequirednitrogenrepresentedbycompostforannualandtreecrops(Box1).Box1.Exampleofcalculationstodeterminethepercentageoftotalplantrequirednitrogenrepresentedbycompostfortreeorannualcrops.Inthisreport,applicationraterecommendationsforcompostareshownintermsof“tonsmoistcompost”toalloweasycomparisonwithcurrentapplicationratesusedbygrowers.However,percentmoisturevarieswidelyamongcomposts.Actualincentivizedrateswillbeintermsof“tonsdrycompost”,withthegrowerandcompostfacilityresponsiblefordeterminingtheequivalentmoistcompostapplicationratebasedonthepercentmoisturecontentofthespecificcompostpurchased.

Example1:ApplylowerNcompost(C:N>11)totreecrop• Nreleasedbycompostinyear1:1.91lbspertondrycompost

[ammonium-N+nitrate-N+5%oforganically-boundN]• AveragetotalNrequiredfortreecrops:115lbs/acre• Average%moistureoflowerNcompost=34.14%

• Ifapplying5moisttonsoflowerNcompost/acre(1ton(U.S.ShortTon)=2000lbs):

– 5*(1-0.3414)=3.29tonsdrycompostequivalent– 3.29*1.91=6.27lbsNappliedperacre– 6.27/115=5.5%oftotalrequiredNaddedbycompost

Example2:ApplyhigherNcompost(C:N≤11)toannualcrop

• Nreleasedbycompostinyear1:5.36lbspertondrycompost[ammonium-N+nitrate-N+10%oforganically-boundN]

• AveragetotalNrequiredforannualcrops:161lbs/acre• Average%moistureofhigherNcompost=27.11%

• Ifapplying4moisttonsofhigherNcompost/acre(1ton(U.S.ShortTon)=2000lbs):

– 4*(1-0.2711)=2.92tonsdrycompostequivalent– 2.92*5.36=15.6lbsNappliedperacre– 15.6/161=9.7%oftotalrequiredNaddedbycompost

Page 11: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

10

Table2.Proposedcompostapplicationratesforcroplands.TheratestouseforproposedCDFAIncentivesProgramarethe“equivalentdrycompostapplicationrates”(†),whichshouldbeconvertedtocorrespondingmoistcompostapplicationratesonabatch-specificbasisusingmoisturedatafromthecompostfacility.*AsC:Nratiorisesabove24,thelikelihoodofNimmobilizationincreases,whichmayleadtodecreasedNavailabilityforcrops.AscompostC:Nincreases,monitoringbecomesincreasinglyimportanttoensureadequatecropNsupply.

CropType CompostTypeMoistCompostApplicationRate

(tons/acre)

EquivalentDryCompostApplicationRate(tons/acre)†

Annual HigherN(C:N≤11) 3–5 2.2–3.6Annual LowerN(C:N>11)* 6–8 4.0–5.3Tree HigherN(C:N≤11) 2–4 1.5–2.9Tree LowerN(C:N>11)* 6–8 4.0–5.3

AtthesecondsubcommitteemeetingonSeptember30,2015,thescientistssupportedtheproposedratesinTable2,withminormodifications,tobeusedinaCDFAIncentiveProgram.Theserateswouldrepresent6.1-13.6%oftotalplantrequiredN,brokendownasfollows:7.3–12.1%forhigherNcompostonannualcrops,6.1–8.1%forlowerNcompostonannualcrops,6.8–13.6%forhigherNcompostontreecrops,and8.6–11.4%forlowerNcompostontreecrops.

Atthepresenttime,CDFAdoesnotplanonincentivizingthesameapplicanttoapplycompostinmultiplesuccessiveyearsgivenuncertaintiesinfunding.Potentialnutrientinputsfromcompostapplicationinmultiplesuccessiveyears,duetotheslow-releasenatureofcompostnutrients,couldbecomeanenvironmentalconcern.Itshouldbenotedhowever,thatthepercentageofplantnitrogenrequirementswouldbedoublethevaluesstatedaboveintheeighthandfifthsuccessiveyearofapplicationforhighernitrogenandlowernitrogencomposts,respectively.Thevalueswouldbetriplethosestatedaboveinthe17thandninthsuccessiveyearofapplicationforhighernitrogenandlowernitrogencomposts,respectively.

TheapplicationrateslistedinTable2donotlimitfarmersfromaddingadditionalcompost.ThelistedapplicationrateshavebeenestablishedsolelytosupportaCDFAIncentiveProgram.Participatinggrowersshouldberequiredtotestsoilnitrogenandphosphoruslevelsinfieldstowhichtheyareapplyingcompostatleastannually,tounderstanditseffectsonnutrientsupplyandbeabletoadjustsubsequentmanagementaccordinglywithcarbonsequestrationmanagementpractices.Compostapplicationratesforrangelands

InCalifornia,thebenefitsandpotentialdrawbacksofcompostapplicationhavereceivedlessattentiononrangelandscomparedtocroplands.ResultsfromonlytwonorthernCaliforniaexperiments(YubaCountyandMarinCounty,averageannualprecipitation730mmand950mmrespectively)havebeenpublished4,16,17.Atthesesites,adding31tons/acreofcompost(C:N=11)resultedinCsequestrationof51±77to333±52gC/m2overthreeyears,in

Page 12: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

11

additiontothecarbondirectlyaddedbytheamendment4.ThescientificsubcommitteecautionedagainstextrapolatingtheseresultstoallCaliforniarangelands,giventheconsiderablediversityofclimatesandsoilsthroughoutthestate18,19.Thus,whiletheseinitialnorthernCaliforniaresultsareencouraging,studiesatadditionalsitesacrossCalifornia’sclimateandsoilgradientsarenecessarytounderstandtherangeofpotentialcarbonsequestrationratesthatmightbeachieved.

Scientificsubcommitteediscussionsofpotentialenvironmentalimpactsofcompostapplicationtorangelandledtothreeconcerns:1.thepotentialforincreasednitrateleachingtogroundwater,2.thepotentialfordeclinesinplantdiversitysincenutrientadditioncoulddisproportionatelyfavorcertainplantspeciesand3.thestream-dissectedslopingrangelandlandscape,combinedwiththenitrogenandphosphoruscontentinmanycomposts,raisedtheconcernofnutrientmovementintosurfacewaterstreams.Forreasonsdetailedinthe“Primarypotentialenvironmentalimpactsofcompostapplicationtorangelands”sectionbelow,weusedthesecondconcern(potentialplantdiversitydecline)asameansofsettingtheupperapplicationrateforrangelandandnotedpotentialmethodsofaddressingtheothertwoconcerns.Definingratesbasedonpotentialplantdiversityimpacts:Aliteraturereviewoforganicamendmentapplicationstorangelandswasinitiated.Studiesmeetingthefollowingcriteriawereincludedinthereview:1.organicamendmenthadbeenaddedtoasemi-aridorMediterranean-climaterangelandcommunity(mostlygrasslands,sometimeswithscatteredtreesorshrubs),2.authorsreportedthepercentnitrogenoftheamendmentwithadequateinformationtoassignittothe“highN”(C:N≤11)or“lowN”(C:N>11)category,and3.plantcommunitydiversityhadbeenmeasuredatsomepointafteraddingtheamendmentandcomparedtothatofcomparablecontrolplot(s).Intotal,ninenon-redundantstudiesfitthereviewcriteria;fiveofwhichhadusednon-compostedamendments.Mostofthestudies(includingthoseofcompostedandnon-compostedamendments)hadappliedtheamendmentatmultiplerates,providing35datapoints(fromthenumberofstudiestimestheapplicationrate),nineofwhichrepresentedcompostedamendments.Acrossthesestudies,theplantcommunitywasobservedanaverageoffouryearsafteramendmentapplication.UsingtheC:Nandpercentnitrogendataprovidedinthestudies,thesamemineralizationmodelusedforcroplands(describedabove)wasthenusedtoestimatethecumulativeamountofavailablenitrogenthatwouldhavebeenreleasedfromtheamendmentbythetimetheplantdiversitydatawascollected.Thedatapointswerethensortedbythisestimateofnitrogenreleased(Table3).

Page 13: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

12

Table3.Literaturereviewoforganicamendmentadditionstosemi-aridrangelands,sortedbyNreleasedattimeofplantdiversitymeasurement.

AmendmentType Study Mg/haapplied

AmendmentNCategory

Yearsbetweenapplication&measurement

InorganicN(lbspertoncompost)

OrganicN(lbspertoncompost)

AvailablelbsNreleased/acreattime

ofmeasurement

Plantdiversitydecrease

non-composted Pierceetal.199820 5 LowerN 2 0.34 0.24 0.52 Nnon-composted Pierceetal.199820 10 LowerN 2 0.34 0.24 1.04 Nnon-composted Pierceetal.199820 15 LowerN 2 0.34 0.24 1.56 Nnon-composted Pierceetal.199820 20 LowerN 2 0.34 0.24 2.08 Nnon-composted Pierceetal.199820 25 LowerN 2 0.34 0.24 2.60 Nnon-composted Pierceetal.199820 30 LowerN 2 0.34 0.24 3.12 Nnon-composted Pierceetal.199820 35 LowerN 2 0.34 0.24 3.64 Nnon-composted Pierceetal.199820 40 LowerN 2 0.34 0.24 4.16 Nnon-composted Sullivanetal.200621 2.5 HigherN 13 7.48 82.32 17.21 N

compost Kowaljowetal.201022 40 LowerN 2 0.48 14.92 18.57 Ncompost Kowaljowetal.201022 40 LowerN 2 0.96 13.04 22.58 Ncompost Pedroletal.201023 20 LowerN 0.5 2.36 43.44 26.65 N

non-composted Sullivanetal.200621 5 HigherN 13 7.48 82.32 34.42 Nnon-composted Stavastetal.200524 12 HigherN 2 2.60 31.60 37.59 Y

compost Kowaljowetal.201022 40 LowerN 2 1.06 29.94 38.41 Ncompost Martínezetal.200325 40 LowerN 3 1.82 33.38 54.82 Ycompost Kowaljowetal.201022 40 LowerN 2 2.68 34.32 61.24 N

non-composted Sullivanetal.200621 10 HigherN 13 7.48 82.32 68.85 Ycompost Martínezetal.200325 80 LowerN 3 1.82 33.38 109.64 Y

non-composted Sullivanetal.200621 21 HigherN 13 7.48 82.32 144.58 Ycompost Ryalsetal.201626 70 HigherN 3 2.38 35.02 146.72 N

non-composted Martínezetal.200325 40 HigherN 3 4.02 48.98 158.30 Ynon-composted Fresquezetal.199027 22.5 HigherN 3 7.38 89.82 163.30 N

compost Martínezetal.200325 120 LowerN 3 1.82 33.38 164.46 Ynon-composted Jurado-Guerraetal.201328 30 HigherN 2 6.22 75.78 167.89 Ynon-composted Sullivanetal.200621 30 HigherN 13 7.48 82.32 206.54 Ynon-composted Jurado-Guerraetal.201328 45 HigherN 2 6.22 75.78 251.83 Ynon-composted Martínezetal.200325 80 HigherN 3 4.02 48.98 316.60 Ynon-composted Fresquezetal.199027 45 HigherN 3 7.38 89.82 326.61 Ynon-composted Jurado-Guerraetal.201328 60 HigherN 2 6.22 75.78 335.77 Ynon-composted Stavastetal.200524 107 HigherN 2 2.60 31.60 343.17 Ynon-composted Jurado-Guerraetal.201328 75 HigherN 2 6.22 75.78 419.72 Ynon-composted Martínezetal.200325 120 HigherN 3 4.02 48.98 474.90 Ynon-composted Jurado-Guerraetal.201328 90 HigherN 2 6.22 75.78 503.66 Ynon-composted Fresquezetal.199027 90 HigherN 3 7.38 89.82 653.21 Y

Page 14: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

13

ThreenitrogenapplicationratecategorieswereobservedinTable3;1.atapproximately35lbsavailableN/acre,impactstonativeplantspeciesareunlikely(0%ofdatapointsshowedimpact),2.between35and164lbsavailableN/acre,impactsareprobable(60%ofdatapointsshowedimpact)and3.aboveapproximately164lbsavailableN/acre,impactsarehighlylikely(100%ofdatapointsshowedimpact).Basedonthesefindings,onestrategyforminimizingimpactscouldbetoonlyallowlowernitrogenamendmentstobeusedonrangelands.Anotherstrategycouldbetosetapplicationratessothattheavailablenitrogenprovidedbycompostwouldbelessthan35lbs/acre.Combiningthesetwostrategiesandusingafive-yearpost-applicationtimeframeforcalculatingcumulativeavailableN,theimpactthresholdwouldoccuratapproximately13moisttons/acreoflowernitrogencompost.GiventhatthisfigureisclosetotheupperlimitoflowerNcompostapplicationratesforcroplands(8moisttons/acre)proposedtodate(Table2),ratesforallagriculturallandswerekeptconsistent(Table4).

However,thisimpactminimizationstrategyshouldstillbeviewedwithcautionbecauseliteraturereviewstudiesdifferedinvegetation(e.g.,perennialinsteadofannualdominated)andclimatefromCalifornia’srangelands.Giventhisuncertainty,acomplementarystrategywouldbetoconsidertherisktonativeplantdiversityfromtheperspectiveofthesitetowhichcompostwouldbeadded.Forinstance,sometypesofrangelandareespeciallysensitivetonutrientadditionand/orcontainhighconcentrationsofrarespecies.Forexample,impactsonspeciesofconservationconcerninserpentinegrasslandshaveoccurredatNadditionratesmuchlowerthanthethresholdratessuggestedbytheliteraturereview.29–31Discussionswiththescientificsubcommittee,aswellaspubliccommentsfromCaliforniarangelandexperts,suggestedthatcompostapplicationtosometypesofrangelandclearlyposedahigherrisk.

Basedonthisinformation,wegroupedpotentialrangelandsitetypesintothreecategories:1.“priority”sitetypes,wherecompostapplicationshouldhavetheleastimpactonnativeplantdiversity;2.“evaluate”sitetypes,wherecompostapplicationattheproposedratesmayhaveanimpact;and3.“ineligible”sitetypes,wherecompostapplication,evenatlowrates,wouldbelikelytoimpactnativeplantdiversity(Table5).Proposalstoaddcompostto“priority”sitetypeswouldrankhigherthansimilarproposalsfor“evaluate”sitetypes,whileproposalstoaddcompostto“ineligible”sitetypeswouldnotbeconsidered.Rangelandmanagementspecialistscouldbeconsultedtosortproposalsintothesesitetypes,andtoevaluatethepotentialimpactsvs.benefitsofcompostapplicationoneach“evaluate”site.

NRCSiscurrentlyconductingfieldtrialsofrangelandcompostapplicationandisevaluatingimpactsonnativeplantdiversityandCsequestration.AsresultsfromthesetrialsbecomeavailableandNRCS’sDraftConservationPracticeStandardisrevisedaccordinglyandfinalized,itmaybepossibletonarrowthe“evaluate”categoryandadjusttheapplicationrates.Table4.Proposedcompostapplicationrateforrangelands.TheapplicationrateisconsistentwithcroplandapplicationratesinTable2,andthecumulativenitrogenavailabilityislessthanthethresholdforimpactonplantdiversitysuggestedbyourscientificliteraturereview.

CompostTypeMoistCompostApplicationRate

(tons/acre)

EquivalentDryCompostApplicationRate

(tons/acre)

CumulativelbsavailableN/acreat5yearspost-

application

LowerN(C:N>11) 6–8 4.0–5.3 15.7–20.9

Page 15: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

14

Table5.Typesofsitesforrangelandcompostapplication.Compostapplicationisexpectedtohavetheleastimpactonnativeplantdiversityat“priority”sites,mayhaveanimpactat“evaluate”sites,andislikelytoimpactnativeplantdiversityat“ineligible”sites.Both“priority”and“evaluate”sitetypeswouldbeeligiblefortheincentivesprogram.SiteType Examples

Priority

• sitesthathavebeenplowed,irrigated,heavilyseeded,orotherwisedisturbedsuchthatthenaturalcommunitiesandsoilconditionsarenolongerpresent

• areasthathavebeendepletedoftheirbaselinesoilorganicmatterthroughavarietyofagronomicpractices–resultinginareassuchasdegradedrangelandsand/orabandonedagriculturallandsthataregenerallyconsideredtohavepoorsoilhealth

• retiredagriculturallandsthatarebeingrestoredorconvertedtorangelands• othersiteswheresoilshavebeenpreviouslytilledorsubjectedtomajorsoil

disturbance,e.g.,failedhomesteads• smallholding/feedingpastures• fallowedfields

Evaluate

• anyrangelandareanotdescribedunder“Priority”or“Ineligible”

Ineligible

• slopesgreaterthan15%• seasonalwetlandssuchasvernalpoolcomplexes(includingsurroundinguplands)• wetmeadowsorotherseasonallyinundatedrangelands,regardlessofslope

(e.g.,floodplains)• morepermanentwetlands,includinganyareawithhydricsoils• sagebrushsteppe• alkalisinks• desertgrasslands*• nativecoastalprairies• serpentineandserpentine-influencedsoiltypes• chaparral,coastalsagescrub,andothersystemsdominatedbynativeshrubs• grasslandscurrentlydesignatedasmitigationand/orconservationlands• sitescontainingfederal,state,and/orCNPSlistednativeplants;and/oranimals

thatrequirelow-staturerangelandsfortheirlifehistory,includingbutnotlimitedtoSanJoaquinKitFox,GiantKangarooRat,TigerSalamander,and/orBurrowingOwl

• sitesthathaverecentlyburned**• sitesinwatershedsalreadyimpactedbyNorP(i.e.,listedundersection303dof

theCleanWaterActfornutrientpollution),unlessappropriatemitigatingpracticesincluded

*CompostapplicationondesertgrasslandsiteswherevegetationisdominatedbyinvasiveEurasiangrasses,suchascheatgrass(Bromustectorum),maybeconsideredaspartofanoverallrestorationstrategy,wheregrazingispresent.**Compostapplicationasastrategyforrehabilitatingselectburnedsitesmaybeconsidered,wheregrazingisinvolved.

Page 16: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

15

SummaryofcompostapplicationratesforcroplandsandrangelandsAsummaryoftherecommendratesforcompostapplicationtosupportaCDFA

incentiveprogramonsoilhealthisprovidedinTable6below.Table6.Recommendationsofthesubcommitteeforcompostapplicationtoagriculturallandsdistributedbytypeofagriculturalsystem,C:Nratioandtypeoffarming.Theratestousefortheproposedincentivesprogramarethe“equivalentdrycompostapplicationrates”(†),whichshouldbeconvertedtocorrespondingmoistcompostapplicationratesonabatch-specificbasisusingmoisturedatafromthecompostfacility.

System Management CropType CompostType

MoistCompostApplication

Rate(tons/acre)

EquivalentDryCompost

ApplicationRate

(tons/acre)†Cropland Conventional Annual HigherN(C:N≤11) 3–5 2.2–3.6Cropland Organic Annual HigherN(C:N≤11) 3–5 2.2–3.6Cropland Conventional Annual LowerN(C:N>11) 6–8 4.0–5.3Cropland Organic Annual LowerN(C:N>11) 6–8 4.0–5.3Cropland Conventional Tree HigherN(C:N≤11) 2–4 1.5–2.9Cropland Organic Tree HigherN(C:N≤11) 2–4 1.5–2.9Cropland Conventional Tree LowerN(C:N>11) 6–8 4.0–5.3Cropland Organic Tree LowerN(C:N>11) 6–8 4.0–5.3Rangeland -- -- LowerN(C:N>11) 6–8 4.0–5.3OtherConsiderationsNitrousoxide(N2O)emissions.Anadditionalissuethatwasraisedwaswhethercompostapplicationtocroplandscouldcauseincreasesinnitrousoxide(N2O)emissions,becauseadditionalorganiccarboncouldpotentiallyincreaseN2Oemissionrateswhensoilsarerelativelysaturated(>80%water-filledporespace).However,undermostotherconditions,reactionsrelatedtonitrificationincludingammoniaoxidationandnitrifierdenitrificationarebelievedtobethedominantcontributortoN2OemissionsfromCalifornia’sagriculturalsoils32,33.Thesereactionsarecarriedoutbyautotrophsthatarenotstimulatedbyorganiccarbonaddition.N2Oproductionpathwaystendtobestimulatedbyadditionofammonium,suchthatanincreaseinN2Oemissionsmaybenotedwhencomparingcompost-amendedsoiltoanunamendedcontrolbecauseoftheammoniumprovidedbythecompost.However,theimpactofammoniumadditionviacompostwouldnotbeexpectedtobegreaterthanthatofadditionofanequivalentamountofammoniumfromanyothernitrogensource.Organically-managedcroplands.Thereisconsiderablevariationamongorganicgrowersintheuseofcompostforplantnutrientprovision;somegrowersapplysubstantialcomposttosupply

Page 17: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

16

asignificantpercentageofcropnutrientneeds,whereasothersmayapplylittletonocompostandrelyonotherorganicnutrientsources,suchasmanure,certaincovercrops,andfeathermeal12.Atthesecondscientificsubcommitteemeeting,theapplicationrateseligibleforfinancialincentiveswasrecommendedtobethesamefororganicandconventionaloperations(Table6),withtheunderstandingthatorganicgrowers,ingeneral,mayapplygreateramountsofcompostintotal.Pathogens.Concernaboutthepotentialpresenceofpathogensincompostmaymakesomegrowershesitanttoadoptcompostapplication.However,theheatgeneratedduringthecompostingprocesskillsthevastmajorityofpathogenicmicrobes,typicallyreducingthembelowdetectablelevels34–36.Furthermore,anypathogensthatmightremainareoftenoutcompetedinthelaterstagesofcompostmaturation,becausethesimplecarboncompoundsthataretheirpreferredfoodsourcegetconsumed,leavingthemorecomplexcompounds-onwhichothermicrobialgroups(suchasfungi)arestronglyfavored-asthedominantfoodsource36,37.Finally,inCalifornia,mostcompostthatissold-andallcompostthatcouldbeappliedinthisincentivesprogram-issubjecttorigoroustestingforanyresidualpathogensandmustpassallsuchtestsbeforeitisclearedforsale(14CCRSection17868.3).Monitoring.Thedesirabilityofcollectingmonitoringdatainassociationwiththesecompostapplicationsonbothcroplandsandrangelandswasnotedinpubliccomments.Suchdatacollectionwouldbehelpfultoquantifyboththebenefitsandpotentialenvironmentalimpactsofcompostapplicationandmayallowfutureadjustmentofapplicationrates.Forsoils,standardphysicochemicalanalysisincludingallplantnutrientsandtoxins,soilorganicmatter(SOM),andcompactionandinfiltrationrateswouldbedesirableandshouldbecollectedwithasamplingdesignthatappropriatelycapturessitevariability.Onrangelands,additionalplantdatatocollectwouldincludepercentbareground,residualdrymatter(RDM),speciescomposition,vegetationproduction,andphotomonitoringofrepresentativesiteswherecomposthasbeenapplied(alongwithpairedcontrolsiteswhereithasnot).Lifecycleconcerns.Afrequently-raisedquestioniswhethertheCO2emittedintransportingcomposttotherangelandsitewouldbegreaterthantheCsequesteredasaresultofitsapplication.ThismightbethecaseifconsideringonlytheCsequesteredviabiologicalactivityonsite,whichforrangelandsisestimatedtobeapproximately50%oftheCO2emittedduringtransportbasedonalifecycleanalysisusingdatafromthesenorthernCaliforniarangelandsites6.However,thisbalancedependsonthesystemtowhichcompostisappliedandthemethodsusedtomakeemissionsestimates.Forexample,aCaliforniaAirResourcesBoardstudyofcompostapplicationtocroplandsestimatedthattransporttotheapplicationsitewouldemit0.008MTCO2epertonofcompostedfeedstockwhileon-sitesoilCincreases(estimatedusingbiogeochemicalprocessmodelingratherthanfielddata)wouldsequester0.26MTCO2epertonofcompostedfeedstock,onaverage7.Furthermore,ifincreaseddemandforcompostcreatedbyrangelandapplicationisassumedtobedirectlyresponsibleforincreaseddiversionoforganicwastefromlandfillsand/ormanurefromslurrypondsintoaerobiccompostingprocesses,thenthispracticereducesGHGsduetoavoidedmethaneemissions2whichis28timesmorepotentthancarbondioxide.Assessingthisclaimisbeyondthescopeof

Page 18: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

17

thisreport,astherearenumerousotherdriversofdiversionoforganicwastesandmanurestocompostinginCalifornia,suchthatitisdifficulttoestimatethepresentandpotentialfuturecontributionsofrangelanddemand.Rangelandsiteassessments.Forrangelands,anin-personsiteassessmentbyaqualifiedprofessional,asstipulatedintheAmericanCarbonRegistryProtocol38,ishighlyrecommended,aswellascarefulconsiderationofapplicationratesinthecontextofsiteconditions.Thisprofessionalshouldsurveythesiteforspeciesofconservationconcern,identifyanypotentialplaceswherenutrienttransportposesaeutrophicationrisk,recommendBMPstomitigaterunoff,andassessotherresourceconcernsasappropriate.Comprehensivelyevaluatingapractice’spotentialeffectsonallnaturalresourcesisastandardNRCSprocedure,and,assuch,shouldbepartofanyCompostAdditiontoRangelandsConservationPracticeStandard.Technicalassistanceforprogramapplicants.TheHealthySoilsincentivesprogramisproposedtobebasedonconservationpracticesdevelopedbytheUSDANaturalResourcesConservationService(NRCS).TheapplicationofConservationPracticeStandardsisadaptedasneededforeachindividualsitebytechnicalpersonnel.Thesevisitsenablethepotentialbenefitsandenvironmentalimpactsofeachpracticetobeassessedinamoresite-specificmanner.SiteassessmentsareanimportantcomponentofanincentiveprogramandCDFAshouldevaluateifsuchaprocesscanbeestablished.ProducerswhohavecompostapplicationlistedasapracticeinanexistingCarbonFarmPlanorequivalentconservationplanwouldbewelcometoapplytotheincentivesprogramforcost-share(oftherateslistedhere).However,suchadocumentwouldnotberequiredforparticipationintheincentivesprogram,unlessaprocesscanbeestablishedtomaketheseplanningserviceseasilyavailabletoallCaliforniaproducers.Primarypotentialenvironmentalimpactsofcompostapplicationtorangelands1.Potentialimpactsonnitrate:Fornitrateleaching,rangelandsmightinterceptmoreoftheavailablenitrogenreleasedfromcompostthancroplandsduetoagreaterspatialandtemporalextentofplantcover.However,nodirectfieldmeasurementsofnitrateleachingfromcompost-amendedrangelandsareavailableinthescientificliterature.ForthenorthernCaliforniasites,Ryalsetal.17usedtheDAYCENTmodeltoestimatenitrateleachingintheirlaboratorystudy.TheDAYCENTestimatewasapproximately8.9lbsNO3-N/acre/yearforthefirst10yearspost-application,whichequatestoapproximately40%oftheNreleasedfromthecompostleachingoutasnitrateoverthatperiod(89lbsNO3-N/acreoftheestimated222lbsN/acrereleased).LeachingrateswereconsiderablylowerforsimulationsofC:N=20andC:N=30compoststhantheywerefortheC:N=11compostthatwasusedinthefieldstudy.Theseestimatesnowurgentlyrequirefield-validationandtestingatothersites.2.Potentialimpactsonplantdiversity:Californiarangelandssupportover400plantsofconservationconcern39,40andanumberofrangelandwildlifespecies,someofwhicharealsoimperiled,requirespecificplantsand/orvegetationstructurefortheirfoodandhabitat41–43.Concernsabouttheimpactofcompostadditiononplantdiversityaregroundedinafairlylargebodyofstudiesthathavedocumentedsignificantchangesinplantcommunitycomposition–andusuallydecreasesindiversity–inresponsetosyntheticNfertilizeraddition44.Ingeneral,

Page 19: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

18

addingNincreasesgrassbiomassmoresothanforbbiomass,suchthatafewhighly-responsivegrassspecies(mostlynon-native)canoutcompetemanyoftheforbs(mostlynative)45.

However,mostofthesestudieshaveappliedfairlyhighratesofN(80-100lbsN/acre/year)intheirexperiments.ThereisalackofscientificpeerreviewedstudiesinCaliforniagrasslandsthathaveaddedarangeofNratestodetermineathresholdrateofNadditionabovewhichdiversityislikelytodecline.AfewstudieshaveattemptedtodetermineN“criticalloads”atwhicheffectsontheecosystemarediscernable29–31,46.ThesestudiessuggestedthatacriticalloadforCaliforniagrasslandscouldbe6-9lbsN/acre/year,buttheyarebasedonlimitedobservationaldataalonganNdepositiongradientinserpentinegrasslands.Becausenutrient-poorserpentinegrasslandsmaybemoresensitivetonutrientadditionthanotherCaliforniagrasslandtypes,moreresearchisneededtoevaluatewhetherthisconstitutesabasisforanapplicationratelimitthatwouldberelevanttomostCaliforniarangelands.3.NutrientRun-off.Foreutrophicationconcernsonrangelands,mandatorybuffersaroundallsurfacewaterscombinedwithasite-specificriskfactoranalysisisanalternativestrategytoacross-the-boardlimitsonapplicationrates.Requiredbufferwidthfortheincentivesprogramwillbe30feet(ataminimum)aroundallsurfacewatersonoradjacenttotheparcel.Fortheriskfactoranalysis,similartothe“phosphorusindex”approachappliedinmanystatestoevaluateriskfromphosphorusapplicationtocroplands47,rangelandareaswithlowsoilNand/orPthatareataconsiderabledistancefromwaterwaysprobablywouldnotcreatesignificantriskandthereforemightbasetheirapplicationratesonotherconcerns.Forareasthatdohaveoneorbothoftheseriskfactors,amoredetailedriskassessmentcanbeconducted47,andsomeoralloftheriskcouldbemitigatedbyadjustingthecompostapplicationrateand/orusingbestmanagementpractices(BMPs)inadditiontotherequiredbuffers.Alternatively,potentiallyproblematicareasofthepropertycouldsimplybeavoidedifthereareothermoresuitableareas.TheAmericanCarbonRegistry’sMethodologyforCompostAdditionstoGrazedGrasslands38recommendsasitesurveybyaQualifiedExpert(i.e.,aCertifiedRangelandManager,NRCSSoilConservationistorQualifiedExtensionAgent)beforecompostisappliedtoassessthisandotherrisks.Inrelationtothesenutrientrun-offconcerns,somecompostexpertsalsonotedthatcompostuseinsoilerosionpreventionanddegradedsitemitigationisdocumentedatratesmuchhigherthanthoseproposedhere.48,49Additionalconsiderationsforrangelands.Becauseadditionofcomposttorangelandsmayincreasebiomassproduction4,whichcouldincreasefireriskinadditiontopotentialplantdiversityimpacts,applicationofcomposttograzedrangelandsonlyisrecommended.Applicationtoungrazedsiteswouldonlybeadvisableifpartofadegradedrangelandrestorationproject,guidedbyanappropriateconservationorrestorationplan.

Fiveoftheninestudiesintheliteraturereviewpresentedhereinvolvednon-compostedorganicamendments.Nitrogenmineralizationislikelytobefasterinnon-compostedthanincompostedamendments,suchthatlevelsofavailableNmaybeunderestimatedfornon-compostedamendmentsinTable3.

Nitrogenisnottheonlysoilnutrientthatcouldincreasewithcompostaddition,ascompostusuallycontainssignificantphosphorus,potassium,andothersecondaryplantnutrientsaswell.Here,ratesweredeterminedbasedonNreleasebecausetherearemore

Page 20: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

19

studiesdemonstratingNimpactsonCaliforniagrasslandplantcommunitiesthanthereareforothernutrients44.However,othernutrientsandindirecteffectsmayhaveimportantconsequencesoverthelongerterm50. ItisimportanttoconsidertheecologyofCaliforniarangelandplantcommunitieswhenevaluatingfindingsof“noimpact”ontheirdiversity.Manyrangelandforbspeciesformseedbanksandonlyappearinyearsthatarefavorableforthem.Anychangeinsoilconditionsmayalterthedegreeoffavorabilityofsuchyearsforthesespecies,butthisalterationmaynotbedetectedwithinthetimeframeofmostpublishedstudies.ThesedynamicssuggestaprecautionaryapproachtopracticesthatcouldimpactCaliforniarangelandplantdiversity.

Page 21: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

20

LiteratureCited

1. Swan,A.etal.COMET-Planner:CarbonandgreenhousegasevaluationforNRCSconservationpracticeplanning.(2014).

2. DeLonge,M.S.,Ryals,R.&Silver,W.L.Alifecyclemodeltoevaluatecarbonsequestrationpotentialandgreenhousegasdynamicsofmanagedgrasslands.Ecosystems16,962–979(2013).

3. Kong,A.Y.Y.,Six,J.,Bryant,D.C.,Denison,R.F.&vanKessel,C.Therelationshipbetweencarboninput,aggregation,andsoilorganiccarbonstabilizationinsustainablecroppingsystems.SoilSci.Soc.Am.J.69,1078(2005).

4. Ryals,R.&Silver,W.L.Effectsoforganicmatteramendmentsonnetprimaryproductivityandgreenhousegasemissionsinannualgrasslands.Ecol.Appl.23,46–59(2013).

5. Miltner,A.,Bombach,P.,Schmidt-Brücken,B.&Kästner,M.SOMgenesis:microbialbiomassasasignificantsource.Biogeochemistry111,41–55(2012).

6. Cotrufo,M.F.,Wallenstein,M.D.,Boot,C.M.,Denef,K.&Paul,E.TheMicrobialEfficiency-MatrixStabilization(MEMS)frameworkintegratesplantlitterdecompositionwithsoilorganicmatterstabilization:dolabileplantinputsformstablesoilorganicmatter?Glob.Chang.Biol.19,988–995(2013).

7. CaliforniaAirResourcesBoard.MethodforEstimatingGreenhouseGasEmissionReductionsFromCompostFromCommercialOrganicWaste.(2011).

8. Bowles,T.M.,Hollander,A.D.,Steenwerth,K.&Jackson,L.E.Tightly-CoupledPlant-SoilNitrogenCycling:ComparisonofOrganicFarmsacrossanAgriculturalLandscape.PLoSOne10,e0131888(2015).

9. Brown,S.&Cotton,M.ChangesinSoilPropertiesandCarbonContentFollowingCompostApplication:ResultsofOn-farmSampling.CompostSci.Util.19,87–96(2011).

10. Sullivan,D.M.Estimatingplant-availablenitrogenfrommanure.OregonStateUniv.Ext.Cat.EM8954-E,(2008).

11. Pettygrove,G.S.,Heinrich,A.L.&Crohn,D.M.Manurenitrogenmineralization.Univ.Calif.Coop.Ext.ManureTech.Bull.Ser.(2009).

12. Gaskell,M.etal.Soilfertilitymanagementfororganiccrops.(2006).

13. Hartz,T.K.,Mitchell,J.P.&Giannini,C.Nitrogenandcarbonmineralizationdynamicsofmanuresandcomposts.HortScience35,209–212(2000).

14. Havlin,J.L.,Tisdale,S.L.,Nelson,W.L.&Beaton,J.D.Soilfertilityandfertilizers:Anintroductiontonutrientmanagement.(PrenticeHall,2014).

15. Amlinger,F.,Götz,B.,Dreher,P.,Geszti,J.&Weissteiner,C.Nitrogeninbiowasteandyardwastecompost:Dynamicsofmobilisationandavailability-areview.Eur.J.SoilBiol.39,107–116(2003).

16. Ryals,R.,Kaiser,M.,Torn,M.S.,Berhe,A.A.&Silver,W.L.Impactsoforganicmatteramendmentsoncarbonandnitrogendynamicsingrasslandsoils.SoilBiol.Biochem.68,52–61(2014).

Page 22: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

21

17. Ryals,R.,Hartman,M.D.,Parton,W.J.,DeLonge,M.S.&Silver,W.L.Long-termclimatechangemitigationpotentialwithorganicmattermanagementongrasslands.Ecol.Appl.25,531–545(2015).

18. Booker,K.,Huntsinger,L.,Bartolome,J.W.,Sayre,N.F.&Stewart,W.WhatcanecologicalsciencetellusaboutopportunitiesforcarbonsequestrationonaridrangelandsintheUnitedStates?Glob.Environ.Chang.23,240–251(2013).

19. Sinsabaugh,R.L.etal.Soilmicrobialresponsestonitrogenadditioninaridecosystems.Front.Microbiol.6,1–12(2015).

20. Pierce,B.L.,Redente,E.F.,Barbarick,K.A.,Brobst,R.B.&Hegeman,P.PlantBiomassandElementalChangesinShrublandForagesfollowingBiosolidsApplication.J.Environ.Qual.27,789(1998).

21. Sullivan,T.S.,Stromberger,M.E.,Paschke,M.W.&Ippolito,J.A.Long-termimpactsofinfrequentbiosolidsapplicationsonchemicalandmicrobialpropertiesofasemi-aridrangelandsoil.Biol.Fertil.Soils42,258–266(2006).

22. Kowaljow,E.,Mazzarino,M.J.,Satti,P.&Jiménez-Rodríguez,C.OrganicandinorganicfertilizereffectsonadegradedPatagonianrangeland.PlantSoil332,135–145(2010).

23. Pedrol,N.etal.Soilfertilityandspontaneousrevegetationinlignitespoilbanksunderdifferentamendments.SoilTillageRes.110,134–142(2010).

24. Stavast,L.J.etal.NewMexicoBlueGramaRangelandResponsetoDairyManureApplication.Rangel.Ecol.Manag.58,423–429(2005).

25. Martínez,F.,Cuevas,G.,Calvo,R.&Walter,I.Biowasteeffectsonsoilandnativeplantsinasemiaridecosystem.J.Environ.Qual.32,472–479(1997).

26. Ryals,R.,Eviner,V.T.,Suding,K.N.&Silver,W.L.Grasslandcompostamendmentsincreaseplantproductionwithoutchangingplantcommunities.Ecosphere7,Articlee01270(2016).

27. Fresquez,P.R.,Francis,R.E.&Dennis,G.L.Soilandvegetationresponsestosewagesludgeonadegradedsemiaridbroomsnakeweed/bluegramaplantcommunity.J.RangeManag.43,325–331(1990).

28. Jurado-Guerra,P.,Luna-Luna,M.,Flores-Ancira,E.&Saucedo-Teran,R.ResidualEffectsofBiosolidsApplicationonForageProductionofSemiaridGrasslandinJalisco,Mexico.Appl.Environ.SoilSci.ArticleID,5(2013).

29. Bobbink,R.etal.Globalassessmentofnitrogendepositioneffectsonterrestrialplantdiversity:Asynthesis.Ecol.Appl.20,30–59(2010).

30. Fenn,M.E.etal.NitrogencriticalloadsandmanagementalternativesforN-impactedecosystemsinCalifornia.J.Environ.Manage.91,2404–2423(2010).

31. Ochoa-Hueso,R.etal.NitrogendepositioneffectsonMediterranean-typeecosystems:Anecologicalassessment.Environ.Pollut.159,2265–2279(2011).

32. Hu,H.W.H.-W.,Chen,D.&He,J.Z.J.-Z.Microbialregulationofterrestrialnitrousoxideformation:understandingthebiologicalpathwaysforpredictionofemissionrates.FEMSMicrobiol.Rev.39,1–21(2015).

Page 23: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

22

33. Zhu,X.,Burger,M.,Doane,T.A.&Horwath,W.R.AmmoniaoxidationpathwaysandnitrifierdenitrificationaresignificantsourcesofN2OandNOunderlowoxygenavailability.PNAS110,6328–6333(2013).

34. Tiquia,S.M.,Tam,N.F.Y.&Hodgkiss,I.J.Salmonellaeliminationduringcompostingofspentpiglitter.Bioresour.Technol.63,193–196(1998).

35. Swain,S.etal.CompostingisaneffectivetreatmentoptionforsanitizationofPhytophthoraramorum-infectedplantmaterial.J.Appl.Microbiol.101,815–827(2006).

36. Crohn,D.,Humpert,C.P.&Paswater,P.CompostingReducesGrowers’ConcernsAboutPathogens.(2000).

37. deBertoldi,M.,Vallini,G.&Pera,A.Thebiologyofcomposting:Areview.WasteManag.Res.1,157–176(1983).

38. Haden,V.R.,DeGryze,S.&Nelson,N.AmericanCarbonRegistryMethodologyforCompostAdditionstoGrazedGrasslandsVersion1.0.(2014).

39. CaliforniaNativePlantSocietyRarePlantProgram.InventoryofRareandEndangeredPlants(onlineedition,v8-02).(2015).

40. TheNatureConservancy(TNC).CaliforniaRangelandConservationCoalitionBiologicalPrioritizationofRangelands:ApproachandMethods.(2007).

41. Cameron,D.R.,Marty,J.&Holland,R.F.WhithertheRangeland?:ProtectionandConversioninCalifornia’sRangelandEcosystems.PLoSOne9,e103468(2014).

42. Weiss,S.B.Cars,Cows,andCheckerspotButterflies:NitrogenDepositionandManagementofNutrient-PoorGrasslandsforaThreatenedSpecies.Conserv.Biol.13,1476–1486(2009).

43. Kroeger,T.,Casey,F.,Alvarez,P.,Cheatum,M.&Tavassoli,L.AnEconomicAnalysisoftheBenefitsofHabitatConservationonCaliforniaRangelands.ConservationEconomicsWhitePaper(2009).

44. Harpole,W.S.,Goldstein,L.J.&Aicher,R.J.inCalif.GrasslandsEcol.Manag.(Stromberg,M.R.,Corbin,J.D.&D’Antonio,C.M.)119–127(UniversityofCaliforniaPress,2007).

45. Corbin,J.D.,Dyer,A.R.&Seabloom,E.W.inCalif.GrasslandsEcol.Manag.(Stromberg,M.R.,Corbin,J.D.&D’Antonio,C.M.)156–168(UniversityofCaliforniaPress,2007).

46. Tipping,E.,Henrys,P.A.,Maskell,L.C.&Smart,S.M.Nitrogendepositioneffectsonplantspeciesdiversity;Thresholdloadsfromfielddata.Environ.Pollut.179,218–223(2013).

47. Sharpley,A.N.etal.DevelopmentofphosphorusindicesfornutrientmanagementplanningstrategiesintheUnitedStates.J.SoilWaterConserv.58,137–152(2003).

48. Risse,M.Compostutilizationforerosioncontrol.(2012).

49. CaliforniaIntegratedWasteManagementBoard.Compostuseforlandscapeandenvironmentalenhancement.ReporttotheBoardproducedundercontractbyTheRegentsoftheUniversityofCalifornia.(2007).

50. Suttle,K.B.,Thomsen,M.a.&Power,M.E.Speciesinteractionsreversegrasslandresponsestochangingclimate.Science315,640–642(2007).

Page 24: Compost Application Rates for California Croplands and ... · PDF fileCompost Application Rates for California Croplands and Rangelands for a CDFA Healthy Soils Incentives Program

23

ListofparticipantsfortheEnvironmentalFarmingActScienceAdvisoryPanelcompostsubcommitteeAcademicResearchersKateScow,PhD(UCDavis)WhendeeSilver,PhD(UCBerkeley)DavidCrohn,PhD(UCRiverside)PeterGreen,PhD(UCDavis)MariadelaFuente,PhD(UCCooperativeExtension)WillHorwath,PhD(UCDavis)CarolShennan,PhD(UCSantaCruz)DougParker,PhD(UCOfficeofthePresident)JojiMuramoto,PhD(UCSantaCruz)KellyGravuer,MSc(UCDavisandCaliforniaDepartmentofFoodandAgriculture)AgencyScientistsDennisChessman,PhD(USDANaturalResourcesConservationService)AmrithGunasekara,PhD(CaliforniaDepartmentofFoodandAgriculture)RobertHorowitz(CalRecycle)EvanJohnson(CalRecycle)TungLe(CaliforniaAirResourcesBoard)SueMcConnell(CentralValleyRegionalWaterQualityControlBoard)BrendaSmyth(CalRecycle)BrianLarimore(CalRecycle)DavidMallory(CaliforniaAirResourcesBoard)BruceGwynne(CaliforniaDepartmentofConservation)ScottCouch(StateWaterBoard)KylePogue(CalRecycle)CarolynCook,MSc(CaliforniaDepartmentofFoodandAgriculture)BarzinMoradi,PhD(CaliforniaDepartmentofFoodandAgriculture)JenniferKiger(CaliforniaAirResourcesBoard)