84
Composite Floor System

Composite Floor System - Canam-bâtiments · PDF fileINTRODUCTION 1 This manual has been developed in order to assist you in understanding the Hambro® Composite Floor System,

  • Upload
    vanhanh

  • View
    218

  • Download
    2

Embed Size (px)

Citation preview

CompositeFloor System

www.hambro.ws

Better Building Solutions

Co

mp

osite

Flo

or S

yste

m

SPC#05260

( 05 21 00 )

© C

anam

Gro

up In

c., 2

009

P

rinte

d in

Can

ada

01/0

9

MEP-HA Cartable-0109 09/01/2009 11:30 Page 1

INTRODUCTION

1

This manual has been developed in order to assist you

in understanding the Hambro®

Composite Floor System, and for you to have at your fingertips

the information necessary for the most efficient and economical

use of our Hambro products.

Suggested detailing and design information throughout

this manual illustrates methods of use. To achieve maximum economy and

to save valuable time we suggest that you contact your local Hambro representative.

He/she is qualified and prepared to assist in the selection of a Hambro

system that is best suited to your project’s requirements.

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 3

GENERAL INFORMATION

1

1. GENERAL INFORMATION

Rollbar®

Reusable plywood1 220 mm x 2 440 mm(4’ x 8’ typ.) forms

Hambro joistwith bearing shoe

Poured in placeConcrete slab

1 251 mm (4’-1 1/4”)

Handle

Wire mesh drapedover top chord

to form catenary

Rollbar clips temporarybottom chord bracing

NOTE: Rollbar are rotated and unlocked for removal of plywood forms

Slots in top chord to support reusable Rollbar(Chord cut for clarity)

Cold rolled top chord “ ”portion embedded 39 mm (1 1/2”) in slab for composite action

Continuous slab over wall orbeam forms an accoustical seal

Fig. 1Hambro D500 Composite Floor System

Rollbar installed and rotated into a locked position into joists, support plywood forms

DESCRIPTION

The Hambro Composite Floor System has been used with different types of construction, i.e. masonry, steel frame buildings, poured in place or precast concrete as well aswood construction. Uses range from the single-familydetached house to multistory residential and officecomplexes.

The Hambro Composite Floor System consists of a hybrid concrete/steel T-beam in one direction and an integrated continuous one-way slab in the other direction, and isillustrated in figures 1 and 2.

Depending on the span, the loads and the type of form to support concrete poured in place, the Hambro steel joistmay have a different configuration at the top chord.

PRODUCT SERIES CONFIGURATION

D500TM H

MD2000® MD2000

Double Top Chord (DTC) LH

CANADA PATENT No:874180

U.S.PATENT Nos:3818083 38191433841597 38455943913296 39451683979868 40153964584815 4729201

OTHER U.S. & FOREIGN PATENTS PENDING

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 5

GENERAL INFORMATION

2

The unique top chord section has four basic functions:

1. It is a compression member component of theHambro non-composite joist during the concretingstage. The system is not shored.

2. It is a “high chair” for the welded wire mesh,developing negative moment capacity in theconcrete slab where it is required - over the joisttop chord.

3. It locks with and supports the slab forming system (Rollbar® and forms).

4. It automatically becomes a continuous shearconnector for the composite stage.

The bottom chord acts as a tension member during boththe concreting stage and the service life.

The web system, consisting of bent rods, ties the top and bottom chords together and resists the vertical shear in theconventional truss manner.

The concrete slab is reinforced with welded wire mesh atthe required locations and behaves structurally as acontinuous one-way reinforced concrete slab.

* Normally 1 251 mm (4’-1 1/4”) to accommodate standard

1 220 mm (4’-0”) wide plywood forms, but can be

altered to suit job conditions.

The rigid plywood sheets and Rollbar, when locked into thesection, not only act as simple forms for placing

concrete, but provide the essential lateral and torsionalstability to the entire Hambro floor system during theconcreting stage.

The interaction between the concrete slab and Hambrojoist begins to occur once the wet concrete begins to set.The necessary composite interaction for constructionloads is achieved once the concrete strength, f’c, reaches7.0 MPa (1 000 psi).

This will usually occur within 48 hours. Even in the coldestof concrete pouring conditions, construction heating willmaintain the concrete at temperatures necessary for thisgain of strength. When in doubt, concrete test cylinderscan be used to verify strength.

It is important to note that the overall floor stiffness after concreting increases substantially as compared to thatduring its non-composite condition prior to concreting.

The result is a composite floor system having a sound transmission class (STC) of 57 with the addition of agypsum board ceiling.

Fire resistance ratings of up to three hours are easilyachieved with the Hambro Composite Floor System by theinstallation of a gypsum board ceiling directly under thejoists. Other types of fire protection could be used: refer toU.L.C. and U.L. publications.

The Hambro Composite Floor System has been subjected to many tests both in laboratories and in the field.

ADVANTAGES

• The Hambro joists are custom manufactured to suitparticular job conditions and are easily installed. TheHambro joist modular spacing can be adjusted to suitvarying conditions.

• The Hambro forming system provides a rigid working platform. Masonry walls or tie beams may be filled, whenrequired, using the Hambro floor as a working deck.

• Shallower floor depths can be used because of theincreased rigidity of the system resulting from thecomposite action.

• The wide Hambro joist spacing allows greater flexibilityfor mechanical engineers and contractors. Standard pipelengths can be threaded through the Hambro web system- this means fewer mechanical joints.

• The ceiling plenum can accommodate all electrical and mechanical ducting, eliminating the need for bulkheading and dropped ceilings.

• The interlocking of concrete with steel provides excellent lateral diaphragm action with the composite joists actingas stiffeners for the entire system.

• Other subtrades can closely follow Hambro, therebyshortening completion time.

• The Rollbar and plywood sheets are reusable.

Shear connectorembedded 39 mm (1 1/2”)

into slab

Web

65 mm (2 1/2”) concrete slab (min.)

1 220 mm (4’-0”) plywood sheet

Draped mesh

Fig. 2

Bottomchord

Hambro joist spacing*

Rollbar lockedinto section

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 6

APPROVALS AND FIRE RATINGS

1

APPROVALS 2. FIRE RATINGS

The Hambro Composite Floor System is approved,classified, listed, recognized, certified or accepted by thefollowing approving bodies or agencies:

1. CCMC No. 06292-Rirc.nrc-cnrc.gc.ca/ccmc/registry/13/06292 f.pdf

2. International Conference of Buildings Officials(ICBO) Report No. PFC 2869.www.icc-es.org/reports/pdf files/UBC/pfc2869.pdf

3. Miami-Date County, Florida, Acceptance No. 06-0420.02www.miamidade.gov

4. The cities of Los Angeles Report No. RR 25437www.ladbs.org.

Fire Protection floor/ceiling assemblies using Hambro®

have been tested by independent laboratories. Fire resistance ratings have been issued by UnderwritersLaboratories Inc. and by Underwriters Laboratories ofCanada (ULC) which cover gypsum board, accoustical tileand spray on protection systems. Reference to these published listings should be made in detailing ceiling construction. Check your UL directory for the latest updating of these listings, or see the UL website athttp://www.ul.com/database or ULC website atwww.ulc.ca/about ulc/online directories.asp

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 7

FIRE RATINGS

2

Hambro Product UL/ULC/cULC Rating (hr.) Slab thickness (3) Ceiling Beam Rating

D500 LH (1) MD2000 (2) Design No. (mm) (in.) (hr.)

x x - I-5062 65 2 1/2 Gypboard 1/2” (12.7 mm) -

2 90 3 1/2 Gypboard 1/2” (12.7 mm) -

x x - I-5181 1/2 65 2 1/2 Gypboard 1/2” (12.7 mm) 2

2 55-75 2 1/4 - 3 Gypboard 1/2” (12.7 mm) 2

- - x I-522 2 75 3 Gypboard 1/2” (12.7 mm) 1 1/2

x - -I-800 1 - 1 1/2 - 2

65-70 2 1/2 -2 3/4 Spray on 1

- - x 70 2 3/4 Spray on 1

x x -G-003 2

65 2 1/2 Suspended or panel -

- - x 70 2 3/4 Suspended or panel -

x x x G-2132 75 3 Suspended or panel 2

3 100 4 Suspended or panel 3

x x -G-227 2

65 2 1/2 Suspended or panel 3

- - x 70 2 3/4 Suspended or panel 3

x x x G-228 2 80 3 1/4 Suspended or panel 2

x x x G-2292 75 3 Suspended or panel 2

3 100 4 Suspended or panel 3

x x -

G-524

1 - 2 65 2 1/2(3) Gypboard 1/2” (12.7 mm) 2

- - x 1 - 2 70 2 3/4(3) Gypboard 1/2” (12.7 mm) 2

x x x 3 90 3 1/2(3) Gypboard 1/2” (12.7 mm) 3

x x - G-525 3 80 3 1/4 Gypboard 5/8” (16 mm) 3

x x - G-702 1 - 2 - 3 Varies (3) Spray on -

x x - G-802 1 - 2 - 3 Varies (3) Spray on -

(1) For LH Series, add 1/4 inch concrete for slab thickness(2) For MD2000 series, the thickness shown in this table is above the decking (deck thickness = 1 1/2”)(3) Normal and lightweight concrete

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 8

ACOUSTICAL PROPERTIES

1

3. ACOUSTICAL PROPERTIES

SOUND TRANSMISSION

Because sound transmission depends upon a number ofvariables relating to the installation and materials used,Hambro makes no representations about the sound trans-mission performance of its products as installed. Youshould consult with a qualified acoustical consultant if youwould like information about sound performance.

HAMBRO SOUND INFORMATION

All product tests were performed at NGC Testing Services,Buffalo NY, www.ngctestingservices.com.

SOUND TRANSMISSION CLASS (STC)

The STC is a rating that assigns a numerical value to thesound insulation provided by a partition separating roomsor areas. The rating is designed to match subjectiveimpressions of the sound insulation provided against thesounds of speech, music, television, office machines andsimilar sources of airborne noise that are characteristic ofoffices and dwellings.

STC RATINGS: WHAT THEY MEAN

IMPACT INSULATION CLASS (IIC)

The Impact Insulation Class (IIC) is a rating designed tomeasure the impact sound insulation provided by thefloor / ceiling construction. The IIC of any assembly is

strongly affected by and dependant upon the type of floor

finish for its resistance to impact noise transmission.

The following chart is provided as a reference only. Thecalculations of sound rating and design of floor/ceilingassemblies with regard to acoustical properties is a build-ing designer responsibility.

IMPACT OF FLOOR FINISHES & HAMBRO FLOOR SYSTEM

* All products tested were on a 2 1/2” Hambro slab with aone layer 1/2” drywall ceiling.

STC Rating Practical Guidelines

25 Normal speech easily understood

30 Normal speech audible, but not intelligible

35 Loud speech audible, fairly understandable

40 Loud speech audible, but not intelligible

45 Loud speech barely audible

50 Shouting barely audible

55 Shouting inaudible

Hambro Assemblies STC IIC

2 1/2” slab, 1 layer 1/2” drywall 52 26

3” slab, 1 layer 1/2” drywall 57 30

4” slab, 1 layer 1/2” drywall 58 32

4” slab, 2 layers 1/2” drywall 60 36 Floor Finishes AdditionalIIC points

Carpet and Pad 24

Homasote 1/2” comfort base 18under wood laminatewww.homasote.com

6 mm cork under engineered hardwood 21

QT scu - QT4010 20 10 mm underlayment under ceramic tilewww.ecoreintl.com

Quiet Walk underlayment 19under laminate flooringwww.mpglobalproducts.com

Insulayment under engineered wood 20www.mpglobalproducts.com

1 1/2” Maxxon gypsum 28underlayment over Enkasonicsound control mat with quarrytile over Noble Seal SISwww.maxxon.com

1 1/2” Maxxon gypsum 29underlayment over Enkasonicsound control mat with woodlaminate floor over silent stepwww.maxxon.com

1 1/2” Maxxon gypsum 27underlayment over Enkasonicsound control mat w/ArmstongCommissions Plus Sheet Vinylwww.maxxon.com

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 9

ACOUSTICAL PROPERTIES

2

ACOUSTICAL ASSOCIATIONS & CONSULTANTS

The following is a list of acoustical associations that maybe found on the World Wide Web.

National Counsel of Acoustical Consultants –www.ncac.com

Canadian Acoustical Association – www.caa-aca.ca

Acoustical Society of America – www.asa.aip.org

Institute of noise Control Engineers – www.inceusa.org

As a convenience, Hambro is providing the following list ofvendors who have worked with this product. This list is notan endorsement. Hambro has no affiliation with theseproviders, and makes no representations concerning theirabilities.

Siebein Associates, Inc.

625 NW 60th Street, Suite CGainesville, FL 32607Telephone : 352-331-5111

Octave Acoustique, Inc.

Christian Martel, M.Sc. Arch963 Chemin RoyalSaint-Laurent-de-l’Île-d’Orléans, (Québec) Canada G0A 4N0Telephone : 418-828-0001

Acousti-Lab

Robert DucharmeC.P. 5028 Ste-Anne-des-Plaines (Québec) Canada J0N 1H0Telephone : 450-478-8828

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 10

DESIGN PRINCIPLES AND CALCULATIONS

1

4. DESIGN PRINCIPLES AND CALCULATIONS

4.1 SLAB DESIGN

4.1.1 THE HAMBRO SLAB

The slab component of the Hambro Composite Floor Systembehaves as a continuous one-way slab carrying loadstransversely to the joists, and often is required to also actas a diaphragm carrying lateral loads to shear walls orother lateral load resisting elements.

The slab design is based on CSA Standard A23.3-04, Designof Concrete Structures which stipulates that in order toprovide adequate safety level, the factored effects shall beless than the factored resistance.

Where � = load factor, taking into account the proba-bility of exceeding the specified load

S = load effect (dead or live)

ø = performance factor

R = member resistance

4.1.2. EFFECTS OF LOADING

The Canadian concrete code (CSA Standard A23.3-04) cl. 9.2.3.1. requires that we consider dead load to act simul-taneously with the live load applied on:

i) Adjacent spans (maximum negative moment at support)

or

ii) Alternate spans (maximum positive moment at mid-span).

However, if criteria (a) thru (c) of cl. 9.3.3. are satisfied, the following approximate value may be used in the design ofone-way slabs. Refer to fig. 4 for location of the designmoments.

4.1.2.1 POSITIVE MOMENT

Exterior span:Mf = Wf L1

2 / 11 ... Location �

Interior span:Mf = Wf Li

2 / 16 ... Location �

4.1.2.2 NEGATIVE MOMENT

First interior support:Mf = Wf L2 / 10 ... Location �

At other interior supports:Mf = Wf L2 / 11 ... Location �

4.1.2.3 SHEAR

At face of first interior support:Vf = 1.15 Wf L1 / 2 ... Location �

At other interior supports:Vf = Wf Li / 2 ... Location �

Where Wf = Total factored design load

= 1.25 x dead + 1.5 x live

L1 = First interior span

Li = Interior spans

L = Average of two adjacent spans

Note: L is clear span (mm)S is joist spacing (mm)L = (S) - 45

Fig. 4

Spacing S1 Spacing S2

S2 /3

Spacing Si

1

Extra mesh at 1 & 2 when required

3 3

442 Location indexingnumbers

� S ≤ ø R

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 11

DESIGN PRINCIPLES AND CALCULATIONS

2

4.1.2.4 CONCENTRATED LOAD

In addition to the previous verification, the NationalBuilding Code of Canada cl.4.1.5.10 (1) requires considera-tion of a minimum concentrated load to be applied over anarea of 750 mm x 750 mm. The magnitude of the loaddepends on the occupancy. This loading does not need tobeconsidered to act simultaneously with the specifieduniform live load.

The intensity of concentrated loads on slabs is reduceddue to lateral distribution. One of the accepted methods ofcalculating the “effective slab width” which is used byHambro actually appears in Section 317 of the BritishStandard Code of Practice CP114 and is reproducedin fig. 5. Note that the amount of lateral distributionincreases as the load moves closer to mid-span, andreaches a maximum of 0.3L to each side; the effective slab width resisting the load is a maximum ofload width + 0.6L.

An abbreviated summary of the calculations is shown in tables 6 and 7.

Fig. 5

Lateral Distribution of Concentrated Loads

X

L

AA

Load Slab

Section A-A

Effe

ctiv

e w

idth

0.3L

Load

wid

th

1.2

(X) (1-

X) L

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 12

DESIGN PRINCIPLES AND CALCULATIONS

3

TABLE 6: Concentrated Loads with 1 251 mm (4’-1 1/4”) Joist Spacing f’c = 20 MPa (3 000 psi), Fy = 400 MPa (60 000 psi) for Wire Mesh

TABLE 7: Concentrated Loads with 1 555 mm (5’-1 1/4”) Joist Spacing f’c = 20 MPa (3 000 psi), Fy = 400 MPa (60 000 psi) for Wire Mesh

* See CAN3-S413-94 for Parking Structures Design for more information.

* See CAN3-S413-94 for Parking Structures Design for more information.

CONCENTRATED SLAB MESH SIZE SPECIAL REMARKS

LOAD THICKNESS 152 x 152 (6 x 6) (See fig. 4)

OFFICE BUILDINGMW25.7 x MW25.7 Extra layer @ � No

9 kN on70 mm (2 3/4”) (4/4) “chairs” on

750 mm x 750 mmto MW18.7 x MW18.7 Double layers throughout Top chord100 mm (4”) (6/6)

PASSENGER CAR * 90 mm (3 1/2”) MW18.7 x MW18.7 Double layers throughout No11 kN on to (6/6) but S1 ≤ 1 050 mm “chairs” on

750 mm x 750 mm115 mm (4 1/2”) MW25.7 x MW25.7 Single layer throughout Top chord

plus 50 mm asphalt (4/4) + Extra layer @ � and �

PASSENGER CAR * 90 mm (3 1/2”) MW18.7 x MW18.7 Double layers throughout No18 kN on to (6/6) + Extra layer @ � and � “chairs” on

750 mm x 750 mm115 mm (4 1/2”) MW25.7 x MW25.7 Double layers throughout Top chord

plus 50 mm asphalt (4/4)

NOTE: For other configurations, please contact your Hambro representative.

CONCENTRATED SLAB MESH SIZE SPECIAL REMARKS

LOAD THICKNESS 152 x 152 (6 x 6) (See fig. 1)

MW18.7 x MW18.7 Extra layer @ � and �

70 mm (2 3/4”)(6/6)

toMW18.7 x MW18.7 Single layer throughout No

OFFICE BUILDING90 mm (3 1/2”)

(6/6) but S1 ≤ 1 050 mm “chairs” onMW25.7 x MW25.7 Single layer throughout Top chord

9 kN on (4/4)750 mm x 750 mm

100 mm (4”)MW25.7 x MW25.7 Single layer throughout

to(4/4)

125 mm (5”)MW13.3 x MW13.3 (8/8) Double layers throughout

or MW18.7 x MW18.7 (6/6)

MW18.7 x MW18.7 Double layers throughout(6/6)

PASSENGER CAR * MW25.7 x MW25.7 Extra layer @ � No(4/4) “chairs” on

90 mm (3 1/2”)MW25.7 x MW25.7 Single layer throughout Top chord

11 kN onto

(4/4) but S1 ≤ 1 050 mm750 mm x 750 mm

115 mm (4 1/2”)MW13.3 x MW13.3 Double layers throughout

plus 50 mm asphalt (8/8) + Extra layer @ �MW13.3 x MW13.3 Double layers throughout

(8/8) but S1 ≤ 1 050 mm

MW18.7 x MW18.7 Double layers throughout NoPASSENGER CAR *

90 mm (3 1/2”)(6/6) “chairs” on

18 kN onto

MW25.7 x MW25.7 Extra layer @ � and � Top chord750 mm x 750 mm

115 mm (4 1/2”)(4/4)

plus 50 mm asphalt MW25.7 x MW25.7 Single layer throughout(4/4) but S1 ≤ 1 050 mm

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 13

DESIGN PRINCIPLES AND CALCULATIONS

4

4.1.3 MOMENT CAPACITY

The factored moment resistance of a reinforced concrete section, using an equivalent rectangular concrete stress distribution is given by:

Mr = øsAs Fy (d - a/2)

a = depth of the equivalent concrete stress block

=øsAs Fy

�1øc f’cb

Where Fy = yield strength of reinforcing steel (400 MPa)

f’c = compressive strength of concrete (20 MPa)

As = area of reinforcing steel in the direction of analysis (mm2/m width)

�1 = 0.85 - 0.0015f’c ≥ 0.67

b = unit slab width (mm)

d = distance from extreme compression fiber to centroïd of tension reinforcement (mm)

(see tables 8 and 9 on pages 19 and 20)

øs = performance factor of reinforcing steel (0.85)

øc = performance factor of concrete (0.65)

4.1.3.1 SHEAR CAPACITY

The shear stress capacity V, which is a measure of diagonaltension, is unaffected by the embedment of the section asthis principal tensile crack would be inclined and radiate awayfrom the section.

The factored shear capacity is given by:

Vr = Vc = øc�ß f’c bwd

(CSA A23.3-04, clause 11.3.4)

Where � = 1.0 for normal density concrete

ß = 0.21 = (CSA A23.3-04, clause 11.3.6.3)

bw = b = width of slab

And øc, f’c and d are as previously described.

4.1.4 SERVICEABILITY LIMIT STATES

4.1.4.1. CRACK CONTROL PARAMETER

When the specified yield strength, Fy, for tension reinforce-ment exceeds 300 MPa, cross sections of maximum positiveand negative moments shall be so proportioned that thequantity Z does not exceed 30 kN/mm for interior exposureand 25 kN/mm for exterior exposure. Ref. CSA A23.3-04,clause 10.6.1.

The quantity Z limiting distribution of flexural reinforcementis given by:

Z = fs3

dc A x 10-3

Where fs = stress in reinforcement at specified loadstaken as 0.6Fy

dc = thickness of concrete cover measure fromextreme tension fibre to the center of the reinforcing bar located closest thereto (dc ≤ 50 mm)

4.1.4.2 DEFLECTION CONTROL

For one-way slabs not supporting or attached to partitionsof other construction likely to be damaged by large deflec-tions, deflection criteria are considered to be satisfied if thefollowing span/depth ratio are met:

at location � t ≥ �n/24

at location � t ≥ �n/28 (CSA A23.3-04, table 9.2)

�n = Space between joists or joist to wall

Fig. 6

td

c C

T

a

Fig. 7

dc

dc

Bar spacing

Width

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 14

DESIGN PRINCIPLES AND CALCULATIONS

5

ø = 4 x Awireπ

4.1.5 SLAB DESIGN EXAMPLE METRIC

Verify the standard Hambro slab under various limit states(strength and serviceability) for residential loading.

Dead load: 3 kPa

Live load: 2 kPa

Slab thickness: 70 mm

Joist spacing: 1 250 mm

Concrete strength ( f’c ): 20 MPa at 28 days

Area of steel: 152 x 152 MW18.7 x MW18.7

As = 123 mm2/m

1- Analysis (Per Meter of Slab)

a) Factored Load

Wf = 1.25 x 3 + 1.5 x 2 = 6.75 kN/m2

b) Maximum Positive Moment at �

Mf+ = 6.75 x 1.202 /11 = 0.88 kN•m

c) Maximum Negative Moment at �

Mf– = 6.75 x 1.202 /10 = 0.97 kN•m

d) Maximum Shear

Vf = 6.75 x 1.15 x 1.25 = 4.85 kN

2- Resistance

a) Moment Capacity

where ø = wire diameter

at mid-span: 20 mm concrete cover

d = t - (20 + ø/2)

= 70 - (20 + 4.88/2) = 47.6 mm

at support: 38 mm depth of embedded top chord

d = 38 + ø/2

d = 38 + 4.88/2 = 40.4 mm governs

�1 = 0.85 - 0.0015f’c = 0.82 ≥ 0.67 OK

a =øs As Fy

=0.85 x 123 x 400

a = 3.92 mm

Mr = øs As Fy (d - a/2)

M r = 0.85 x 123 x 400 (40.4 - 3.92) x 10-6

Mr = 1.61 kN•m > Mf = 0.97 kN•m OK

b) Shear Capacity

Vr = ß � øc f’c bw d

= 0.21 x 1 x 0.65 x 20 x 1 000 x 40.4 x 10-3

= 24.66 kN >> Vf = 4.85 kN OK

3- Serviceability

a) Crack Control

dc = t - 38 - ø/2 = 29.6 mm ≤ 50.0 mm OK

A = 2 x dc x 152 = 9 000 mm2

fs = 0.6 x 400 = 240 MPa

Z = fs3

dc A x 10-3

Z = 240 x 3

29.6 x 9 000 x 10-3

Z = 15.5 kN/mm < 25.0 kN/mm exterior exposure OK

< 30.0 kN/mm interior exposure OK

b) Deflection Control

Span/depth = 1 250/70 = 18

Exterior span = 18 < 24 OK

Interior span = 18 < 28 OK

2

�1øc f’c b 0.82 x 0.65 x 20 x 1 000

2

ø = 4 x 18.7 = 4.88 mmπ√

√√

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 15

DESIGN PRINCIPLES AND CALCULATIONS

6

SLAB d MESH SIZE (152 mm x 152 mm) 1 251 mm JOIST SPACING 1 555 mm JOIST SPACING

THICKNESS (t) (mm) f’c = 20 MPa, � = 2 400 kg/m3 Exterior Interior Exterior Interior

Fy = 400 MPa (1) (1) (1) (1)

2 layers MW9.1 x MW9.1 7.52 8.22 4.92 5.3770 mm ≤ t < 90 mm

40 MW18.7 x MW18.7 7.61 8.42 5.02 5.49NO CHAIR

MW25.7 x MW25.7 10.17 11.42 6.77 7.4

MW25.7 x MW25.7 10.49 11.49 6.84 7.49

90 mm ≤ t < 115 mm 412 layers MW13.3 x MW13.3 10.56 11.59 6.89 7.54

NO CHAIR 2 layers MW18.7 x MW18.7 14.39 15.69 9.34 10.19

2 layers MW25.7 x MW25.7 19.09 20.59 12.24 13.39

115 mm ≤ t ≤ 140 mm 2 layers MW18.7 x MW18.7 14.43 15.83 8.38 9.13

WITH 75 mm CHAIRINTERIOR AND 78 2 layers MW25.7 x MW25.7 19.53 21.53 12.63 13.93

EXTERIOR EXPOSURE (1)2 layers MW34.9 x MW34.9 25.93 28.53 16.73 18.33

TABLE 8: Slab Capacity Chart (Total Unfactored Load in kN/m2) *

Wire mesh designation:152 x 152 MW9.1 x MW9.1 = 6 x 6 - 10/10 152 x 152 MW13.3 x MW13.3 = 6 x 6 - 8/8152 x 152 MW18.7 x MW18.7 = 6 x 6 - 6/6 152 x 152 MW25.7 x MW25.7 = 6 x 6 - 4/4 152 x 152 MW34.9 x MW34.9 = 6 x 6 - 2/2

* Loads indicated are the total allowable service load (Ws) that the slabcan carry. Ws is determined from the conservative equation:

Ws = (Wf - 1.25D) / 1.5 + D

Where Wf = factored total loadD = minimum dead load (weight of slab + joist)

(1) Wire mesh : 1 layer on top chord and 1 layer on high chair

Note: Slab capacities are based on mesh over joist raised as indicated.

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 16

DESIGN PRINCIPLES AND CALCULATIONS

7

SLAB d MESH SIZE (6” x 6”) 4’-1 1/4” JOIST SPACING 5’-1 1/4” JOIST SPACING

THICKNESS (t) (in.) f’c = 3 000 psi, � = 145 lb./sq. ft. Exterior Interior Exterior Interior

Fy = 60 000 psi (1) (1) (1) (1)

2 layers 10/10 157 172 103 112

2 3/4” ≤ t < 3 1/2” 1.6 1 layer 6/6 159 176 105 115NO CHAIR

1 layer 4/4 212 239 141 155

1 layer 4/4 219 240 143 156

3 1/2” ≤ t ≤ 4 1/2” 1.62 layers 8/8 221 242 144 157

NO CHAIR 2 layers 6/6 301 328 195 213

2 layers 4/4 399 430 256 280

2 layers 6/6 301 331 175 191

3.1 2 layers 4/4 408 450 264 291

2 layers 2/2 542 596 349 383

TABLE 9: Slab Capacity Chart (Total Unfactored Load in psf) *

* Loads indicated are the total allowable service load (Ws) that the slabcan carry. Ws is determined from the conservative equation:

Ws = (Wf - 1.25D) / 1.5 + D

Where Wf = factored total loadD = minimum dead load (weight of slab + joist)

(1) Wire mesh : 1 layer on top chord and 1 layer on high chair

Note: Slab capacities are based on mesh over joist raised as indicated.

4 1/2” ≤ t ≤ 5 1/2”WITH 3” CHAIRINTERIOR ANDEXTERIOR EXPOSURE (1)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 17

DESIGN PRINCIPLES AND CALCULATIONS

8

4.2 NON-COMPOSITE DESIGN

The top chord must be verified for the loads applied at the non-composite stage. From the previous example, wehave the following results:

1- Factored Loading• Dead load:70 mm slab: 1.65 kN/m2

Formwork and joist: 0.24 kN/m2

1.89 kN/m2 x 1.25 = 2.36 kPa

• Live load: Construction live load: 0.95* kN/m2 x 1.5 = 1.43 kPa

Total factored load = 3.79 kPa

* Reduces beyond 7 620 mm span at a rate of0.05 kN/m2 each 760 mm of span.

2- Factored moment resistanceMr nc = Crd or Trd

i.e. Wnc L2 = Crd or Trd, whichever is the lesser

Wnc = 3.79 x joist spacing = kN/mL = clear span + 100 mmC = area of top chord (mm2) x factored

compressive resistance (MPa)T = area of bottom chord (mm2) x factored

tensile resistance (MPa)d = effective lever arm (m)

= (D + 2 mm - y) /1 000

From the above formula, the maximum “limiting span”may be computed for the non-composite (constructionstage) condition. For spans beyond this value, the topchord must be strengthened or joist propped.Strengthening of the top chord, when required, is usuallyaccomplished by installing one or two rods in the curva-tures of the “S” part of the top chord.

The bottom chord is sized for the total factored load whichis more critical than the construction load.

Hambro top chord properties are provided to assist you in computing the non-composite joist capacities.

4.2.1 TOP CHORD PROPERTIES - D500TM

METRIC

t = 2.3 mm

Anet* = 361 mm2

Ix = 2.74 x 105 mm4

Top Chord Fy = 350 MPa

Bottom Chord Fy = 380 MPa

IMPERIAL

t = 0.090 in.

Anet* = 0.560 in.2

Ix = 0.658 in.4

Top Chord Fy = 50 ksi

Bottom Chord Fy = 55 ksi

Anet* = Effective area according to CAN3-S136-01

8

Fig. 8

N.A. of top chordCr

Tr

2D

Y

d

Fig. 9

X X

17 mm(0.68”)

t

Y

2 m

m(0

.08”

)

Y

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 18

DESIGN PRINCIPLES AND CALCULATIONS

9

4.2.2 TOP CHORD PROPERTIES - MD2000®

METRIC

t = 2.3 mm

Anet* = 422 mm2

Ix = 3.65 x 105 mm4

Top Chord Fy = 350 MPa

Bottom Chord Fy = 380 MPa

IMPERIAL

t = 0.090 in.

Anet* = 0.654 in.2

Ix = 0.877 in.4

Top Chord Fy = 50 ksi

Bottom Chord Fy = 55 ksi

Anet* = Effective area according to CAN3-S136-01

4.2.3 TOP CHORD PROPERTIES - LH

METRIC

t = 2.3 mm

Anet* = 623 mm2

Ix = 2.56 x 105 mm4

Top Chord Fy = 350 MPa

Bottom Chord Fy = 380 MPa

IMPERIAL

t = 0.090 in.

Anet* = 0.966 in.2

Ix = 0.616 in.4

Top Chord Fy = 50 ksi

Bottom Chord Fy = 55 ksi

Fig. 10

X X

11.6 mm (0.45”)

t

Y

Y

3.5

mm

(0.1

4”)

Fig. 11

X X

t

Y

5.3

mm

(0.2

1”)

Y

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 19

DESIGN PRINCIPLES AND CALCULATIONS

10

4.3 COMPOSITE DESIGN

4.3.1 FLEXURE DESIGN

In the past, conventional analysis of composite beamsections has been linearly elastic. Concrete and steelstresses have been determined by transforming thecomposite section to a section of one material, usuallysteel, from which stresses are then determined with thefamiliar formula, f = My/I, and then compared to somelimiting values which have been set to ensure an adequatelevel of safety. Although this procedure is familiar to mostengineers, it does not predict the level of safety with asmuch accuracy as does an ultimate strength approachwhich is based on the actual failure strengths of the component materials.

It is now known that the flexural behavior at “ultimate”failure stages of composite concrete/steel beams and joistsis similar to that of reinforced concrete beams - the elasticneutral axis begins to rise under increasing load as thecomponent materials are stressed into their inelasticranges. The typical stress-strain characteristics of theconcrete and steel components are shown in fig. 12.

The various loading stages of the Hambro composite joistare indicated in fig. 13. As load is first applied to thecomposite joist, the strains are linear. The “elastic” neutralaxis, concrete and steel stresses can be predicted from theconventional transformed area method. Generally speak-ing, the Hambro composite joist behaves in this “elastic”manner when subjected to the total working loads. Withincreasing load, failure always begins initially with yieldingof the bottom chord. In (a), all of the bottom chord has justreached the yield stress, Fy. The maximum concretestrains will likely have just progressed into the inelasticconcrete range, but the maximum concrete stress will stillbe less than �1f’c.

With a further increase in load, large inelastic strains occurin the bottom chord and the ultimate tensile force, Tu ,remains equal to As Fy. The strain neutral axis rises, asdoes the centroid of the compresssion force. Part (b)depicts the stage when the maximum concrete stress hasjust reached �1f’c. At this stage, the ultimate resistingmoment has increased slightly due to a small increase inIever arm.

Fig. 12

Concrete and Steel Stress - Strain Curves

Steel strain

Fu

Ey

Fy

Ste

el s

tres

s

Elas

ticra

nge

Concrete strain

f’c

Con

cret

e st

ress

Inel

astic

rang

eEl

astic

rang

eIn

elas

ticra

nge

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 20

DESIGN PRINCIPLES AND CALCULATIONS

11

4.3.2 VARIOUS FLEXURE FAILURE STAGES

Upon additional load application, the steel and concretestrains progress further into their inelastic ranges. Thestrain neutral axis continues to rise and the lever armcontinues to increase as the centroid of compression forcecontinues to rise. In (c), final failure occurs with crushing ofthe upper concrete fibres. At this point, the maximum feverarm e’, has been reached. In load capacity calculations, thesimplified concrete stress block as shown in (c) is univer-sally used.

According to CAN3-S16.1-M01 (cl.17.9.3) and CSA A23.3-04(cl.10.1.7), the factored resisting moment of the compositesection is given by:

Mrc = øs As Fye’ = Tre’

Where e’ = d + slab thickness – a/2 – yd = joist deptha = Tr / �1 øc f’cbeøs = steel performance factor = 0.90As= area of bottom chordy = neutral axis of bottom chord

Fy = yield point of steel

øc = concrete performance factor = 0.65

f’c = concrete compressive strengthbe = effective width of concrete top flange

= the lesser of - joist spacing, or - span /4.

Note: To determine the total allowable service load Ws(see load tables), we convert the factored momentinto a factored linear loading.

And

Where D = weight of (slab + joist)

Mf = Wf L2(single span moment)

8

Ws = (Wf - 1.25 D) + D1.5

Wf = 8 Mf

L2

Fig. 13

Jois

t dep

th “

d” Strain line

�1f’c

Cf a

Ey

�1øcf’c

C

t

Tu = AsFy

(a)Initial steel yield

e’

f’c

Cu

Tu = AsFy

(c)Ultimate stage

�1f’c

Ey

Tu = AsFy

(b)Secondary yield stages

Simplifiedconcrete

stress block

Elasticstrain Inelastic strain

Elasticstrain Inelastic strain

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 21

DESIGN PRINCIPLES AND CALCULATIONS

12

4.4 INTERFACE SHEAR

The Hambro joist comprises a composite concrete slab-steel joist system with composite action achieved by theshear connection developed by two means:

(i) by anchorage provided at the joist ends bymeans of a steel angle which acts both as abearing shoe and as anchorage for the enddiagonal, thereby producing horizontal bearingforces. This horizontal force is closely asso-ciated with the concrete strength and the verti-cal size of the steel angle plate on the shoe.

(ii) by bond or friction between the partiallyembedded specially profiled top chord.

Composite action between the section and the concreteslab exists because of the unique shear resistance developedalong the interface between the two materials. This shearresistance, which has been called “bond” or “interfaceshear” is primarily the result of a “locking” or “clamping”action in the longitudinal direction between the concrete andthe section when the composite joist is deflected underload. Another contributing factor to the shear resistance isthe lateral compression stress or “poisson’s effect” whichresults from slab continuity in the lateral direction. Thiscontinuity prevents lateral expansion from occuring as aresult of longitudinal compression stresses and thus lateralcompression stress results. However, this effect has beenignored in determining interface shear capacity which has been based on full scale testing of spandrel joists having only a 150 mm slab overhang on one side for its entire spanlength. A cross-section of a test specimen is illustrated infig. 14.

It was decided to base the limiting interface shear value onthis most critical condition as this could often occur inpractice with large duct openings. Also, one would expectsome additional shear resistance to occur due to someform of friction (or plain “bond”) mechanism, however,full scale tests have not shown any significant differencesin results among specimens whose section wereunpainted or painted.

Shear resistance of the steel-concrete interface can be evaluated by either elastic or ultimate strength procedures;both methods have shown good correlation with the testresults. The interface shear force resulting from superim-

posed loads on the composite joist may be computed,using the “elastic approach”, by the well known equation:

......................................................... (A)

Where q = horizontal shear flow per mm of length (N/mm)

V = vertical shear force at the section (N) due tosuperimposed loads

Q = statical moment of the effective concrete incompression (hatched area) about theelastic N.A. of the composite section (mm3)

IC = moment of inertia of the composite joist (mm4)

And Q = by (Yc - y/2) and y = yc but � t

Where b = effective concrete flange width (mm) =smallest of L/4 or joist spacing

n = modular ratio = Es /Ec = 9.4 for f’c = 20MPa

t = slab thickness (mm)

Yc = depth of N.A. from top of concrete slab

y = Yc when N.A. lies within slab

= t when N.A. lies outside slab

case 1: N.A. within slab (y = Yc)

Fig. 14

150 mm (6”) 150 mm (6”)1 251 mm (4’-1 1/4”) 1 251 mm (4’-1 1/4”)

70 mm(2 3/4”)

Fig. 15

t

D

y Yc

N.A.b

y = tYc

N.A.

b

q = VQIC

n

case 2: N.A. outside slab (y = t)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 22

DESIGN PRINCIPLES AND CALCULATIONS

13

For a uniformly loaded joist, the average interface shear s,at ultimate load when calculated by ultimate strengthprinciples, would be:

......................................................... (B)

and would represent the average shear force, per unitlength, between the points of zero and maximum moment.Some modification to this formula would occur when thestrain neutral axis at failure would be located withinthe section. As this modification is slight and would onlyoccur with bottom chord areas greater that 1 185 mm2,it is neglected.

The following compares the elastic and ultimate approaches:

Since Mu = Tudu equation (B) can be rewritten:

......................................................... (C)

Also, for a uniformly distributed load,

......................................................... (D)

Subscipts u, are added to equation (A) to represent thearbitrary “q” force at failure:

......................................................... (E)

Combining (C) and (E) results in:

.............................................. (F)

and, substituting (D) into equation (F),

...................................................... (G)

The value Ic /Qdu has been calculated for the variousHambro composite joist sizes. It is constant, and = 1.1.Substituting this in (G), gives:

This verifies that q and s are closely related and that the interface shear force does, in fact, vary from a maximum atzero moment (maximum vertical shear) to a minimum atmaximum moment (zero vertical shear).

The more recent full testing programs have consistently established a failure value for the horizontal bearing forces and the friction between steel and concrete. An additional contributing factor is a hole in the section at each 178 mmon the length.

(i) Horizontal bearing forces

The test has defined an ultimate value for theend bearing shoe Bu = 222 kN for a concretestrength = 20 MPa

(ii) Friction between steel and top chord

The failure value for the interface shear qu = 36.9 N/mm. This is sometimes convertedto “bond stress” u = q / embedded S perimeter = q /178 mm. Hence, the ultimate “bond stress” u = 36.9 / 178 = 207 kPa.

The safety limiting interface shear is defined byusing a safety factor of 2 on point (i) and (ii).

s = 2TuL

s = 2MuduL

Mu = VuL

4

qu = VuQ

Ic

qu = duL x VuQ

2Mu Ics

qu = 2Qdu

Ics

qu = 1.82 s

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 23

DESIGN PRINCIPLES AND CALCULATIONS

14

4.5 WEB DESIGN

4.5.1 VERTICAL SHEAR

The web of the steel joist is designed according to CAN3-S16.1-M01. Clause 17.3.2 requires the web system to be proportioned to carry the total vertical shear Vf . The loading applied to the joist is as follows:

a) A uniformly distributed load equal to the total dead and live loads.

b) An unbalanced load with 100% of the total dead loadand live loads on any continuous portion of the joist and25% of the total dead and live loads on the remainder toproduce the most critical effect on any component.

c) A factored concentrated load of 13.5 kN (3.0 kips)applied at any panel point.

The above loadings need not be applied simultaneously.

These assumptions result in calculated bar forces whichhave been shown by test to be as much as 15% higher thanthe actual values because the slab, acting compositely withthe ~ section, is stiff enough to transmit some load direct-ly to the support. This is particularly true for web membersat the joist ends – those which are subjected to the highestvertical shear. However, the slab shear contribution isdisregarded when designing the webs.

Due consideration of the total end reaction being concen-trated at the shoe shall be taken by the specifying engineeror architect in the design of supporting members.

4.5.2. EFFECTIVE LENGTH

OF COMPRESSION DIAGONAL

The webs are dimensioned using cl. 13.2 for tension mem-bers and cl. 13.3 for compression member. The effectivelength of web member KL is taken as 1.0 times the distancebetween the intersection of the axis of the web and thechords. Except for continuous web member.

Note: The web members are sized for the loading specifiedincluding concentrated loads where applicable.Furthermore, the webs are designed according to the latest recommendations of the Canadian Institute ofSteel Construction (CISC).

Fig. 16

D500TM and MD2000® Geometry

R

d

(Clear span - 12.5 mm or 1/2”)

H1

Vf1 Vf2 Vf3 Vf4 Vf5 Vf

W1 W2 WC WC WC WC

C 1

T1

C 2

T2

C 3

T3

C 4

T4

C 5

T5

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 24

DESIGN PRINCIPLES AND CALCULATIONS

15

4.6 DIAPHRAGM DESIGN

4.6.1 THE HAMBRO SLAB AS A DIAPHRAGM

With the increasing use of the Hambro system for floor of buildings in earthquake prone areas such as Anchorage, Los Angeles, Vancouver, Montreal and Quebec City or in hurricane prone areas such as Florida as well as for multi-storey buildings where shear transfer could occur at somelevel of the building due to the reduction of the floor plan,it is important to develop an understanding of how theslabs will be able to transmit horizontal loads while beingpart of the Hambro floor system.

The floor slab, part of the Hambro system, must be designedby the project structural engineer as a diaphragm to resist horizontal loads and transmit them to the vertical bracingsystem.

Any diaphragm has the following limit states:

1) Shear strength between the supports

2) Out of plane buckling

3) In plane deflection of the diaphragm

4) Shear transmission at the supports

A diaphragm works as the web of a beam spanningbetween or extending beyond the supports. In the case ofa floor slab, the slab is the web of the beam spanningbetween or extending beyond the vertical elementsdesigned to transmit to the foundations the horizontalloads produced by earthquake or wind.

We will use a simple example of wind load acting on adiaphragm part of a horizontal beam forming a single spanbetween end walls. The structural engineer responsible forthe design of the building shall establish the horizontalloads that must be resisted at each floor of the building forthe wind and earthquake conditions prevailing at the build-ing location. The structural engineer must also identify thevertical elements that will transmit the horizontal loads tothe foundations in order to calculate the shear that must beresisted by the floor slab.

4.6.2 SHEAR STRENGTH BETWEEN SUPPORTS

A series of fourteen specimens of concrete slabs, part of aHambro floor system, were tested in the laboratories ofCarleton University in Ottawa. The purpose of the tests wasto identify the variables affecting the in plane shear strengthof the concrete slab reinforced with welded wire mesh.

The specimens were made of slabs with a concrete thick-ness of 63 mm (2.5”) or 70 mm (2.75”) forming a beam witha span of 610 mm (24”) and a depth of 610 mm (24”). Thisbeam was loaded with two equal concentrated loads at152 mm (6”) from the supports. The other variables were:

1) The size of the wire mesh

2) The presence or absence of the Hambro joist embed-ded top chord parallel to the load in the shear zone

3) The concrete strength

It was found that the shear resistance of the slab is mini-mized when the shear stress is parallel to the Hambro joistembedded top chord. A conservative assumption could bemade that the concrete confined steel wire mesh is the

only element that will transmit the shear load over theembedded top chord.

In the following example of the design procedure, we willtake into account that the steel of the wire mesh is alreadyunder tension stresses produced by the continuity of theslab over the Hambro joist, and that the remainingcapacity of the steel wire mesh will be the limiting factorfor the shear strength of the slab.

The largest bending moment is over the embedded top chord and is calculated for one meter width. In usingthe example from section 4.1.5 page 5, the non factoredmoment is:

Dead load*: Mfd = 3KPa x (1.2m)2 / 10 = 0.43 kN•mLive load*: MfL = 2KPa x (1.2m)2 / 10 = 0.29 kN•m.

1) Loads

Factored dead load: 1.25 x 3.0 = 3.75 kPaFactored live load: 1.50 x 2.0 = 3.00 kPaFactored total load: 6.75 kPa

And thus the factored live load accounts for 44% of the factored total load.

2) Bending moment in the slab between joists due to gravity loads

The smallest lever arm between the compression concrete surface and the tension steel of the wire mesh is also over the embedded top chord. This dimension allows us tocalculate the factored bending capacity of the slab to beMr = 1.61 kN•m*.

To establish the shear capacity of steel wire mesh for a slabunit width of one meter, we use the following formula adapted from CSA A23.3-04 clause 11.5 and simplified to calculate the resistance of the reinforcing steel only, considering a shear crack developing at a 45 degree angleand intersecting the wire mesh in both directions.

Vr = øs x As x Fy x cos (45°) = 0.85 x 2 x 123 x 400 x 0.707/1 000= 59.1 kN for a meter width of slab

* See page 5 for calculation.

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 25

DESIGN PRINCIPLES AND CALCULATIONS

16

Wind load = 1.2 kN/m2

L = 35 500 mm

B = 18 300 mm

FirstHambroJoist

Fig. 17

DESIGN EXAMPLE METRIC

From figure 17 we can establish the horizontal shear thatthe floor diaphragm will have to resist in order to transfer the horizontal load from the walls facing the wind to the perpendicular walls where a vertical bracing system willbring that load down to the foundation.

Total wind pressure load from leeward and windward faces: 1.2 kPaStorey height: 3.7 mSpan of the beam with the floor slab acting as the web: 35.5 mLength of the walls parallel to the horizontal force: 18.3 m

For the purpose of our example the factored wind load is the maximum horizontal load calculated according to the provisionsof the local building code, but earthquake load shall also be cal-culated by the structural design engineer of the project and themaximum of the two loads should be used in the calculation.

Vf = wf x span / 2 = 3.7 x 1.2 x 35.5 / 2 = 78.8 kN

In our example, the end reaction is distributed along the whole length of the end wall used to transfer the load, 18.3 m in our example.

Vf = 78.8 / 18.3= 4.3 kN for a meter width of slab

Considering the reduction factor from the National BuildingCode 2005 for the simultaneity of gravity live load and hori-zontal wind load for our example, the structural engineer ofthe project could verify the diaphragm capacity of the floorslab and it’s reinforcing by verifying that the moment andshear interaction formulas used below are less than unity:

Load Combinaison 1:

Doesn’t control

Load Combinaison 2:

(Controls)Load Combinaison 3:

These verifications indicate that the wire mesh imbeddedin the slab would provide enough shear strength totransfer those horizontal loads.

4.6.3 OUT OF PLANE BUCKLING

The floor slab, when submitted to a horizontal shear load,may tend to buckle out of plane like a sheet of paper beingtwisted. The minimum thickness of Hambro concrete slabof 65 mm (2 1/2”) is properly held in place by the Hambrojoists spaced at a maximum 1 555 mm (5’-1 1/4”) and whoare attached at their ends to prevent vertical movement,so the buckling length of the slab itself will be limited to thespacing of the joist and the buckling of a floor will normal-ly not be a factor in the design of the slab as a diaphragm.

4.6.4 IN PLANE DEFLECTION OF THE DIAPHRAGM

As for every slab used as a diaphragm, the deflection of thefloor as a horizontal member between the supports pro-vided by the vertical bracing system shall be investigatedby the structural engineer of the building to verify that thehorizontal deflection remains within the allowed limits.

4.6.5 SHEAR TRANSMISSION TO

THE VERTICAL BRACING SYSTEM

The structural engineer of the project shall design and indi-cate on his drawings proper methods and/or reinforcing toattach the slab to the vertical bracing system over such alength as to prevent local overstress of the slab capacity totransfer shear.

1.25 x Mf d + 1.5 x Mf LMr Mr

1.25 x Mf d + 1.5 x Mf L + 0.4 x Vf ≤ 1Mr Mr Vr

1.25 x Mf d + 0.5 x Mf L + 1.4 x Vf ≤ 1Mr Mr Vr

(1.25 x 0.43) + (1.5 x 0.29 ) + 0.4 x 4.3 = 0.64 ≤ 1 OK1.61 1.61 59.1

(1.25 x 0.43) + (0.5 x 0.29) + 1.4 x 4.3 = 0.53 ≤ 1 OK1.61 1.61 59.1

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 26

DESIGN PRINCIPLES AND CALCULATIONS

17

4.7 LATERAL LOAD DISTRIBUTIONLine loads are often encountered in construction, i.e. a concrete block wall or even a load bearing concrete blockwall. It is always desirable to have a floor system that isstiff enough to allow these line loads to be distributed toadjacent joists rather than be carried by the joist thathappens to be directly under it.

The Hambro Composite Floor System provides thedesigner with this desirable feature.

This was conclusively proven by randomly selecting asample of five similar adjacent joists in a bay in an apart-ment structure and line loading the centre one.

The joists were 300 mm (12”) deep, had a clear span of 6 500 mm (21’-4”) and a 75 mm (3”) thick slab. Theloads were applied using brick pallets. At every load stage,steel strains as well as deflections were measured.

The distribution of load to each of the five joists can be determined by comparing deflections or stresses at similarlocations in the five joists under investigation.

Tests have demonstrated that for a line load applied to a typical joist in a bay, the actual distribution of load to thatjoist is approximately 40% of the applied load. The distri-bution of load to the adjacent joist on either side is approx-imately 21% of the applied load and to the next adjacentjoist approximately 9% of the applied load.

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 27

DESIGN PRINCIPLES AND CALCULATIONS

18

4.8 MINI-JOISTS

4.8.1 H SERIES

The standard Hambro section, being 95 mm (3 3/4”) deep,possesses sufficient flexural strength to become the majorsteel component of the mini-joist series. The three sizesthat are currently being used are illustrated in the figurebelow and spans beyond 2 400 mm (8’) can be achievedwith the heavier SRTC unit. Other sizes are also available.

The composite capacities of the TC, RTC & SRTC units are calculated on the basis of “elastic tee beam analysis”. The effective flange width, b, equals the lesser of span/4, or joist spacing. With the mini-joist spaced at 1 251 mm

(4’-1 1/4”), b is dictated by span/4. The load table lists total unfactored load capacity in kN/m (plf) for span up to 2.64 m (8’-8”).

Full scale tests have demonstrated consistently that shoeplates are not required for TC and RTC - the section issimply notched at each bearing end with the lower hori-zontal portion of the becoming the actual bearing sur-face. Note that where the non-composite end reaction

exceeds 4.5 kN (1.0 kip) the notched ends are reinforced

with a 12.7 mm (1/2”) diameter bar 200 mm (8”) long.

This is to prevent the section from “straightening out”at thebearing ends. It is interesting to note that this is not a problemduring the composite service stage, even with its higher totalloads, as the 70 mm (2 3/4”) slab carries the vertical shears.

TC RTC SRTC

Fig. 18

PROPERTIES

TYPE CONDITIONS I S MAXIMUM CLEAR SPAN (m)

mm4 x 106 mm3 x 103

TC COMPOSITE 0.950 9.8NON-COMP. 0.275 4.8 UP TO 1.25 m

RTC COMPOSITE 2.120 21.5NON-COMP. 0.597 11.5 UP TO 1.68 m

SRTC COMPOSITE 4.830 41.8NON-COMP. 1.660 26.2 UP TO 2.44 m

PROPERTIES

TYPE CONDITIONS I S MAXIMUM CLEAR SPAN (ft.)

in.4 in.3

TC COMPOSITE 2.29 0.60NON-COMP. 0.66 0.29 UP TO 4’-1”

RTC COMPOSITE 5.09 1.31NON-COMP. 1.63 0.75 UP TO 5’-6”

SRTC COMPOSITE b = 12” 9.84 2.55NON-COMP. b = 24” 11.60 1.60 UP TO 8’-0”

TABLE 10: Mini-joist H Series Span Chart

TABLE 11: Mini-joist H Series Span Chart

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 28

DESIGN PRINCIPLES AND CALCULATIONS

19

4.8.2 MD2000® SERIES

The standard Hambro MD2000 section, being 95 mm (3 3/4”) deep, possesses sufficient flexural strength to becomethe major steel component of the mini-joist series. The twosizes that are currently being used are illustrated in the figurebelow and spans beyond 2 400 mm (8’) can be achieved withthe heavier RMD unit. Other sizes are also available.

The composite capacities of the MD & RMD units are cal-culated on the basis of “elastic tee beam analysis”. Theeffective flange width, b, equals the lesser of span/4 or joist spacing. With the mini-joist spaced at 1 251 mm(4’-1 1/4”), b is dictated by span/4. The load table lists total unfactored load capacity in kN/m (plf) for span up to2.64 m (8’-8”).

Full scale tests have demonstrated consistently that shoeplates are not required - the section is simply notchedat each bearing end with the lower horizontal portion of the

becoming the actual bearing surface. Note that where

the non-composite end reaction exceeds 4.5 kN (1.0 kip)the notched ends are reinforced with a 12.7 mm (1/2”)diameter bar 200 mm (8”) long.

This is to prevent the section from “straightening out”at the bearing ends. It is interesting to note that this is nota problem during the composite service stage, even withits higher total loads, as the 70 mm (2 3/4”) nominal slabcarries the vertical shears.

MD

L 1 5/8” x 2” x 0.09”LLH

3/4” φ rod x 3” lengthat each end

RMD

Fig. 19

L 1 5/8” x 2” x 0.09”LLH

1/2” φ rod

3/4” φ rod x 3” lengthat each end

andat each 24” c/c

TABLE 12: Mini-joist MD2000 Series Span Chart

TABLE 13: Mini-joist MD2000 Series Span Chart

TYPE CONDITIONS PROPERTIES MAXIMUM CLEAR SPAN (m)

I S

mm4 x 106 mm3 x 103

MD COMPOSITE 1.186 15.16NON-COMP. 0.298 7.25 1.65 1.47 1.57 1.42

RMD COMPOSITE 1.775 24.32NON-COMP. 0.582 13.94 2.40 2.11 2.26 2.06

TYPE CONDITIONS PROPERTIES MAXIMUM CLEAR SPAN (ft.)

I S

in.4 in.3

MD COMPOSITE 2.85 0.92NON-COMP. 0.71 0.44 5’-5” 4’-10” 5’-2” 4’-8”

RMD COMPOSITE 4.28 1.49NON-COMP. 1.40 0.85 7’-10” 6’-11” 7’-5” 6’-9”

t = 70 mm t = 70 mm t = 85 mm t = 85 mmDL = 3.2 Kpa DL = 3.2 Kpa DL = 3.55 Kpa DL = 3.55 KpaLL = 1.9 Kpa LL = 4.8 Kpa LL = 1.9 Kpa LL = 4.8 Kpa

t = 2 3/4” t = 2 3/4” t = 3 1/4” t = 3 1/4”DL = 67 psf DL = 67 psf DL = 74 psf DL = 74 psfLL = 40 psf LL = 100 psf LL = 40 psf LL = 100 psf

t = Thickness above steel deck

t = Thickness above steel deck

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 29

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 30

PRODUCT INFORMATION

1

5. PRODUCT INFORMATION

5.1 D500TM (H SERIES)5.1.1 DESCRIPTION

Hambro H Series features a top chord made of oneHambro section, an open web of mild steel rods and widerange of bottom chord angles.

5.1.2 MATERIALS

The Hambro top chord acts as a continuous shear connec-tor. Bottom chord angles and web members are hot or coldrolled sections, minimum yield Fy = 380 MPa (55 ksi) and 350 MPa (50 ksi) for rods.

5.1.3 WEB GEOMETRY

See below.

5.1.4 JOIST SPACING

1 251 mm (4’-1 1/4”), typical unless noted.

5.1.5 SPAN AND DEPTH

Span: Up to 13 100 mm (43’-0”).

Depth: Between 200 mm (8”) and 600 mm (24”).

5.1.6 SLAB DESIGN

The minimum slab thickness is 65 mm (2 1/2”) and the slabcapacity chart tables 8 and 9 on page 19 and 20, shows thetotal allowable load (including the dead load of the slab)based on 20 MPa (3000 psi) concrete.

5.1.7 ROLLBAR®

Standard 1 251 mm (4’-1 1/4”).Non standard available for specific case.

5.1.8 FORMS

Standard 12.7 mm (1/2”) or 9.5 mm (3/8”) plywood sheets, 1 220 mm x 2 440 mm (4’ x 8’).

5.1.9 INSTALLATION

See installation Manual for the Hambro D500 Composite Floor System and drawing ED D500 provided for each spe-cific project.

5.1.10 TYPICAL DETAILS

See typical details section page 1 to 11.

R

d

(Clear span - 12.5 mm or 1/2”)

P1t P P P P

P P P

W1 W2 WC WC

“n” Continuous panels

WC WC

P1b P2b

WEB GEOMETRY (mm)

NOM. DEPTH “d” P1t P1b P2b P

200, 250 152 to 305 152 to 406 305 508

300 254 to 406 254 to 533 406 610

350, 400 381 to 610 381 to 813 508 610

450, 500, 550, 600 483 to 610 483 to 813 610 610

WEB GEOMETRY (in.)

NOM. DEPTH “d” P1t P1b P2b P

8, 10 6 to 12 6 to 16 12 20

12 10 to 16 10 to 21 16 24

14, 16 15 to 24 15 to 32 20 24

18, 20, 22, 24 19 to 24 19 to 32 24 24

Fig. 20

D500 and MD2000® Web Geometry

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 31

PRODUCT INFORMATION

2

5.2 MD2000® SERIES

5.2.1 DESCRIPTION

Hambro MD2000 Series features a top chord made of 2 pieces welded together in order to receive the metal deckeach side. The open web is made with mild steel rods and a wide range of bottom chord. The steel deck is used as formwork only during pouring.

5.2.2 MATERIALS

The Hambro top chord acts as a continuous shear connec-tor. Bottom chord angles and web members are hot or coldrolled sections, minimum yield Fy = 380 MPa (55 ksi) and 350 MPa (50 ksi) for rods.

5.2.3 WEB GEOMETRY

The web geometry is exactly the same of D500TM

presented in page 33.

5.2.4 JOIST SPACING

Between 300 mm (1’-0”) and 1 450 mm (4’-9”) accordingto the steel deck capacity in single span. The standardspacing is 1 220 mm (4’-0”).

5.2.5 SPAN AND DEPTH

Span: Up to 13 100 mm (43’-0”)Depth: Between 200 mm (8”) and 600 mm (24”)

5.2.6 SLAB DESIGN

The minimum “TOTAL SLAB THICKNESS” is 110 mm(4 1/4”) including the steel deck. See figure 21 for moreinformation.

5.2.7 STEEL DECK

The steel deck used is P-3606, 22 GA (0.76 mm). The depth is 38 mm (1 1/2”). The deck must be designed in single span(spacing between joist). For more information, see theCanam brochure about it. The deck must be connected onthe MD2000 top chord by welding or screwing.

5.2.8 INSTALLATION

Installation shall be in accordance with the manufacturer’s recommendations and the erection drawings.

5.2.9 PERMANENT BRIDGING

Bridging must be installed as specified on erectiondrawings.

5.2.10 TYPICAL DETAILS

See typical details section page 13 to 22.

Fig. 21

Sla

bTh

ickn

ess

MD

2000

Joi

stD

epth

Top of Slab

38 mm (1 1/2”) Steel Deck(22 GA. MIN.)

38 m

m

(1 1 /2”

) To

tal s

lab

thic

knes

s

Total slab thickness = Slab thickness + 38 mm (1 1/2”)Total slab thickness ≥ 110 mm (4 1/4”)

Slab thickness ≥ 70 mm (2 3/4”)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 32

PRODUCT INFORMATION

3

5.3 DTC (LH SERIES)5.3.1 DESCRIPTION

This series features a top chord made of two Hambrosections, an open web of light channels or angles and arange of heavier bottom chord angles.

Hambro composite long span floors provide greatereconomy for heavy service loads and longer spans withlive load deflections less than half those of conventionalsystems.

5.3.2 MATERIALS

The Hambro top chord acts as a continuous shear connec-tor. Bottom chord angles and web members are hot or coldrolled sections, minimum yield Fy = 380 MPa (55 ksi) and350 MPa (50 ksi) for rods.

5.3.3 WEB GEOMETRY

See below.

5.3.4 JOIST SPACING

Note the new standard spacing Hambro LH Series,1 285 mm (4’-2 5/8”) center to center, which is obtainedwhen using standard Rollbar® (1 251 mm (4’-1 1/4”)spacing plus 35 mm (1 3/8”) web thickness).

5.3.5 SPAN AND DEPTH

Span: Up to 16 155 mm (53’-0”).

Depth: Between 400 mm (16”) and 900 mm (36”).

5.3.6 SLAB DESIGN

The minimum slab thickness is 70 mm (2 3/4”) and the slabcapacity chart tables 8 and 9 on page 19 and 20 shows thetotal allowable load (including the dead load of the slab)based on 20 MPa (3 000 psi) concrete.

5.3.7 ROLLBAR

Standard 1 251 mm (4’-1 1/4”) roll bars are used to supportthe plywood forms.

5.3.8 FORMS

Regular 1 220 mm (4’-0”) plywood forms must be slit inhalf, 610 mm x 2 440 mm (2’ x 8’) panels, to allow insertionbetween the top chords. Normally 12.7 mm (1/2”) plywoodis used.

5.3.9 INSTALLATION

Installation shall be in accordance with the manufacturer’s recommendations. Particular attention should be paid tothe erection of the long span Hambro joists and bridgingmust be installed as specified on the Hambro drawing.

5.3.10 TYPICAL DETAILS

See typical details section page 23 to 27.

Fig. 22

DTC Web Geometry

P1

P1 Variable panel

(Clear span – 12 mm or 1/2”)“n” Continuous panels

Variable panel P

d

VAR1 VAR2610 mm 610 mm 610 mm

24” 24” 24”(P1 + VAR1) /2

d = Joist depth

P1 = d + 300 mm (12”) ≤ 1 170 mm (46”)

VAR1 = 0 to 150 mm (6”)

VAR2 = 150 mm (6”) to 610 mm (24”)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 33

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 34

JOIST DEPTH SELECTION TABLES

1

6. JOIST DEPTH SELECTION TABLES

METRIC

6.1 GENERAL INFORMATION

6.1.1 JOIST DEPTH SELECTION TABLES

The following load tables give the optimized depth and the minimum depth for a specific span and a specific load following a certain slab thickness. Values indicated present a uniform load on all the length with a regular spacing and a f’c = 20 MPa. The regular spacing is 1 251 mm forD500TM (H Series), 1 285 mm for DTC (LH Series) and 1 220 mm for MD2000®.

The tables have been done for three types of loading with different thickness of concrete. The three types are resi-dential (live load = 1.92 kPa), office (live load = 2.4 kPa)and corridor or lobby (live load = 4.8 kPa). These threetypes are used in the tables as example. Any others typesof loading can be used for the Hambro design.

The tables have been created with a certain super-imposeddead load. Even if your superimposed dead load is a littlebit different, the optimal depth and the minimum depth inthe table will be right.

6.1.2 DEFLECTION CRITERIA

For all cases presented in the tables, deflection for live loaddoes not exceed L / 360.

6.1.3 JOIST IDENTIFICATION

The load tables are provided to aid engineers in selectingthe most optimal depth of joist for a particular slab thick-ness and a specific loading.

The engineer should specify the joist depth, slab thickness, the design loads, dead, live and total together with special point loads and line loads where applicable. Canam will provide composite joists designed to specifically meetthese requirements.

6.1.4 JOIST DESIGNATION

The joist designation should simply be the joist depthfollowed by the total allowable service load and live load inkN per meter applied on the joist.

Example: H250-7/3 for Hambro D500

Example: LH600-7/3 for Hambro DTC

Example: MDH300-7/3 for Hambro MD2000

6.1.5 EXAMPLE

Find the optimal depth and the minimum depth for the following office project with Hambro D500 (H Series).

Span: 9 750 mmSlab thickness: 100 mmJoist spacing: 1 251 mmConcrete strength: 20 MPaYield point of steel: 380 MPaConcrete density: 2 400 kg/m3

Dead load: 3.65 kN/m2

Joist: 0.12 kN/m2

Concrete: 2.32 kN/m2

Mechanical: 0.10 kN/m2

Ceiling (13 mm): 0.14 kN/m2

Partition: 0.96 kN/m2

TOTAL: 3.65 kN/m2

Live load (According to NBC): 2.40 kN/m2

Solution:

From tables, find slab thickness = 100 mm with a span = 9 750 mm

In the table, with dead load = 3.65 kN/m2 and live load = 2.40 kN/m2, we find:

Optimal depth = H500Minimum depth = H350

Then:

H500 means depth = 500 mmH350 means depth = 350 mm

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 35

JOIST DEPTH SELECTION TABLES

2

METRIC

6.2 D500TM (H SERIES)

HXXX

min = HXXX

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 251 mm

NOTE: Plywood forms are to be slit in half with depths

of H200 and H250.

: Optimal H Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness = 75 mm

Residential Office Other LoadingBuilding Building (LL=4,8 KPa)

Dead Load (Kpa) 3.11 3.11 3.11Live Load (KPa) 1.92 2.40 4.80

Total Load (KPa) 5.03 5.51 7.91

SPAN c/c (mm)

3 600 H200 H200 H300min = H200 min = H200 min = H200

4 300 H200 H200 H300min = H200 min = H200 min = H200

4 900 H250 H300 H350min = H200 min = H200 min = H200

5 500 H300 H350 H350min = H200 min = H200 min = H200

6 100 H350 H350 H400min = H200 min = H200 min = H200

6 700 H400 H400 H400min = H250 min = H250 min = H250

7 300 H400 H400 H400min = H250 min = H250 min = H250

7 900 H400 H400 H450min = H300 min = H300 min = H300

8 550 H400 H450 H500min = H300 min = H300 min = H300

9 150 H450 H450 H500min = H300 min = H300 min = H300

9 750 H500 H550 H550min = H350 min = H350 min = H350

10 350 H500 H500 H550min = H350 min = H350 min = H350

10 975 H500 H500 H550min = H400 min = H400 min = H400

11 575 H550 H550min = H400 min = H400

12 200 * H600 H600min = H400 min = H400

13 100 * H600 H600min = H450 min = H450

Slab thickness = 65 mm

Residential Office Other LoadingBuilding Building (LL=4,8 KPa)

Dead Load (KPa) 2.83 2.83 2.83Live Load (KPa) 1.92 2.40 4.80

Total Load (KPa) 4.75 5.23 7.63

SPAN c/c (mm)

3 600 H200 H200 H300min = H200 min = H200 min = H200

4 300 H200 H200 H300min = H200 min = H200 min = H200

4 900 H250 H300 H350min = H200 min = H200 min = H200

5 500 H300 H350 H350min = H200 min = H200 min = H200

6 100 H350 H350 H400min = H200 min = H200 min = H200

6 700 H400 H400 H400min = H250 min = H250 min = H250

7 300 H400 H400 H400min = H250 min = H250 min = H250

7 900 H400 H400 H450min = H300 min = H300 min = H300

8 550 H400 H400 H500min = H300 min = H300 min = H300

9 150 H450 H450 H500min = H300 min = H300 min = H300

9 750 H500 H500 H550min = H350 min = H350 min = H350

10 350 H500 H500 H550min = H350 min = H350 min = H350

10 975 H550 H550 H600min = H400 min = H400 min = H400

11 575 H550 H550 H600min = H400 min = H400 min = H400

12 200 * H600 H600min = H400 min = H400

13 100 * H600 H600min = H450 min = H450

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 36

JOIST DEPTH SELECTION TABLES

3

METRIC

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 251 mm

NOTE: Plywood forms are to be slit in half with depths

of H200 and H250.

HXXX

min = HXXX

: Optimal H Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness = 100 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 3.65 3.65 3.65Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.57 6.05 8.45

SPAN c/c (mm)

3 600 H200 H200 H250min = H200 min = H200 min = H200

4 300 H200 H200 H250min = H200 min = H200 min = H200

4 900 H250 H250 H350min = H200 min = H200 min = H200

5 500 H300 H350 H350min = H200 min = H200 min = H200

6 100 H350 H350 H350min = H200 min = H200 min = H200

6 700 H350 H350 H350min = H250 min = H250 min = H250

7 300 H350 H400 H400min = H250 min = H250 min = H250

7 900 H400 H450 H450min = H300 min = H300 min = H300

8 550 H500 H500 H550min = H300 min = H300 min = H300

9 150 H500 H500 H550min = H300 min = H300 min = H300

9 750 H500 H500 H500min = H350 min = H350 min = H350

10 350 H500 H500 H500min = H350 min = H350 min = H400

10 975 H500 H500min = H400 min = H400

11 575 H550 H550min = H450 min = H450

12 200 * H600 H600min = H500 min = H500

13 100 * H600 H600min = H500 min = H500

Slab thickness = 90 mm

Residential Office Other LoadingBuilding Building (LL=4,8 KPa)

Dead Load (KPa) 3.40 3.4 3.4Live Load (KPa) 1.92 2.4 4.8

Total Load (KPa) 5.32 5.8 8.2

SPAN c/c (mm)

3 600 H200 H200 H300min = H200 min = H200 min = H200

4 300 H200 H200 H300min = H200 min = H200 min = H200

4 900 H250 H250 H350min = H200 min = H200 min = H200

5 500 H300 H350 H350min = H200 min = H200 min = H200

6 100 H350 H350 H350min = H200 min = H200 min = H200

6 700 H350 H350 H350min = H250 min = H250 min = H250

7 300 H350 H400 H400min = H250 min = H250 min = H250

7 900 H400 H400 H450min = H300 min = H300 min = H300

8 550 H400 H450 H500min = H300 min = H300 min = H300

9 150 H450 H450 H500min = H300 min = H300 min = H300

9 750 H450 H500 H500min = H350 min = H350 min = H350

10 350 H500 H500 H500min = H350 min = H350 min = H350

10 975 H500 H500 H550min = H400 min = H400 min = H400

11 575 H550 H550min = H400 min = H400

12 200 * H600 H600min = H450 min = H450

13 100 * H600 H600min = H500 min = H500

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 37

JOIST DEPTH SELECTION TABLES

4

METRIC

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 251 mm

NOTE: Plywood forms are to be slit in half with depths

of H200 and H250.

HXXX

min = HXXX

: Optimal H Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness = 125 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 4.30 4.30 4.30Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 6.22 6.70 9.10

SPAN c/c (mm)

3 600 H200 H200 H200min = H200 min = H200 min = H200

4 300 H300 H300 H300min = H200 min = H200 min = H200

4 900 H300 H300 H350min = H200 min = H200 min = H200

5 500 H350 H350 H350min = H200 min = H200 min = H200

6 100 H350 H350 H350min = H200 min = H200 min = H200

6 700 H350 H350 H350min = H250 min = H250 min = H250

7 300 H350 H350 H350min = H250 min = H250 min = H250

7 900 H400 H400 H500min = H300 min = H300 min = H300

8 550 H450 H450 H500min = H300 min = H300 min = H300

9 150 H500 H500 H500min = H350 min = H350 min = H350

9 750 H500 H500 H550min = H400 min = H400 min = H400

10 350 H500 H500min = H450 min = H450

10 975 H550 H550min = H450 min = H450

11 575 H600 H600min = H500 min = H500

12 200 * H600 H600min = H550 min = H550

Slab thickness = 115 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 3.97 3.97 3.97Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.89 6.37 8.77

SPAN c/c (mm)

3 600 H200 H200 H250min = H200 min = H200 min = H200

4 300 H250 H250 H300min = H200 min = H200 min = H200

4 900 H250 H250 H350min = H200 min = H200 min = H200

5 500 H300 H350 H350min = H200 min = H200 min = H200

6 100 H350 H350 H350min = H200 min = H200 min = H200

6 700 H350 H350 H400min = H250 min = H250 min = H250

7 300 H350 H400 H400min = H250 min = H250 min = H250

7 900 H400 H450 H450min = H300 min = H300 min = H300

8 550 H450 H500 H500min = H300 min = H300 min = H300

9 150 H500 H500 H500min = H350 min = H350 min = H350

9 750 H500 H500 H550min = H350 min = H350 min = H350

10 350 H500 H500 H550min = H400 min = H400 min = H400

10 975 H500 H550min = H450 min = H450

11 575 H550 H550min = H500 min = H500

12 200 * H600 H600min = H500 min = H500

13 100 * H600 H600min = H500 min = H500

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 38

JOIST DEPTH SELECTION TABLES

5

METRIC

6.3 MD2000® SERIES

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 220 mm MDHXXX

min = MDHXXX

: Optimal MD2000® Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness = 115 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 3.50 3.50 3.50Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.42 5.90 8.30

SPAN c/c (mm)

3 600 MDH200 MDH200 MDH300min = MDH200 min = MDH200 min = MDH200

4 300 MDH200 MDH300 MDH300min = MDH200 min = MDH200 min = MDH200

4 900 MDH250 MDH300 MDH350min = MDH200 min = MDH200 min = MDH200

5 500 MDH300 MDH350 MDH400min = MDH200 min = MDH200 min = MDH200

6 100 MDH350 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 700 MDH350 MDH400 MDH400min = MDH250 min = MDH250 min = MDH250

7 300 MDH400 MDH400 MDH400min = MDH250 min = MDH250 min = MDH250

7 900 MDH400 MDH400 MDH450min = MDH300 min = MDH300 min = MDH300

8 550 MDH400 MDH400 MDH500min = MDH300 min = MDH300 min = MDH300

9 150 MDH450 MDH450 MDH500min = MDH300 min = MDH300 min = MDH400

9 750 MDH450 MDH500 MDH500min = MDH350 min = MDH350 min = MDH350

10 350 MDH500 MDH500 MDH500min = MDH350 min = MDH350 min = MDH350

10 975 MDH500 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

11 575 MDH550 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

12 200 * MDH550 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

13 100 * MDH550 MDH600 MDH600min = MDH450 min = MDH450 min = MDH450

Slab thickness = 110 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 3.35 3.35 3.35Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.27 5.75 8.15

SPAN c/c (mm)

3 600 MDH200 MDH200 MDH300min = MDH200 min = MDH200 min = MDH200

4 300 MDH200 MDH300 MDH300min = MDH200 min = MDH200 min = MDH200

4 900 MDH250 MDH300 MDH350min = MDH200 min = MDH200 min = MDH200

5 500 MDH300 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 100 MDH350 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 700 MDH350 MDH400 MDH400min = MDH250 min = MDH250 min = MDH250

7 300 MDH400 MDH400 MDH400min = MDH250 min = MDH250 min = MDH250

7 900 MDH400 MDH400 MDH450min = MDH300 min = MDH300 min = MDH300

8 550 MDH400 MDH400 MDH500min = MDH300 min = MDH300 min = MDH300

9 150 MDH450 MDH450 MDH500min = MDH300 min = MDH300 min = MDH300

9 750 MDH450 MDH450 MDH500min = MDH350 min = MDH350 min = MDH350

10 350 MDH500 MDH500 MDH500min = MDH350 min = MDH350 min = MDH350

10 975 MDH500 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

11 575 MDH550 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

12 200 * MDH550 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

13 100 * MDH550 MDH550 MDH600min = MDH450 min = MDH450 min = MDH450

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 39

JOIST DEPTH SELECTION TABLES

6

METRIC

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 220 mm MDHXXX

min = MDHXXX

: Optimal MD2000® Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness = 140 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 4.07 4.07 4.07Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.99 6.47 8.87

SPAN c/c (mm)

3 600 MDH200 MDH200 MDH300min = MDH200 min = MDH200 min = MDH200

4 300 MDH200 MDH300 MDH300min = MDH200 min = MDH200 min = MDH200

4 900 MDH250 MDH300 MDH350min = MDH200 min = MDH200 min = MDH200

5 500 MDH300 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 100 MDH350 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 700 MDH350 MDH350 MDH400min = MDH250 min = MDH250 min = MDH250

7 300 MDH400 MDH400 MDH450min = MDH250 min = MDH250 min = MDH250

7 900 MDH400 MDH400 MDH450min = MDH300 min = MDH300 min = MDH300

8 550 MDH400 MDH500 MDH500min = MDH300 min = MDH300 min = MDH300

9 150 MDH500 MDH500 MDH500min = MDH300 min = MDH300 min = MDH300

9 750 MDH500 MDH500 MDH500min = MDH350 min = MDH350 min = MDH350

10 350 MDH500 MDH500 MDH500min = MDH350 min = MDH350 min = MDH350

10 975 MDH500 MDH500 MDH550min = MDH400 min = MDH400 min = MDH400

11 575 MDH550 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

12 200 * MDH550 MDH550 MDH550min = MDH450 min = MDH450 min = MDH450

13 100 * MDH550 MDH550min = MDH500 min = MDH500

Slab thickness =125 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 3.78 3.78 3.78Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.70 6.18 8.58

SPAN c/c (mm)

3 600 MDH200 MDH200 MDH300min = MDH200 min = MDH200 min = MDH200

4 300 MDH200 MDH300 MDH300min = MDH200 min = MDH200 min = MDH200

4 900 MDH250 MDH300 MDH350min = MDH200 min = MDH200 min = MDH200

5 500 MDH300 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 100 MDH350 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 700 MDH350 MDH350 MDH400min = MDH250 min = MDH250 min = MDH250

7 300 MDH400 MDH400 MDH400min = MDH250 min = MDH250 min = MDH250

7 900 MDH400 MDH400 MDH450min = MDH300 min = MDH300 min = MDH300

8 550 MDH400 MDH450 MDH500min = MDH300 min = MDH300 min = MDH300

9 150 MDH450 MDH450 MDH500min = MDH300 min = MDH300 min = MDH300

9 750 MDH450 MDH500 MDH500min = MDH350 min = MDH350 min = MDH350

10 350 MDH500 MDH500 MDH550min = MDH350 min = MDH350 min = MDH350

10 975 MDH500 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

11 575 MDH500 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

12 200 * MDH550 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

13 100 * MDH550 MDH600min = MDH450 min = MDH450

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 40

JOIST DEPTH SELECTION TABLES

7

METRIC

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 220 mm MDHXXX

min = MDHXXX

: Optimal MD2000® Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness =150 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 4.36 4.36 4.36Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 6.28 6.76 9.16

SPAN c/c (mm)

3 600 MDH200 MDH200 MDH300min = MDH200 min = MDH200 min = MDH200

4 300 MDH250 MDH300 MDH300min = MDH200 min = MDH200 min = MDH200

4 900 MDH300 MDH300 MDH350min = MDH200 min = MDH200 min = MDH200

5 500 MDH300 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 100 MDH350 MDH350 MDH350min = MDH200 min = MDH200 min = MDH200

6 700 MDH350 MDH350 MDH400min = MDH250 min = MDH250 min = MDH250

7 300 MDH350 MDH400 MDH400min = MDH250 min = MDH250 min = MDH250

7 900 MDH400 MDH400 MDH400min = MDH300 min = MDH300 min = MDH300

8 550 MDH400 MDH400 MDH500min = MDH300 min = MDH300 min = MDH300

9 150 MDH500 MDH500 MDH500min = MDH300 min = MDH300 min = MDH300

9 750 MDH500 MDH550 MDH500min = MDH350 min = MDH350 min = MDH350

10 350 MDH550 MDH550 MDH550min = MDH350 min = MDH350 min = MDH350

10 975 MDH500 MDH500 MDH550min = MDH400 min = MDH400 min = MDH400

11 575 MDH550 MDH550 MDH550min = MDH400 min = MDH400 min = MDH400

12 200 * MDH550 MDH550 MDH550min = MDH450 min = MDH450 min = MDH450

13 100 * MDH550 MDH550min = MDH500 min = MDH500

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 41

JOIST DEPTH SELECTION TABLES

8

METRIC

6.4 DTC (LH SERIES)

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 285 mm

NOTE: Plywood forms have to be slit in half for

any depth.

LHXXX

min = LHXXX

: Optimal LH Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness = 90 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 3.45 3.45 3.45Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.37 5.85 8.25

SPAN c/c (mm)

9 150 LH500 LH500 LH600min = LH400 min = LH400 min = LH500

9 750 LH500 LH600 LH700min = LH400 min = LH400 min = LH500

10 350 LH600 LH600 LH700min = LH400 min = LH400 min = LH600

10 975 LH700 LH700 LH800min = LH400 min = LH400 min = LH600

11 575 LH700 LH700 LH800min = LH500 min = LH500 min = LH700

12 200 * LH800 LH800 LH900min = LH500 min = LH500 min = LH700

12 800 * LH700 LH800 LH800min = LH500 min = LH500 min = LH800

13 400 * LH800 LH900 LH900min = LH600 min = LH600 min = LH800

14 025 * LH900 LH900 LH900min = LH600 min = LH600 min = LH900

14 630 * LH900 LH800 LH900min = LH600 min = LH600 min = LH900

15 240 * LH900 LH900min = LH600 min = LH600

15 850 * LH900 LH900min = LH600 min = LH600

Slab thickness = 75 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 3.16 3.16 3.16Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.08 5.56 7.96

SPAN c/c (mm)

9 150 LH500 LH500 LH600min = LH400 min = LH400 min = LH500

9 750 LH500 LH600 LH800min = LH400 min = LH400 min = LH500

10 350 LH600 LH600 LH700min = LH400 min = LH400 min = LH600

10 975 LH600 LH600 LH700min = LH500 min = LH500 min = LH600

11 575 LH700 LH800 LH800min = LH500 min = LH500 min = LH700

12 200 * LH800 LH800 LH900min = LH500 min = LH500 min = LH700

12 800 * LH700 LH800 LH900min = LH500 min = LH500 min = LH800

13 400 * LH800 LH900 LH900min = LH600 min = LH600 min = LH800

14 025 * LH800 LH800 LH900min = LH600 min = LH600 min = LH900

14 630 * LH800 LH900 LH900min = LH600 min = LH600 min = LH900

15 240 * LH900 LH900min = LH600 min = LH600

15 850 * LH900 LH900min = LH600 min = LH600

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 42

JOIST DEPTH SELECTION TABLES

9

METRIC

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 285 mm

NOTE: Plywood forms have to be slit in half for

any depth.

LHXXX

min = LHXXX

: Optimal LH Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness = 115 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 4.00 4.00 4.00Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.92 6.40 8.80

SPAN c/c (mm)

9 150 LH500 LH500 LH600min = LH400 min = LH400 min = LH500

9 750 LH600 LH600 LH700min = LH400 min = LH400 min = LH500

10 350 LH600 LH700 LH800min = LH400 min = LH400 min = LH600

10 975 LH800 LH800 LH800min = LH500 min = LH500 min = LH600

11 575 LH800 LH800 LH800min = LH500 min = LH500 min = LH600

12 200 * LH800 LH800 LH800min = LH600 min = LH600 min = LH700

12 800 * LH800 LH800 LH800min = LH600 min = LH600 min = LH800

13 400 * LH900 LH900 LH900min = LH600 min = LH600 min = LH800

14 025 * LH900 LH800 LH900min = LH600 min = LH600 min = LH900

14 630 * LH900 LH900 LH900min = LH600 min = LH600 min = LH900

15 240 * LH900 LH900min = LH700 min = LH700

15 850 * LH900min = LH700

Slab thickness = 100 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 3.78 3.78 3.78Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 5.70 6.18 8.58

SPAN c/c (mm)

9 150 LH500 LH500 LH600min = LH400 min = LH400 min = LH500

9 750 LH500 LH600 LH700min = LH400 min = LH400 min = LH500

10 350 LH600 LH700 LH800min = LH400 min = LH400 min = LH600

10 975 LH700 LH800 LH800min = LH400 min = LH400 min = LH600

11 575 LH800 LH800 LH800min = LH500 min = LH500 min = LH700

12 200 * LH700 LH800 LH800min = LH500 min = LH500 min = LH700

12 800 * LH800 LH800 LH800min = LH500 min = LH500 min = LH800

13 400 * LH800 LH800 LH900min = LH600 min = LH600 min = LH800

14 025 * LH800 LH900 LH900min = LH600 min = LH600 min = LH900

14 630 * LH900 LH900 LH900min = LH600 min = LH600 min = LH900

15 240 * LH900 LH900min = LH600 min = LH600

15 850 * LH900 LH900min = LH700 min = LH700

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 43

JOIST DEPTH SELECTION TABLES

10

METRIC

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 20 MPa; density = 2 400 kg/m3

Joist spacing = 1 285 mm

NOTE: Plywood forms have to be slit in half for

any depth.

LHXXX

min = LHXXX

: Optimal LH Series Joist Depth (mm)

: Minimum Depth (mm) Allowed

Slab thickness = 125 mm

Residential Office Other LoadingBuilding Building (LL=4,8 kPa)

Dead Load (kPa) 4.30 4.30 4.30Live Load (kPa) 1.92 2.40 4.80

Total Load (kPa) 6.22 6.70 9.10

SPAN c/c (mm)

9 150 LH500 LH500 LH600min = LH400 min = LH400 min = LH500

9 750 LH600 LH600 LH800min = LH400 min = LH400 min = LH500

10 350 LH700 LH700 LH700min = LH500 min = LH500 min = LH600

10 975 LH800 LH800 LH800min = LH500 min = LH500 min = LH600

11 575 LH800 LH800 LH800min = LH600 min = LH600 min = LH600

12 200 * LH800 LH800 LH800min = LH600 min = LH600 min = LH700

12 800 * LH800 LH800 LH800min = LH600 min = LH600 min = LH800

13 400 * LH900 LH900 LH900min = LH600 min = LH600 min = LH800

14 025 * LH900 LH800 LH900min = LH600 min = LH600 min = LH900

14 630 * LH900 LH900min = LH700 min = LH700

15 240 * LH900 LH900min = LH700 min = LH700

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 44

JOIST DEPTH SELECTION TABLES

11

7. JOIST DEPTH SELECTION TABLES

IMPERIAL

7.1 GENERAL INFORMATION

7.1.1 JOIST DEPTH SELECTION TABLES

The following load tables give the optimized depth and theminimum depth for a specific span and a specific loadfollowing a certain slab thickness. Values indicated presenta uniform load on all the length with a regular spacing anda f’c = 3000 psi. The regular spacing is 4’-1 1/4” for D500TM

(H Series), 4’-2 5/8” for DTC (LH Series) and 4’-0” forMD2000®.

The tables have been done for three types of loading with different thickness of concrete. The three types are resi-dential (live load = 40 psf), office (live load = 50 psf) andcorridor or lobby (live load = 100 psf). These three typesare used in the tables as example. Any others types ofloading can be used for the Hambro design.

The tables have been created with a certain super-imposeddead load. Even if your superimposed dead load is a littlebit different, the optimal depth and the minimum depth inthe table will be right.

7.1.2 DEFLECTION CRITERIA

For all cases presented in the tables, deflection for live loaddoes not exceed L / 360.

7.1.3 JOIST IDENTIFICATION

The load tables are provided to aid engineers in selectingthe most optimal depth of joist for a particular slab thick-ness and a specific loading.

The engineer should specify the joist depth, slab thickness, the design loads, dead, live and total together with special point loads and line loads where applicable. Canam will provide composite joists designed to specially meet theserequirements.

7.1.4 JOIST DESIGNATION

The joist designation should simply be the joist depthfollowed by the total allowable service load and live load inpounds per linear foot applied on the joist.

Example: H10-493/205 for Hambro D500

Example: LH24-493/205 for Hambro DTC

Example: MDH10-493/205 for Hambro MD2000

7.1.5 EXAMPLE

Find the optimal depth and the minimum depth for the following office project with Hambro D500 (H Series).

Span: 32’-0”Slab thickness: 4”Joist spacing: 4’-1 1/4”Concrete strength: 3 000 psiYield point of steel: 55 ksiConcrete density: 145 lb./ft.3

Dead load: 77 psf

Joist: 2.5 psfConcrete: 48.5 psfMechanical: 3.0 psfCeiling (1/2”): 3.0 psfPartition: 20 psf

TOTAL: = 77 psf

Live load

According to NBC: 50 psf

Solution:

From tables, find slab thickness = 4” with a span = 32’-0”

In the table, with dead load = 77 psf and live load = 50 psf,we find:

Optimal depth = H20Minimum depth = H14

Then:

H20 means depth = 20”H14 means depth = 14”

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 45

JOIST DEPTH SELECTION TABLES

12

IMPERIAL

7.2 D500TM (H SERIES)

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-1 1/4”

NOTE: Plywood forms are to be slit in half with depths

of H8 and H10.

HXXX

min = HXXX

: Optimal H Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 3”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 65 65 65Live Load (psf) 40 50 100

Total Load (psf) 105 115 165

SPAN c/c

12’-0” H8 H8 H12min = H8 min = H8 min = H8

14’-0” H8 H8 H12min = H8 min = H8 min = H8

16’-0” H10 H12 H14min = H8 min = H8 min = H8

18’-0” H12 H14 H14min = H8 min = H8 min = H8

20’-0” H14 H14 H16min = H8 min = H8 min = H8

22’-0” H16 H16 H16min = H10 min = H10 min = H10

24’-0” H16 H16 H16min = H10 min = H10 min = H10

26’-0” H16 H16 H18min = H12 min = H12 min = H12

28’-0” H16 H18 H20min = H12 min = H12 min = H12

30’-0” H18 H18 H20min = H12 min = H12 min = H12

32’-0” H20 H22 H22min = H14 min = H14 min = H14

34’-0” H20 H20 H22min = H14 min = H14 min = H14

36’-0” H20 H20 H22min = H16 min = H16 min = H16

38’-0” H22 H22min = H16 min = H16

40’-0” * H24 H24min = H16 min = H16

43’-0” * H24 H24min = H18 min = H18

Slab thickness = 2 1/2”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 59 59 59Live Load (psf) 40 50 100

Total Load (psf) 99 109 159

SPAN c/c

12’-0” H8 H8 H12min = H8 min = H8 min = H8

14’-0” H8 H8 H12min = H8 min = H8 min = H8

16’-0” H10 H12 H14min = H8 min = H8 min = H8

18’-0” H12 H14 H14min = H8 min = H8 min = H8

20’-0” H14 H14 H16min = H8 min = H8 min = H8

22’-0” H16 H16 H16min = H10 min = H10 min = H10

24’-0” H16 H16 H16min = H10 min = H10 min = H10

26’-0” H16 H16 H18min = H12 min = H12 min = H12

28’-0” H16 H16 H20min = H12 min = H12 min = H12

30’-0” H18 H18 H20min = H12 min = H12 min = H12

32’-0” H20 H20 H22min = H14 min = H14 min = H14

34’-0” H20 H20 H22min = H14 min = H14 min = H14

36’-0” H22 H22 H24min = H16 min = H16 min = H16

38’-0” H22 H22 H24min = H16 min = H16 min = H16

40’-0” * H24 H24min = H16 min = H16

43’-0” * H24 H24min = H18 min = H18

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 46

JOIST DEPTH SELECTION TABLES

13

IMPERIAL

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-1 1/4”

NOTE: Plywood forms are to be slit in half with depths

of H8 and H10.

HXXX

min = HXXX

: Optimal H Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 4”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 77 77 77Live Load (psf) 40 50 100

Total Load (psf) 117 127 177

SPAN c/c

12’-0” H8 H8 H10min = H8 min = H8 min = H8

14’-0” H8 H8 H10min = H8 min = H8 min = H8

16’-0” H10 H10 H14min = H8 min = H8 min = H8

18’-0” H12 H14 H14min = H8 min = H8 min = H8

20’-0” H14 H14 H14min = H8 min = H8 min = H8

22’-0” H14 H14 H14min = H10 min = H10 min = H10

24’-0” H14 H16 H16min = H10 min = H10 min = H10

26’-0” H16 H18 H18min = H12 min = H12 min = H12

28’-0” H20 H20 H22min = H12 min = H12 min = H12

30’-0” H20 H20 H22min = H12 min = H12 min = H12

32’-0” H20 H20 H20min = H14 min = H14 min = H14

34’-0” H20 H20 H20min = H14 min = H14 min = H16

36’-0” H20 H20min = H16 min = H16

38’-0” H22 H22min = H18 min = H18

40’-0” * H24 H24min = H20 min = H20

43’-0” * H24 H24min = H20 min = H20

Slab thickness = 3 1/2”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 71 71 71Live Load (psf) 40 50 100

Total Load (psf) 111 121 171

SPAN c/c

12’-0” H8 H8 H12min = H8 min = H8 min = H8

14’-0” H8 H8 H12min = H8 min = H8 min = H8

16’-0” H10 H10 H14min = H8 min = H8 min = H8

18’-0” H12 H14 H14min = H8 min = H8 min = H8

20’-0” H14 H14 H14min = H8 min = H8 min = H8

22’-0” H14 H14 H14min = H10 min = H10 min = H10

24’-0” H14 H16 H16min = H10 min = H10 min = H10

26’-0” H16 H16 H18min = H12 min = H12 min = H12

28’-0” H16 H18 H20min = H12 min = H12 min = H12

30’-0” H18 H18 H20min = H12 min = H12 min = H12

32’-0” H18 H20 H20min = H14 min = H14 min = H14

34’-0” H20 H20 H20min = H14 min = H14 min = H14

36’-0” H20 H20 H22min = H16 min = H16 min = H16

38’-0” H22 H22min = H16 min = H16

40’-0” * H24 H24min = H18 min = H18

43’-0” * H24 H24min = H20 min = H20

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 47

JOIST DEPTH SELECTION TABLES

14

IMPERIAL

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-1 1/4”

NOTE: Plywood forms are to be slit in half with depths

of H8 and H10.

HXXX

min = HXXX

: Optimal H Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 5”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 89 89 89Live Load (psf) 40 50 100

Total Load (psf) 129 139 189

SPAN c/c

12’-0” H8 H8 H8min = H8 min = H8 min = H8

14’-0” H12 H12 H12min = H8 min = H8 min = H8

16’-0” H12 H12 H14min = H8 min = H8 min = H8

18’-0” H14 H14 H14min = H8 min = H8 min = H8

20’-0” H14 H14 H14min = H8 min = H8 min = H8

22’-0” H14 H14 H14min = H10 min = H10 min = H10

24’-0” H14 H14 H14min = H10 min = H10 min = H10

26’-0” H16 H16 H20min = H12 min = H12 min = H12

28’-0” H18 H18 H20min = H12 min = H12 min = H12

30’-0” H20 H20 H20min = H14 min = H14 min = H14

32’-0” H20 H20 H22min = H16 min = H16 min = H16

34’-0” H20 H20min = H18 min = H18

36’-0” H22 H22min = H18 min = H18

38’-0” H24 H24min = H20 min = H20

40’-0” * H24 H24min = H22 min = H22

Slab thickness = 4 1/2”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 83 83 83Live Load (psf) 40 50 100

Total Load (psf) 123 133 183

SPAN c/c

12’-0” H8 H8 H10min = H8 min = H8 min = H8

14’-0” H10 H10 H12min = H8 min = H8 min = H8

16’-0” H10 H10 H14min = H8 min = H8 min = H8

18’-0” H12 H14 H14min = H8 min = H8 min = H8

20’-0” H14 H14 H14min = H8 min = H8 min = H8

22’-0” H14 H14 H16min = H10 min = H10 min = H10

24’-0” H14 H16 H16min = H10 min = H10 min = H10

26’-0” H16 H18 H18min = H12 min = H12 min = H12

28’-0” H18 H20 H20min = H12 min = H12 min = H12

30’-0” H20 H20 H20min = H14 min = H14 min = H14

32’-0” H20 H20 H22min = H14 min = H14 min = H14

34’-0” H20 H20 H22min = H16 min = H16 min = H16

36’-0” H20 H22min = H18 min = H18

38’-0” H22 H22min = H20 min = H20

40’-0” * H24 H24min = H20 min = H20

43’-0” * H24 H24min = H20 min = H20

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 48

JOIST DEPTH SELECTION TABLES

15

IMPERIAL

7.3 MD2000® SERIES

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-0” MDHXXX

min = MDHXXX

: Optimal MD2000 Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 4 1/2”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 73 73 73Live Load (psf) 40 50 100

Total Load (psf) 113 123 173

SPAN c/c

12’-0” MDH8 MDH8 MDH12min = MDH8 min = MDH8 min = MDH8

14’-0” MDH8 MDH12 MDH12min = MDH8 min = MDH8 min = MDH8

16’-0” MDH10 MDH12 MDH14min = MDH8 min = MDH8 min = MDH8

18’-0” MDH12 MDH14 MDH16min = MDH8 min = MDH8 min = MDH8

20’-0” MDH14 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

22’-0” MDH14 MDH16 MDH16min = MDH10 min = MDH10 min = MDH10

24’-0” MDH16 MDH16 MDH16min = MDH10 min = MDH10 min = MDH10

26’-0” MDH16 MDH16 MDH18min = MDH12 min = MDH12 min = MDH12

28’-0” MDH16 MDH16 MDH20min = MDH12 min = MDH12 min = MDH12

30’-0” MDH18 MDH18 MDH20min = MDH12 min = MDH12 min = MDH12

32’-0” MDH18 MDH20 MDH20min = MDH14 min = MDH14 min = MDH14

34’-0” MDH20 MDH20 MDH20min = MDH14 min = MDH14 min = MDH14

36’-0” MDH20 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

38’-0” MDH22 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

40’-0” * MDH22 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

43’-0” * MDH22 MDH24 MDH24min = MDH18 min = MDH18 min = MDH18

Slab thickness = 4 1/4”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 70 70 70Live Load (psf) 40 50 100

Total Load (psf) 110 120 170

SPAN c/c

12’-0” MDH8 MDH8 MDH12min = MDH8 min = MDH8 min = MDH8

14’-0” MDH8 MDH12 MDH12min = MDH8 min = MDH8 min = MDH8

16’-0” MDH10 MDH12 MDH14min = MDH8 min = MDH8 min = MDH8

18’-0” MDH12 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

20’-0” MDH14 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

22’-0” MDH14 MDH16 MDH16min = MDH10 min = MDH10 min = MDH10

24’-0” MDH16 MDH16 MDH16min = MDH10 min = MDH10 min = MDH10

26’-0” MDH16 MDH16 MDH18min = MDH12 min = MDH12 min = MDH12

28’-0” MDH16 MDH16 MDH20min = MDH12 min = MDH12 min = MDH12

30’-0” MDH18 MDH18 MDH20min = MDH12 min = MDH12 min = MDH12

32’-0” MDH18 MDH18 MDH20min = MDH14 min = MDH14 min = MDH14

34’-0” MDH20 MDH20 MDH20min = MDH14 min = MDH14 min = MDH14

36’-0” MDH20 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

38’-0” MDH22 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

40’-0” * MDH22 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

43’-0” * MDH22 MDH22 MDH24min = MDH18 min = MDH18 min = MDH18

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 49

JOIST DEPTH SELECTION TABLES

16

IMPERIAL

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-0” MDHXXX

min = MDHXXX

: Optimal MD2000® Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 5 1/2”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 85 85 85Live Load (psf) 40 50 100

Total Load (psf) 125 135 185

SPAN c/c

12’-0” MDH8 MDH8 MDH12min = MDH8 min = MDH8 min = MDH8

14’-0” MDH8 MDH12 MDH12min = MDH8 min = MDH8 min = MDH8

16’-0” MDH10 MDH12 MDH14min = MDH8 min = MDH8 min = MDH8

18’-0” MDH12 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

20’-0” MDH14 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

22’-0” MDH14 MDH14 MDH16min = MDH10 min = MDH10 min = MDH10

24’-0” MDH16 MDH16 MDH18min = MDH10 min = MDH10 min = MDH10

26’-0” MDH16 MDH16 MDH18min = MDH12 min = MDH12 min = MDH12

28’-0” MDH16 MDH20 MDH20min = MDH12 min = MDH12 min = MDH12

30’-0” MDH20 MDH20 MDH20min = MDH12 min = MDH12 min = MDH12

32’-0” MDH20 MDH20 MDH20min = MDH14 min = MDH14 min = MDH14

34’-0” MDH20 MDH20 MDH20min = MDH14 min = MDH14 min = MDH14

36’-0” MDH20 MDH20 MDH22min = MDH16 min = MDH16 min = MDH16

38’-0” MDH22 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

40’-0” * MDH22 MDH22 MDH22min = MDH18 min = MDH18 min = MDH18

43’-0” * MDH22 MDH22min = MDH20 min = MDH20

Slab thickness = 5”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 79 79 79Live Load (psf) 40 50 100

Total Load (psf) 119 129 179

SPAN c/c

12’-0” MDH8 MDH8 MDH12min = MDH8 min = MDH8 min = MDH8

14’-0” MDH8 MDH12 MDH12min = MDH8 min = MDH8 min = MDH8

16’-0” MDH10 MDH12 MDH14min = MDH8 min = MDH8 min = MDH8

18’-0” MDH12 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

20’-0” MDH14 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

22’-0” MDH14 MDH14 MDH16min = MDH10 min = MDH10 min = MDH10

24’-0” MDH16 MDH16 MDH16min = MDH10 min = MDH10 min = MDH10

26’-0” MDH16 MDH16 MDH18min = MDH12 min = MDH12 min = MDH12

28’-0” MDH16 MDH18 MDH20min = MDH12 min = MDH12 min = MDH12

30’-0” MDH18 MDH18 MDH20min = MDH12 min = MDH12 min = MDH12

32’-0” MDH18 MDH20 MDH20min = MDH14 min = MDH14 min = MDH14

34’-0” MDH20 MDH20 MDH22min = MDH14 min = MDH14 min = MDH14

36’-0” MDH20 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

38’-0” MDH20 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

40’-0” * MDH22 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

43’-0” * MDH22 MDH24min = MDH18 min = MDH18

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 50

JOIST DEPTH SELECTION TABLES

17

IMPERIAL

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-0” MDHXXX

min = MDHXXX

: Optimal MD2000® Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 6”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 91 91 91Live Load (psf) 40 50 100

Total Load (psf) 131 141 191

SPAN c/c

12’-0” MDH8 MDH8 MDH12min = MDH8 min = MDH8 min = MDH8

14’-0” MDH10 MDH12 MDH12min = MDH8 min = MDH8 min = MDH8

16’-0” MDH12 MDH12 MDH14min = MDH8 min = MDH8 min = MDH8

18’-0” MDH12 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

20’-0” MDH14 MDH14 MDH14min = MDH8 min = MDH8 min = MDH8

22’-0” MDH14 MDH14 MDH16min = MDH10 min = MDH10 min = MDH10

24’-0” MDH14 MDH16 MDH16min = MDH10 min = MDH10 min = MDH10

26’-0” MDH16 MDH16 MDH16min = MDH12 min = MDH12 min = MDH12

28’-0” MDH16 MDH16 MDH20min = MDH12 min = MDH12 min = MDH12

30’-0” MDH20 MDH20 MDH20min = MDH12 min = MDH12 min = MDH12

32’-0” MDH20 MDH22 MDH20min = MDH14 min = MDH14 min = MDH14

34’-0” MDH22 MDH22 MDH22min = MDH14 min = MDH14 min = MDH14

36’-0” MDH20 MDH20 MDH22min = MDH16 min = MDH16 min = MDH16

38’-0” MDH22 MDH22 MDH22min = MDH16 min = MDH16 min = MDH16

40’-0” * MDH22 MDH22 MDH22min = MDH18 min = MDH18 min = MDH18

43’-0” * MDH22 MDH22min = MDH20 min = MDH20

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 51

JOIST DEPTH SELECTION TABLES

18

IMPERIAL

7.4 DTC (LH SERIES)

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-2 5/8”

NOTE: Plywood forms have to be slit in half for

any depth.

LHXXX

min = LHXXX

: Optimal LH Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 3 1/2”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 72 72 72Live Load (psf) 40 50 100

Total Load (psf) 112 122 172

SPAN c/c

30’-0” LH20 LH20 LH24min = LH16 min = LH16 min = LH20

32’-0” LH20 LH24 LH28min = LH16 min = LH16 min = LH20

34’-0” LH24 LH24 LH28min = LH16 min = LH16 min = LH24

36’-0” LH28 LH28 LH32min = LH16 min = LH16 min = LH24

38’-0” LH28 LH28 LH32min = LH20 min = LH20 min = LH28

40’-0” * LH32 LH32 LH36min = LH20 min = LH20 min = LH28

42’-0” * LH28 LH32 LH32min = LH20 min = LH20 min = LH32

44’-0” * LH32 LH36 LH36min = LH24 min = LH24 min = LH32

46’-0” * LH36 LH36 LH36min = LH24 min = LH24 min = LH36

48’-0” * LH36 LH32 LH36min = LH24 min = LH24 min = LH36

50’-0” * LH36 LH36min = LH24 min = LH24

52’-0” * LH36 LH36min = LH24 min = LH24

Slab thickness = 3”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 66 66 66Live Load (psf) 40 50 100

Total Load (psf) 106 116 166

SPAN c/c

30’-0” LH20 LH20 LH24min = LH16 min = LH16 min = LH20

32’-0” LH20 LH24 LH32min = LH16 min = LH16 min = LH20

34’-0” LH24 LH24 LH28min = LH16 min = LH16 min = LH24

36’-0” LH24 LH24 LH28min = LH20 min = LH20 min = LH24

38’-0” LH28 LH32 LH32min = LH20 min = LH20 min = LH28

40’-0” * LH32 LH32 LH36min = LH20 min = LH20 min = LH28

42’-0” * LH28 LH32 LH36min = LH20 min = LH20 min = LH32

44’-0” * LH32 LH36 LH36min = LH24 min = LH24 min = LH32

46’-0” * LH32 LH32 LH36min = LH24 min = LH24 min = LH36

48’-0” * LH32 LH36 LH36min = LH24 min = LH24 min = LH36

50’-0” * LH36 LH36min = LH24 min = LH24

52’-0” * LH36 LH36min = LH24 min = LH24

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 52

JOIST DEPTH SELECTION TABLES

19

IMPERIAL

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-2 5/8”

NOTE: Plywood forms have to be slit in half for

any depth.

LHXXX

min = LHXXX

: Optimal LH Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 4 1/2”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 84 84 84Live Load (psf) 40 50 100

Total Load (psf) 124 134 184

SPAN c/c

30’-0” LH20 LH20 LH24min = LH16 min = LH16 min = LH20

32’-0” LH24 LH24 LH28min = LH16 min = LH16 min = LH20

34’-0” LH24 LH28 LH32min = LH16 min = LH16 min = LH24

36’-0” LH32 LH32 LH32min = LH20 min = LH20 min = LH24

38’-0” LH32 LH32 LH32min = LH20 min = LH20 min = LH24

40’-0” * LH32 LH32 LH32min = LH24 min = LH24 min = LH28

42’-0” * LH32 LH32 LH32min = LH24 min = LH24 min = LH32

44’-0” * LH36 LH36 LH36min = LH24 min = LH24 min = LH32

46’-0” * LH36 LH32 LH36min = LH24 min = LH24 min = LH36

48’-0” * LH36 LH36 LH36min = LH24 min = LH24 min = LH36

50’-0” * LH36 LH36min = LH28 min = LH28

52’-0” * LH36min = LH28

Slab thickness = 4”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 79 79 79Live Load (psf) 40 50 100

Total Load (psf) 119 129 179

SPAN c/c

30’-0” LH20 LH20 LH24min = LH16 min = LH16 min = LH20

32’-0” LH20 LH24 LH28min = LH16 min = LH16 min = LH20

34’-0” LH24 LH28 LH32min = LH16 min = LH16 min = LH24

36’-0” LH28 LH32 LH32min = LH16 min = LH16 min = LH24

38’-0” LH32 LH32 LH32min = LH20 min = LH20 min = LH28

40’-0” * LH28 LH32 LH32min = LH20 min = LH20 min = LH28

42’-0” * LH32 LH32 LH32min = LH20 min = LH20 min = LH32

44’-0” * LH32 LH32 LH36min = LH24 min = LH24 min = LH32

46’-0” * LH32 LH36 LH36min = LH24 min = LH24 min = LH36

48’-0” * LH36 LH36 LH36min = LH24 min = LH24 min = LH36

50’-0” * LH36 LH36min = LH24 min = LH24

52’-0” * LH36 LH36min = LH28 min = LH28

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 53

JOIST DEPTH SELECTION TABLES

20

IMPERIAL

* Permanent line of cross bridging shall be installed at mid-span.

Concrete: f’c = 3 000 psi; density = 145 lb./ft.3

Joist spacing = 4’-2 5/8”

NOTE: Plywood forms have to be slit in half for

any depth.

LHXXX

min = LHXXX

: Optimal LH Series Joist Depth (in.)

: Minimum Depth (in.) Allowed

Slab thickness = 5”

Residential Office Other LoadingBuilding Building (LL=100 psf)

Dead Load (psf) 90 90 90Live Load (psf) 40 50 100

Total Load (psf) 130 140 190

SPAN c/c

30’-0” LH20 LH20 LH24min = LH16 min = LH16 min = LH20

32’-0” LH24 LH24 LH32min = LH16 min = LH16 min = LH20

34’-0” LH28 LH28 LH28min = LH20 min = LH20 min = LH24

36’-0” LH32 LH32 LH32min = LH20 min = LH20 min = LH24

38’-0” LH32 LH32 LH32min = LH24 min = LH24 min = LH24

40’-0” * LH32 LH32 LH32min = LH24 min = LH24 min = LH28

42’-0” * LH32 LH32 LH32min = LH24 min = LH24 min = LH32

44’-0” * LH36 LH36 LH36min = LH24 min = LH24 min = LH32

46’-0” * LH36 LH36 LH36min = LH24 min = LH24 min = LH36

48’-0” * LH36 LH36min = LH28 min = LH28

50’-0” * LH36 LH36min = LH28 min = LH28

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 54

TYPICAL DETAILS

1

8. TYPICAL DETAILS

SECTION NO. DESCRIPTION PAGE

1 Standard Shoe

2 Standard Shoe / Mini-joist

3 Bolted Joist at Column Flange / Web .................................................... 2

4 Bolted Joists at Beam

5 Joist Bearing on Masonry or Concrete Wall

6 Joist Bearing on Masonry or Concrete Wall

7 Joist Bearing on Concrete Wall With Insulated Forms .................................................... 3

8 Joist Bearing on Concrete Wall With Insulated Forms

9 Joist Bearing on Steel Beam

10 Joists Bearing on Steel Beam

11 Joist Bearing on Steel Stud Wall.................................................... 4

12 Joists Bearing on Steel Stud Wall

13 Joist Bearing on an Exterior Steel Stud Wall

14 Joist Bearing on a Wood Stud Wall .....................................................5

15 Joist Bearing on a Wood Stud Wall

16 Expansion Joint at Intermediate Floor (at Masonry Wall)

17 Expansion Joint at Roof (Masonry Wall)

18 Expansion Joint at Intermediate Floor (Steel Beam)

19 Expansion Joint at Roof (Steel Beam).................................................... 6

20 Minimum Clearance for Opening and Hole in the Slab

21 Joist Parallel to Expansion Joint

22 Joist Parallel to a Masonry or Concrete Wall

23 Joist Parallel to Concrete Wall with Insulated Forms.................................................... 7

24 Joist Parallel to a Beam

25 Joist Parallel to a Steel Stud Wall or Wood Stud Wall

26 Deep Shoe to Suit Slab Thickness .................................................... 8

27 Thicker Slab

28 Mini-joist at Corridor

29 Mini-joist with Hanger Plate at Corridor

30 Header Support

31 Flange Hanger for Beam and Wall .................................................... 9

32 Masonry Hanger for Insulated Concrete Form

33 Cantilevered Balcony (Shallow Joist Parallel to Balcony)

34 Cantilevered Balcony (Joist Parallel to Balcony) .................................................. 10

35 Cantilevered Balcony (Joist Perpendicular to Balcony)

36 Maximum Duct Openings (D500) .................................................. 11

}}}}}}}}}

}

8.1 D500TM (H SERIES)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 55

TYPICAL DETAILS

2

TOP

CHOR

D

TOP

OF S

LAB

FIRS

T DI

AGON

AL

SLAB(T)

100

mm

(4î)

45 mm (1 3/4”)

6 mm (1/4”)

WEL

DED

WIR

E-M

ESH

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(FIL

L TH

E M

ASON

RY B

LOCK

WIT

H M

ORTA

R,UN

DER

THE

JOIS

T SH

OE)

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

90 m

m (3

1 /2”)

MIN

. FOR

100 m

m (4”

) SHO

E (TY

P.)

CEIL

ING

EXTE

NSI

ON

T + 6 mm (1/4”)

(D)

NOMINALJOIST DEPTH

TOP OF BEARING

MIN

I JOI

ST

SLAB(T)

SECT

ION

1 - S

TAN

DA

RDSH

OE

SECT

ION

2 - S

TAN

DA

RDSH

OE

/MIN

I-JO

IST

WEL

DED

WIR

E-M

ESH

(D)(T)

CEIL

ING

EXTE

NSI

ON

- T+

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S- S

HO

E W

IDTH

= 1

90 m

m (7

1 /2”

)

STEE

L CO

LUM

N, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

21 x

32

mm

(13 /1

6” x

1 1 /

4”) S

LOTS

@ 1

25 m

m (5

”) C

/C (H

AMBR

O SH

OE)

21 m

m (1

3 /16”

) Ø H

OLES

@ 1

25 m

m (5

”) C

/C (S

UPPO

RT)

NOMINALJOIST DEPTHSLAB

65 m

m (2

1 /2”

)

100

mm

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

TOP OF BEARINGT+ 6 mm (1/4”)

(4”)

SECT

ION

3 - B

OLT

EDJO

IST

ATCO

LUM

N(F

LAN

GE

/ WEB

)

WEL

DED

WIR

E-M

ESH

(D)(T)

CEIL

ING

EXTE

NSI

ON

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

STEE

L BE

AM, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

NOMINALJOIST DEPTHSLAB

21 x

32

mm

(13 /1

6” x

1 1 /

4”) S

LOTS

@

125

mm

(5”)

C/C

(HAM

BRO

SHOE

)21

mm

(13 /1

6”) Ø

HOL

ES

@ 1

25 m

m (5

”) C

/C (S

UPPO

RT)

230 m

m (9”

) FLA

NGE O

F 305

mm

(12”)

AND M

ORE

203 m

m (8”

) FLA

NGE B

ETW

EEN

254 m

m (10

”) TO

303 m

m (11

7 /8”)

152 m

m (6”

) FLA

NGE B

ETW

EEN

230 m

m (9”

) TO 2

52 m

m (9

7 /8”)

127 m

m (5”

) FLA

NGE B

ETW

EEN

190 m

m (7

1 /2”) T

O 228

mm

(8 7 /8”

)10

2 mm

(4”) F

LANG

E BET

WEE

N 15

2 mm

(6”) T

O 188

mm

(7 3 /8”

)70

mm

(2 3 /4”

) FLA

NGE B

ETW

EEN

127 m

m (5”

) TO 1

50 m

m (5

7 /8”)

58 m

m (2

1 /4”) F

LANG

E BET

WEE

N 10

0 mm

(4”) T

O 125

mm

(4 7 /8”

)

T+ 6 mm (1/4”)

TOP OF BEARING

CEIL

ING

EXTE

NSI

ON

SECT

ION

4 - B

OLT

EDJO

ISTS

ATB

EAM

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 56

TYPICAL DETAILS

3

WEL

DED

WIR

E-M

ESH

JOIST DEPTH

(D)(T)

CEIL

ING

EXTE

NSI

ON

SOLI

D M

ASON

RY W

ALL

OR R

EIN

FORC

ED C

ONCR

ETE

WAL

L,AC

CORD

ING

TO T

HE S

PECI

FICA

TION

SOF

THE

CON

SULT

ING

ENGI

NEE

R(FI

LL TH

E MAS

ONRY

BLO

CK W

ITH

MOR

TAR,

UND

ER TH

E JOI

ST S

HOE)

T+ 6

mm

(1/4

”) =

SLA

B T

HIC

KNES

S +

SHO

E TH

ICKN

ESS

T + 6 mm (1/4”)

TOP OF BEARING

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

NOMINALSLAB

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

NO A

NCHO

RED

PLAT

E OR

MEC

HANI

CAL F

ASTE

NER

IS

REQU

IRED

TO

FIX

THE

JOIS

T TO

THE

CON

CRET

E W

ALL.

WEL

DED

WIR

E-M

ESH

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

SOLI

D M

ASON

RY W

ALL

OR R

EIN

FORC

EDCO

NCR

ETE

WAL

L, A

CCOR

DIN

G TO

THE

SPEC

IFIC

ATIO

NS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(FIL

L TH

E M

ASON

RY B

LOCK

WIT

H M

ORTA

R, U

NDE

R TH

E JO

IST

SHOE

)

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

90 m

m (3

1 /2”)

MIN

. FOR

100 m

m (4

”) S

HOE

(TYP

.)

CEIL

ING

EXTE

NSI

ON

T + 6 mm (1/4”)

(D)

NOMINALJOIST DEPTH

(T)SLAB

TOP OF BEARING

CEIL

ING

EXTE

NSI

ON

NO A

NCHO

RED

PLAT

E OR

MEC

HANI

CAL F

ASTE

NER

IS

REQU

IRED

TO

FIX

THE

JOIS

T TO

THE

CON

CRET

E W

ALL.

SECT

ION

5 - J

OIS

TB

EARI

NG

ON

MA

SON

RYO

RCO

NCR

ETE

WA

LL

SECT

ION

6 - J

OIS

TSB

EARI

NG

ON

MA

SON

RYO

RCO

NCR

ETE

WA

LL

REIN

FORC

ED IN

SULA

TED

CON

CRET

E W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

CEIL

ING

EXTE

NSI

ON

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

(D)

NOMINALJOIST DEPTH

WEL

DED

WIR

E-M

ESH

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

TOP OF BEARING

T + 6 mm (1/4”)

(T)SLAB

NO A

NCHO

RED

PLAT

EOR

MEC

HANI

CAL

FAST

ENER

IS R

EQUI

RED

TO FI

X TH

E JO

IST

TO

THE

CONC

RETE

WAL

L.N

OTCH

RIG

ID IN

SULA

TION

REIN

FORC

ED IN

SULA

TED

CON

CRET

EW

ALL,

ACC

ORDI

NG

TO T

HE

SPEC

IFIC

ATIO

NS

OF T

HE

CON

SULT

ING

ENGI

NEE

R

CEIL

ING

EXTE

NSI

ON

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

CEIL

ING

EXTE

NSI

ON

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

(D)

NOMINALJOIST DEPTH

WEL

DED

WIR

E-M

ESH

90 m

m (3

1 /2”)

MIN

. FOR

100 m

m (4

”) S

HOE

(TYP

.)

TOP OF BEARINGT + 6 mm (1/4”)

(T)SLAB

NO

ANCH

ORED

PLA

TE

OR M

ECHA

NIC

AL F

ASTE

NER

IS

REQU

IRED

TO

FIX

THE

JOIS

TTO

THE

CON

CRET

E W

ALL.

NOT

CH R

IGID

INSU

LATI

ON (T

YP.)

SECT

ION

7 - J

OIS

TB

EARI

NG

ON

CON

CRET

EW

ALL

WIT

HIN

SULA

TED

FORM

S

SECT

ION

8 - J

OIS

TSB

EARI

NG

ON

CON

CRET

EW

ALL

WIT

HIN

SULA

TED

FORM

S

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 57

TYPICAL DETAILS

4

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

T + 6 mm (1/4”)

TOP OF BEARING

NOMINALJOIST DEPTH

(D)

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

5 mm

(3 /16

”)

40 m

m (1

1 /2”)

SLAB(T)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

THE

MET

AL S

TUD

AND

THE

TOP

PLAT

E CA

PACI

TY,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

T + 6 mm (1/4”)TOP OF BEARING

CEIL

ING

EXTE

NSI

ON

NOMINALJOIST DEPTH

(D)

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

5 mm

(3 /16”

)40

mm

(1 1 /2

”)

SLAB(T)

90 m

m (3

1 /2”)

MIN

. FOR

100 m

m (4

”) S

HOE

(TYP

.)

THE

MET

AL S

TUD

AND

THE

TOP

PLAT

E CA

PACI

TY,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

NOT

E; S

TAGG

ERED

JOI

STS

SECT

ION

11 -

JOIS

TB

EARI

NG

ON

STEE

LST

UD

WA

LL

SECT

ION

12 -

JOIS

TSB

EARI

NG

ON

STEE

LST

UD

WA

LL

WEL

DED

WIR

E-M

ESH

JOIST DEPTH(D)(T)

CEIL

ING

EXTE

NSI

ON

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

STEE

L BE

AM, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

NOMINALSLAB

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

SHO

E (T

YP.)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

TOP OFBEARING

T + 6 mm (1/4”)

40 m

m

(1 1 /

2”)

5 m

m(3 /

16”)

POUR

STO

P(B

Y OT

HERS

)

** W

ELD

THE

JOIS

T TO

THE

STE

EL B

EAM

OR

WIT

H TH

E AG

REEM

ENT

OF T

HE

CON

SULT

ING

ENGI

NEE

R, U

SE 2

-HIL

TI (X

-EDN

I 22P

8) O

R EQ

UIVA

LEN

T, IN

STAL

LED

A

CCOR

DIN

G TO

THE

MAN

UFAC

TURI

NG

SPEC

IFIC

ATIO

NS.

** WEL

DED

WIR

E-M

ESH

(D)(T)

CEIL

ING

EXTE

NSI

ON

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

CEIL

ING

EXTE

NSI

ON

STEE

L BE

AM, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

NOMINALJOIST DEPTHSLAB

T + 6 mm (1/4”)

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

SHO

E (T

YP.)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

40 m

m (1

1 /2”

)**

5 m

m (3

/16)

TOP OF BEARING

** W

ELD

THE

JOIS

T TO

THE

STE

EL B

EAM

OR

WIT

H TH

E AG

REEM

ENT

OF T

HE

CON

SULT

ING

ENGI

NEE

R, U

SE 2

-HIL

TI (X

-EDN

I 22P

8) O

R EQ

UIVA

LEN

T, IN

STAL

LED

A

CCOR

DIN

G TO

THE

MAN

UFAC

TURI

NG

SPEC

IFIC

ATIO

NS.

SECT

ION

9 - J

OIS

TB

EARI

NG

ON

STEE

LB

EAM

SECT

ION

10 -

JOIS

TSB

EARI

NG

ON

STEE

LB

EAM

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 58

TYPICAL DETAILS

5

WEL

DED

WIR

E-M

ESH

NOMINALJOIST DEPTH

CEIL

ING

EXTE

NSI

ON

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

(D)SLAB(T)

TOP OF BEARING

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

40 m

m (1

1 /2”)

5 mm

(3 /16

”)

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

THE

MET

AL S

TUD

AND

THE

TOP

PLAT

E CA

PACI

TY,

T + 6 mm (1/4”)

SECT

ION

13 -

JOIS

TB

EARI

NG

ON

AN

EXTE

RIO

RST

EEL

STU

DW

ALL

SLAB

JOIS

T SH

OE A

NCH

ORED

TO

PLAN

K W

ITH

SCRE

WS

OR N

AILS

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

THE

WOO

D W

ALL

AND

THE

TOP

PLAT

E CA

PACI

TY,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

T + 6 mm (1/4”)

TOP OF BEARING

CEIL

ING

EXTE

NSI

ON

NOMINALJOIST DEPTH

WEL

DED

WIR

E-M

ESH

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

(D)(T)

SECT

ION

14 -

JOIS

TB

EARI

NG

ON

AW

OO

DST

UD

WA

LL

NOMINALJOIST DEPTH

CEIL

ING

EXTE

NSI

ON

NOT

E; S

TAGG

ERED

JOI

STS

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

CEIL

ING

EXTE

NSI

ON

THE

WOO

D W

ALL

AND

THE

TOP

PLAT

E CA

PACI

TY, A

CCOR

DIN

G TO

THE

SP

ECIF

ICAT

ION

S OF

THE

CO

NSU

LTIN

G EN

GIN

EER

(D)

JOIS

T SH

OE A

NCH

ORED

TO

PLAN

KW

ITH

SCRE

WS

OR N

AILS

WEL

DED

WIR

E-M

ESH

TOP OF BEARINGT + 6 mm (1/4”)

90 m

m (3

1/2

”) M

IN. F

OR 1

00 m

m (4

”) S

HOE

(TYP

.)

SLAB(T)

SECT

ION

15 -

JOIS

TSB

EARI

NG

ON

AW

OO

DST

UD

WA

LL

TOP OF BEARING

WEL

DED

WIR

E-M

ESH

NOMINALJOIST DEPTH

(D)(T)

CEIL

ING

EXTE

NSI

ON

T +

6 m

m (1 /4

”) =

SLA

B T

HIC

KNES

S +

SHO

E TH

ICKN

ESS

TEM

PORA

RY S

UPPO

RT U

NDER

EACH

JOIS

T AND

EA

CH EN

D UN

TIL A

LL FL

OORS

HAV

E BEE

N PO

URED

.(P

ROVI

DED

AND

DESI

GNED

BY O

THER

S)

ANGL

E AN

CHOR

ED T

O TH

E M

ASON

RY

WAL

L ACC

ORDI

NG T

O TH

E SP

ECIF

ICAT

IONS

OF T

HE

CONS

ULTI

NG E

NGIN

EER

SUPP

ORT

ANGL

E, A

CCOR

DING

TO

THE

SPEC

IFIC

ATIO

NS O

F THE

CON

SULT

ING

ENGI

NEER

.

FIBR

E BO

ARD

12 m

m (1 /2

”)

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPEC

IFIC

ATIO

NS O

F THE

CONS

ULTI

NG E

NGIN

EER

DO N

OT W

ELD

THE

SHOE

ON

THE

AN

GLE

REBA

R (IF

REQ

UIRE

D BY

THE

CONS

ULTI

NG E

NGIN

EER)

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

T + 6 mm (1/4”)

SLAB

SECT

ION

16 -

EXPA

NSIO

NJO

INT

ATIN

TERM

EDIA

TEFL

OOR

(MAS

ONRY

WAL

L)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 59

TYPICAL DETAILS

6

WEL

DED

WIR

E-M

ESH

(D)(T)

CEIL

ING

EXTE

NSI

ON

SOLI

D M

ASON

RY W

ALL,

ACC

ORDI

NG

TO T

HE S

PECI

FICA

TION

SOF

THE

CON

SULT

ING

ENGI

NEE

R(F

ILL

THE

MAS

ONRY

BLO

CK W

ITH

MOR

TAR,

UN

DER

THE

JOIS

T SH

OE)

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

CEIL

ING

EXTE

NSI

ON

FIBR

E BO

ARD

12 m

m (1

/2”)

DO N

OT W

ELD

THE

SHOE

ON

EM

BEDE

D M

ATER

IAL

12 m

m (1

/2”) Ø

ROD

x 6

00 m

m (2

4”)

@ 6

00 m

m (2

4”)c

/cGR

EASE

OR

WRA

P TH

IS E

ND

OF R

OD W

ITH

BUIL

DIN

G PA

PER

T + 6 mm (1/4”)

NOMINALJOIST DEPTHSLAB

TOP OF BEARING90

mm

(31 /2

”) M

IN. F

OR 1

00 m

m (4

”) S

HOE

(TYP

.)

REBA

R (IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

SECT

ION

17 -

EXPA

NSI

ON

JOIN

TAT

ROO

F(M

ASO

NRY

WA

LL)

DO N

OT W

ELD

THE

SHOE

ON

THE

ANGL

E (D)(T)

CEIL

ING

EXTE

NSI

ON

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

CEIL

ING

EXTE

NSI

ONST

EEL

BEAM

, ACC

ORDI

NG

TO T

HE S

PECI

FICA

TION

S OF

THE

CON

SULT

ING

ENGI

NEE

R

WEL

DED

WIR

E-M

ESH

SUPP

ORT

ANGL

E, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE

CON

SULT

ING

ENGI

NEE

R (U

.N.O

)

FIBR

E BO

ARD

12 m

m (1

/2”)

** W

ELD

THE

JOIS

T TO

THE

STE

EL B

EAM

OR

WIT

H TH

E AG

REEM

ENT

OF T

HE

CON

SULT

ING

ENGI

NEE

R, U

SE 2

-HIL

TI (X

-EDN

I 22P

8) O

R EQ

UIVA

LEN

T, IN

STAL

LED

A

CCOR

DIN

G TO

THE

MAN

UFAC

TURI

NG

SPEC

IFIC

ATIO

NS.

STIF

FEN

ERST

IFFE

NER

(IF R

EQUI

RED)

(IF R

EQUI

RED)

STIF

FEN

ER(IF

REQ

UIRE

D)

**65

mm

(2 1 /

2”) M

IN. F

OR 7

5 m

m (3

”) S

HOE

(TYP

.)90

mm

(3 1 /

2”) M

IN. F

OR 1

00 m

m (4

”) S

HOE

(TYP

.)

5 m

m (3

/16”)

40 m

m (1

1 /2”

)

T + 6 mm (1/4”)TOP OF BEARING

NOMINALJOIST DEPTHSLAB

SECT

ION

18 -

EXPA

NSI

ON

JOIN

TAT

INTE

RMED

IATE

FLO

OR

(STE

ELB

EAM

)

DO N

OT W

ELD

THE

SHOE

ON

THE

BEA

M

CEIL

ING

EXTE

NSI

ON

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

CEIL

ING

EXTE

NSI

ONST

EEL

BEAM

, ACC

ORDI

NG

TO T

HE S

PECI

FICA

TION

S OF

TH

E CO

NSU

LTIN

G EN

GIN

EER

(U.N

.O)

WEL

DED

WIR

E-M

ESH

FIBR

E BO

ARD

12 m

m (1

/2”)

** W

ELD

THE

JOIS

T TO

THE

STE

EL B

EAM

OR

WIT

H TH

E AG

REEM

ENT

OF T

HE

CON

SULT

ING

ENGI

NEE

R, U

SE 2

-HIL

TI (X

-EDN

I 22P

8) O

R EQ

UIVA

LEN

T, IN

STAL

LED

A

CCOR

DIN

G TO

THE

MAN

UFAC

TURI

NG

SPEC

IFIC

ATIO

NS.

**

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

SHO

E (T

YP.)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

12 m

m (1

/2”) Ø

ROD

x 6

00 m

m (2

4”)

@ 6

00 m

m (2

4”)c

/c.

GREA

SE O

R W

RAP

THIS

EN

DOF

ROD

, WIT

H BU

ILDI

NG

PAPE

R

5 m

m (3

/16”)

40 m

m (1

1 /2”

)

T + 6 mm (1/4”)TOP OF BEARING

NOMINALJOIST DEPTH

(D)SLAB(T)

SECT

ION

19 -

EXPA

NSI

ON

JOIN

TAT

ROO

F(S

TEEL

BEA

M)

(T)

WEL

DED

WIR

E-M

ESH

DIAM

ETER

� 20

0 mm

(8”)

**REBA

R ARO

UND T

HE HO

LE IS N

OT REQ

UIRED

**THE

QUAN

TITY O

F HOL

E AT 6

” AND

MOR

E O

F THE

JOIST

IS NO

T IMP

ORTA

NT

SLAB

150 m

m (6”

)OP

ENIN

GSE

E TYP

ICAL

REIN

FORC

EMEN

TFO

R SLA

B OPE

NING

.

150 m

m (6”

)

(D)

NOMINAL JOIST DEPTH

MIN

.M

IN.

END

OFSL

AB

150 m

m (6”

)M

IN.

( 3/4”) 19 mm(APPLICABLE

AT EACH CASE)

( 3/4”) 19 mm(APPLICABLE

AT EACH CASE)

HOLE

HO

LE

HOLE

SECT

ION

20 -

MIN

IMU

MCL

EARA

NCE

FOR

OPE

NIN

GA

ND

HO

LEIN

THE

SLAB

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 60

TYPICAL DETAILS

7

TOP OF BEARING

WEL

DED-

WIR

E-M

ESH

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

FLAN

GE H

ANGE

R(F

IXED

, SEE

ED-

D500

)

T + 6 mm (1/4”)

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

(T)SLAB

(NO

TE: I

F TH

E FL

AN

GE

HA

NG

ER IS

NO

T U

SED

, TO

P O

F B

EARI

NG

= T

+ 2

0 m

m (3

/4”)

)

SOLI

D M

ASON

RY W

ALL

OR R

EIN

FORC

ED C

ONCR

ETE

WAL

L,AC

CORD

ING

TO T

HE S

PECI

FICA

TION

SOF

THE

CON

SULT

ING

ENGI

NEE

R

JOIST DEPTHNOMINAL

(D)

SECT

ION

22 -

JOIS

TPA

RALL

ELTO

AM

ASO

NRY

OR

CON

CRET

EW

ALL

FLAN

GE H

ANGE

R(F

IXED

, ED-

D500

)

REIN

FORC

ED IN

SULA

TED

CON

CRET

E W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

T +

6 m

m (1 /4

”) =

SLA

B T

HIC

KNES

S +

SHO

E TH

ICKN

ESS

WEL

DED

WIR

E-M

ESH

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R) TOP OF BEARINGT + 6 mm (1/4”)

(T)SLAB

(NO

TE: I

F TH

E FL

AN

GE

HA

NG

ER IS

NO

T U

SED

, TO

P O

F B

EARI

NG

= T

+ 2

0 m

m (3 /4

”))

JOIST DEPTHNOMINAL

(D)

SECT

ION

23 -

JOIS

TPA

RALL

ELTO

CON

CRET

EW

ALL

WIT

HIN

SULA

TED

FORM

S

T + 6 mm (1/4”)

WEL

DED

WIR

E-M

ESH

T +

6 m

m (1 /4

”) =

SLA

B T

HIC

KNES

S +

SHO

E TH

ICKN

ESS

STEE

L BE

AM,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

FLAN

GE H

ANGE

R(F

IXED

, SEE

ED-

D500

)

TOP OF BEARING

SLAB(T) (N

OTE

: IF

THE

FLA

NG

E H

AN

GER

IS N

OT

USE

D, T

OP

OF

BEA

RIN

G =

T +

20

mm

(3 /4”)

)

NOMINALJOIST DEPTH

(D)

SECT

ION

24 -

JOIS

TPA

RALL

ELTO

AB

EAM

WEL

DED

WIR

E-M

ESH

T +

6 m

m (1 /4

”) =

SLA

B T

HIC

KNES

S +

SHO

E TH

ICKN

ESS

(NO

TE: I

F TH

E FL

AN

GE

HA

NG

ER IS

NO

T U

SED

, TO

P O

F B

EARI

NG

= T

+ 2

0 m

m (3 /4

”))

FIBR

E BO

ARD

12 m

m (1

/2”)

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EERFL

ANGE

HAN

GER

(FIX

ED,

SEE

ED-D

500)

2 LA

YERS

OF

ROOF

ING

PAPE

R

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

NOMINALJOIST DEPTH

(D)SLAB(T)

T + 6 mm (1/4”)TOP OF BEARING

SECT

ION

21 -

JOIS

TPA

RALL

ELTO

EXPA

NSI

ON

JOIN

T

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 61

TYPICAL DETAILS

8

75 mm(3”)

152 mm(6”)

127 mm(5”)

50 mm(2”)

ROLL

BAR

HAN

GER

PLAT

E

UNDE

R SI

DE O

F TH

E CO

NCR

ETE

SLAB

.*

THE

HAN

GER

PLAT

E IS

USE

D TO

THI

CKEN

* 4

DIFF

EREN

TS S

TAN

DARD

THI

CKN

ESS

OF

WIT

H TH

E HA

NGE

R PL

ATE

CON

CRET

E CA

N B

E CO

NSI

DERE

D

(SEE

DET

AIL)

SECT

ION

27 -

THIC

KER

SLA

B

THE

MET

AL O

R W

OOD

STUD

WAL

LAN

D TH

E TO

P PL

ATE

CAPA

CITY

,AC

CORD

ING

TO T

HE S

PECI

FICA

TION

SOF

THE

CON

SULT

ING

ENGI

NEE

R

FLAN

GE H

ANGE

R(F

IXED

, SEE

ED-

D500

)

WEL

DED

WIR

E-M

ESH

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

(T)SLAB

TOP OFT + 6 mm (1/4”)

BEARING

(NO

TE: I

F TH

E FL

AN

GE

HA

NG

ER IS

NO

T U

SED

, TO

P O

F B

EARI

NG

= T

+ 2

0 m

m (3

/4”)

)

JOIST DEPTHNOMINAL

(D)

SECT

ION

25 -

JOIS

TPA

RALL

ELTO

AST

EEL

STU

DW

ALL

OR

WO

OD

STU

DW

ALL

WEL

DED

WIR

E-M

ESH

JOIST DEPTH(D)

(T)

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(FIL

L TH

E M

ASON

RY B

LOCK

WIT

H M

ORTA

R, U

NDE

R TH

E JO

IST

SHOE

)

(T +

TS)

+ 6

mm

(1/4

”) =

(SLA

B T

HIC

KNES

S +

THIC

KER

SLA

B) +

SH

OE

THIC

KNES

S

CEIL

ING

EXTE

NSI

ON

DEEP

SHO

E TO

SUI

T TH

E TH

ICKE

R SL

AB

CEIL

ING

EXTE

NSI

ON

SLAB

TOP OF BEARING

NOMINAL90

mm

(3 1 /

2”) M

IN. F

OR 1

00 m

m (4

”) S

HOE

(TYP

.)

(T + TS) + 6 mm (1/4”)

(TS)THICKER SLAB

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

SECT

ION

26 -

DEE

PSH

OE

TOSU

ITSL

AB

THIC

KNES

S

TOP OF

(T)

CORR

IDOR

SOLI

D M

ASON

RY W

ALL,

ACC

ORDI

NG

TO T

HESP

ECIF

ICAT

ION

S OF

THE

CON

SULT

ING

ENGI

NEE

R(F

ILL

THE

MAS

ONRY

BLO

CK W

ITH

MOR

TAR,

UN

DER

THE

JOIS

T SH

OE)

90 m

m (3

1 /2”)

MIN

. FOR

T + 6 mm (1/4”)

BEARING

300 m

m (12

”)30

0 mm

(12”)

100 m

m (4

”) S

HOE

(TYP

.) T +

6 m

m (1 /4

”) =

SLA

B T

HIC

KNES

S +

SHO

E TH

ICKN

ESS

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEER

)

SLAB

100

mm

(4”)

MIN

.

100

mm

(4”)

MIN

.RE

BAR

(IF R

EQUI

RED

BYTH

E CO

NSUL

TING

ENGI

NEER

)

WEL

DED

WIR

E MES

H

SLAB

THI

CKN

ESS

130

mm

(5 1 /4

”)RE

INFO

RCED

STE

EL B

Y TH

ECO

NSU

LTIN

G EN

GIN

EER

SECT

ION

28 -

MIN

I-JO

IST

ATCO

RRID

OR

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 62

TYPICAL DETAILS

9

TOP OFBEARING

(D)(T)

CEILI

NG EX

TENS

ION

CORR

IDOR

SOLID

MAS

ONRY

WAL

L,AC

CORD

ING

TO TH

E SPE

CIFIC

ATIO

NS O

F THE

CON

SULT

ING

ENGI

NEER

(FILL

THE M

ASON

RY B

LOCK

WIT

H M

ORTA

R, U

NDER

THE J

OIST

SHO

E)

HANG

ER P

LATE

FOR

THIC

KER

SLAB

WEL

DED

WIR

EM

ESH

90 m

m (3

1 /2”)

MIN

. FOR

T + 6 mm (1/4”)

300 m

m(12

”)

300 m

m(12

”)10

0 mm

(4”)

SHOE

(TYP

.)

T +

6 m

m (1

/4”)

= S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

WEL

DED

WIR

E-M

ESH

REBA

R(IF

REQ

UIRE

D BY

THE

CONS

ULTI

NG EN

GINE

ER)

90 m

m (3

1 / 2”

) MIN

.FO

R 10

0 mm

(4”) S

HOE (

TYP.)

SLABNOMINAL

JOIST DEPTH

SLAB

THIC

KNES

S 13

0 mm

(5 1 /4

”)RE

INFO

RCED

STE

EL B

Y THE

CON

SULT

ING

ENGI

NEER

NO S

HOE

(U.N

.O.)

ON M

INI J

OIST

SECT

ION

29 -

MIN

I-JO

IST

WIT

HH

AN

GER

PLAT

EAT

CORR

IDO

R

(T)

WEL

DED

WIR

E-M

ESH

HEAD

ER B

EAM

IF T

HERE

IS A

JOI

ST S

ITTI

NG

ON T

HE H

EADE

R BE

AM,

THE

DIM

ENSI

ON 3

9 m

m (1

1 /2”)

WIL

L BE

COM

E 45

mm

(1 3 /4

”) A

ND

“(T)

”W

ILL

BECO

ME

“T +

6 m

m (1 /4

”) =

SLA

B TH

ICKN

ESS

+ SH

OE T

HICK

NES

S”

SLAB

39 mm

5 mm

(3 /16”

)20

mm

(3 /4”)

(1 1/2”)

SECT

ION

30 -

HEA

DER

SUPP

ORT

FLAN

GE H

ANGE

R (T

YPE

F.H)

ROLL

BAR

STEE

L BE

AM, S

TEEL

STU

D W

ALL,

WOO

D ST

UD W

ALL,

MAS

ONRY

WAL

L OR

CON

CRET

E W

ALL

25 @

300 m

m (1”

@ 12

”)5 m

m (3 /1

6”)

SECT

ION

31 -

FLA

NG

EH

AN

GER

FOR

BEA

MA

ND

WA

LL

FLAN

GE H

ANGE

R(T

YPE

M.H

)RO

LLBA

R

20 m

m (3 /4

”) Ø

HOL

ESAT

600

mm

(24”

) C/C

FOR

ANCH

ORED

REIN

FORC

ED IN

SULA

TED

CON

CRET

E W

ALL

SECT

ION

32 -

FLA

NG

EH

AN

GER

FOR

INSU

LATE

DCO

NCR

ETE

FORM

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 63

TYPICAL DETAILS

10

TEM

PORA

RY S

UPPO

RTFO

R BA

LCON

Y(D

ESIG

NED

AN

D SU

PPLI

EDBY

OTH

ERS)

WEL

DED

WIR

E-M

ESH

SLOP

E

IMPO

RTAN

T;BR

IDGI

NG

ANGL

ES T

O BE

INST

ALLE

D AF

TER

FORM

S ST

RIPP

ED B

UTBE

FORE

THE

REM

OVAL

OF

BALC

ONY

TEM

PORA

RY S

UPPO

RTS

HANG

ER P

LATE

TO TH

ICKE

N SL

ABM

ORE 5

0 (2”

), 76 (

3”), 1

27 (5

”)OR

152 (

6”) T

HAN

BASE

SLA

B

FLAN

GE H

ANGE

R

SEE

SPEC

IFIC

ATIO

NS O

F THE

ARC

HITE

CT

REBA

R AC

CORD

ING

TO

THE

SPEC

IFIC

ATIO

NS

OF

THE

CON

SULT

ING

ENGI

NEE

R

25 mm (1”)

VARI

ABLE

1251

mm

(4’-1

1 /4”)

(T)

BRID

GIN

G TO

BOT

TOM

CHO

RD M

AY B

E N

ECES

SARY

IF U

PLIF

T DU

E TO

CAN

TILE

VER

BALC

ONY

EXCE

EDS

GRAV

ITY

LOAD

. (IF

REQ

UIRE

D BY

THE

EN

GIN

EER)

SLABNOMINAL

JOIST DEPTH(D)

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GINE

ER(T)

TEM

PORA

RY S

UPPO

RT FO

R BA

LCON

Y(D

ESIG

NED

AND

SUPP

LIED

BY O

THER

S)

REBA

R AC

CORD

ING

TO

THE

SPEC

IFIC

ATIO

NS

OF

THE

CON

SULT

ING

ENGI

NEE

RW

ELDE

D W

IRE-

MES

H

BRID

GIN

G TO

BOT

TOM

CHO

RD M

AY B

E N

ECES

SARY

IF U

PLIF

T DU

E TO

CAN

TILE

VER

BALC

ONY

EXCE

EDS

GRAV

ITY

LOAD

. (IF

REQ

UIRE

D BY

THE

EN

GIN

EER)

OF 50 mm (2”)TOP OF BEARING

SLOP

E

IMPO

RTAN

T;BR

IDGI

NG

ANGL

ES T

O BE

INST

ALLE

D AF

TER

FORM

S ST

RIPP

ED B

UTBE

FORE

THE

REM

OVAL

OF

BALC

ONY

TEM

PORA

RY S

UPPO

RTS

FLAN

GE H

ANGE

R

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GINE

ER

SLAB

T + 50 mm (2”) JOIST SHORTER

25 mm (1”)

SEE

SPEC

IFIC

ATIO

NS

OF T

HE A

RCHI

TECT

VARI

ABLE

1251

mm

(4’-1

1 /4”)

NOMINALJOIST DEPTH

(D)

SECT

ION

34 -

CAN

TILE

VERE

DB

ALC

ON

Y(J

OIS

TPA

RALL

ELTO

BA

LCO

NY)

SECT

ION

33 -

CAN

TILE

VERE

DB

ALC

ON

Y(S

HA

LLO

WJO

IST

PARA

LLEL

TOB

ALC

ON

Y)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 64

TYPICAL DETAILS

11

SLOP

E

TEM

PORA

RY S

UPPO

RTFO

R BA

LCON

Y (D

ESIG

NED

&

SUP

PLIE

D BY

OTH

ERS)

REBA

R(S

EE T

HE C

ONSU

LTIN

GEN

GIN

EER)

SLAB(T)

HAN

GER

PLAT

E

THICK

ER SL

AB TO

SUIT

BALC

ONY

DEEP

SHO

E TO

SUI

T TH

E TH

ICKE

R SL

AB

WEL

DED

WIR

E-M

ESH

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

90 m

m (3

1/2

”) M

IN F

OR 1

00 m

m (4

”) S

HOE

(TYP

.)

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(FIL

L TH

E M

ASON

RY B

LOCK

WIT

H M

ORTA

R, U

NDE

R TH

E JO

IST

SHOE

)

CEIL

ING

EXTE

NSI

ON

T + TSTOP OF BEARING

25 mm (1")

NOMINALJOIST DEPTH

(D)THICKER SLAB

(TS)

SEE S

PECI

FICAT

IONS

OF T

HE A

RCHI

TECT

SECT

ION

35 -

CAN

TILE

VERE

DB

ALC

ON

Y(J

OIS

TPE

RPEN

DIC

ULA

RTO

BA

LCO

NY)

DSS D

= M

AXIM

UM D

IAM

ETER

R

S =

MAX

IMUM

SQU

ARE

R =

MAX

IMUM

REC

TAN

GLE

PAN

ELTO

P OF

SLA

B

NOMINALJOIST DEPTH

** W

EB O

PEN

INGS

ARE

ALI

GNED

ON

LY W

ITH

JOIS

TS W

HICH

HAV

E ID

ENTI

CAL

LEN

GTHS

**

SECT

ION

36 -

MA

XIM

UM

DU

CTO

PEN

ING

S(D

500)

SECT

ION

36 -

MA

XIM

UM

DU

CTO

PEN

ING

(D50

0 TA

BLE

S)

DEPT

HPA

NEL

D

S R

(in.)

(in.)

(in.)

(in.)

(in. x

in.)

820

3 1 /

23

1 /2

6 x

2 1 /

2

1020

5 1 /

24

1 /2

7 x

3 1 /

4

1224

7 1 /

45

3 /4

9 x

4 1 /

4

1424

8 1 /

26

3 /4

9 1 /

2x

5 1 /

4

11 x

4 1

/416

249

1 /2

7 1 /

210

1/2

x 5

1 /2

13 x

418

2410

1/4

8 1 /

411

x 6

1/4

12 1

/2x

520

2411

912

x 6

1/4

13 x

5 1

/222

2412

9 3 /

812

x 7

1/2

14 x

5 1

/224

2412

3/8

1013

x 7

14 x

6

DEPT

HPA

NEL

D

S R

(mm

)(m

m)

(mm

)(m

m)

(mm

x m

m)

200

508

9090

150

x 60

250

508

140

115

180

x 80

300

610

185

145

230

x 11

035

061

021

517

024

0 x

130

280

x 11

040

061

024

019

026

5 x

140

330

x 10

045

061

026

021

028

0 x

160

315

x 13

050

061

028

022

530

5 x

160

330

x 14

055

061

030

524

530

5 x

190

355

x 14

060

061

031

525

533

0 x

180

355

x 15

0

NO

TE

: Th

e m

axim

um

lim

itat

ion

has

bee

n d

eter

min

ed f

rom

th

e jo

ist

geo

met

ry,

wit

h a

bo

tto

m c

ho

rd o

f 50

mm

(2”

) an

d a

web

of

22 m

m (

7/8”

). If

mo

rein

form

atio

n n

eed

ed, p

leas

e co

nta

ct t

he

Ham

bro

tec

hn

ical

dep

artm

ent.

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 65

TYPICAL DETAILS

12

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 66

TYPICAL DETAILS

13

8.2 MD2000® SERIES

SECTION NO. DESCRIPTION PAGE

1 Standard Shoe

2 Bolted Joist at Steel Column (Flange / Web)

3 Bolted Joist at Steel Beam.............................................. 14

4 Joist Bearing on Masonry or Concrete Wall

5 Joists Bearing on Masonry or Concrete Wall

6 Joist Bearing on Concrete Wall With Insulated Form

7 Joists Bearing on Concrete Wall With Insulated Form.............................................. 15

8 Joist Bearing on Steel Beam

9 Joists Bearing on Steel Beam

10 Joist Bearing on Steel Stud Wall

11 Joists Bearing on Steel Stud Wall.............................................. 16

12 Joist Bearing on a Wood Stud

13 Joists Bearing on Wood Stud Wall

14 Expansion Joint at Intermediate Floors (at Masonry Wall)

15 Expansion Joint at Roof (at Masonry Wall) .............................................. 17

16 Expansion Joint at Floors (at Steel Beam)

17 Expansion Joint at Roof (at Steel Beam)

18 Minimum Clearance for Opening and Hole in the Slab

19 Joist Parallel to Expansion Joint.............................................. 18

20 Joist Parallel to a Masonry Wall or Concrete Wall

21 Joist Parallel to a Concrete Wall with Insulated Form

22 Joist Parallel to a Steel Beam

23 Joist Parallel to a Steel Stud Wall.............................................. 19

24 Joist Parallel to a Wood Wall

25 Thicker Slab

26 Header Support .............................................. 20

27 Cantilevered Balcony (Joist Perpendicular to Balcony)

28 Cantilevered Balcony (Shallow Joist Parallel to Balcony)

29 Cantilevered Balcony (Joist Parallel to Balcony) .............................................. 21

30 Maximum Duct Openings ............................................................................................................... 22

}}}

}}}}}

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 67

TYPICAL DETAILS

14

NOMINALJOIST DEPTH

(D)

STEE

LDE

CK

SOLI

D M

ASON

RY W

ALL O

R RE

INFO

RCEM

ENT

CONC

RETE

WAL

L,AC

CORD

ING

TO T

HE S

PECI

FICA

TION

S OF

THE

CON

SULT

ING

ENGI

NEER

(FIL

L THE

MAS

ONRY

BLO

CK W

ITH

MOR

TAR,

UND

ER T

HE J

OIST

SHO

E)

CEIL

ING

EXTE

NSI

ON

T + 38 mm (1 1/2”)TOP OF BEARING

TOTALSLAB

NOMINALSLAB

(T)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

WEL

DED

WIR

E-M

ESH

REBA

R(IF

REQ

UIRE

D BY

THE

CO

NSU

LTIN

G EN

GIN

EER)

L 10

0 x

75 x

6 x

150

mm

(L 4

”x 3

”x 1 /

4”x

6”)

TOP

CHOR

D

TOP

OF S

LAB

FIRS

T DI

AGON

AL

100

mm

(4”)

TOTAL SLABT + 38 mm (1 1/2”)

NOMINALSLAB (T)

T +

38 m

m (1

1 /2”

) = N

OM

INA

L SL

AB

TH

ICKN

ESS

+ST

EEL

DEC

K D

EPTH

75 mm (3”)

6 mm (1/4”)

SECT

ION

4 - J

OIS

TB

EARI

NG

ON

MA

SON

RYO

RCO

NCR

ETE

WA

LL

SECT

ION

1 - S

TAN

DA

RDJO

IST

SHO

E

NOMINALSLAB

(T) TOTAL

T + 38 mm (1 1/2”)

100 m

m

65 m

m (2

1 /2”

)

21 x

32

mm

(13 /1

6” x

1 1 /

4”) S

LOTS

@ 1

25 m

m (5

”)c /

c (HA

MBR

O SH

OE)

21 m

m (1

3 /16”

)Ø H

OLES

@ 1

25 m

m (5

”)c /

c (SU

PPOR

T)

WEL

DED

WIR

E-M

ESH

TOP OF BEARING

NOMINALJOIST DEPTH

(D)SLAB

STEE

L DE

CK

STEE

L CO

LUM

N,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

CEIL

ING

EXTE

NSI

ON

- SH

OE

WID

TH =

190

mm

(7 1 /

2”)

(4”)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

SECT

ION

2 - B

OLT

EDJO

IST

ATST

EEL

COLU

MN

(FLA

NG

E/ W

EB)

NOMINALJOIST DEPTH

(D)

STEE

L BE

AM, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

CEIL

ING

EXTE

NSI

ON

TOP OF BEARING

WEL

DED

WIR

E-M

ESH

STEE

L DE

CK

21 x

32

mm

(13 /1

6”x

1 1 /4

”) S

LOTS

@ 1

25 m

m (5

”)c /

c (HA

MBR

O SH

OE)

21 m

m (1

3 /16”

)Ø H

OLES

@

125

mm

(5”)

c /c (

SUPP

ORT)

T + 38 mm (1 1/2”)

TOTALSLAB

NOMINALSLAB

(T)

58 m

m (2

1 /4”) F

LANG

E BET

WEE

N 10

0 mm

(4”) @

125 m

m (4

7 /8”)

70 m

m (2

3 /4”) F

LANG

E BET

WEE

N 12

7 mm

(5”) @

150 m

m (5

7 /8”)

102 m

m (4

”) F

LANG

E BET

WEE

N 15

2 mm

(6”) @

188 m

m (7

3 /8”)

127 m

m (5

”) F

LANG

E BET

WEE

N 19

0 mm

(7 1 /2”

) @ 22

8 mm

(8 7 /8”

)15

2 mm

(6”)

FLA

NGE B

ETW

EEN

230 m

m (9”

) @ 25

2 mm

(9 7 /8”

)20

3 mm

(8”)

FLA

NGE B

ETW

EEN

254 m

m (10

”) @

303 m

m (11

7 /8”)

230 m

m (9

”) F

LANG

E OF 3

05 m

m (12

”) AN

D M

ORE

CEIL

ING

EXTE

NSI

ON

SECT

ION

3 - B

OLT

EDJO

IST

ATST

EEL

BEA

M

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 68

TYPICAL DETAILS

15

NOMINALJOIST DEPTH

(D)

STEE

LDE

CK

REIN

FORC

ED IN

SULA

TED

CON

CRET

E W

ALL,

ACC

ORDI

NG

TO T

HE S

PECI

FICA

TION

S OF

THE

CON

SULT

ING

ENGI

NEE

R

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

T + 38 mm (1 1/2”)TOP OF BEARING

TOTALSLAB

NOMINALSLAB

(T)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

NOT

CH R

IGID

INSU

LATI

ON

SECT

ION

6 - J

OIS

TB

EARI

NG

ON

CON

CRET

EW

ALL

WIT

HIN

SULA

TED

FORM

NOMINALJOIST DEPTH

(D)

STEE

L DE

CK

SOLI

D M

ASON

RY W

ALL O

R RE

INFO

RCED

CO

NCRE

TE W

ALL,

ACCO

RDIN

G TO

THE

SP

ECIF

ICAT

IONS

OF T

HE C

ONSU

LTIN

G EN

GINE

ER(F

ILL T

HE M

ASON

RY B

LOCK

WIT

H M

ORTA

R,

UNDE

R TH

E JO

IST

SHOE

)

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

T + 38 mm (1 1/2”)TOP OF BEARING

TOTALSLAB

NOMINALSLAB

(T)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

CEIL

ING

EXTE

NSI

ON

SECT

ION

5 - J

OIS

TSB

EARI

NG

ON

MA

SON

RYO

RCO

NCR

ETE

WA

LL

NOMINALJOIST DEPTH

(D)

STEE

L DE

CK

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

T + 38 mm (1 1/2”)TOP OF BEARING

TOTALSLAB

NOMINALSLAB

(T)

90 m

m (3

1 /2”

) MIN

. FOR

100 m

m (4

”) S

HOE

(TYP

.)

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

REIN

FORC

ED IN

SULA

TED

CON

CRET

E W

ALL

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS,

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

NOT

CH R

IGID

INSU

LATI

ON (T

YP.)

CEIL

ING

EXTE

NSI

ON

SECT

ION

7 - J

OIS

TSB

EARI

NG

ON

CON

CRET

EW

ALL

WIT

HIN

SULA

TED

FORM

STEE

L DE

CK

STEE

L BE

AM, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

CEIL

ING

EXTE

NSI

ONPO

UR S

TOP

(BY

OTHE

RS)

T + 38 mm (1 1/2”)TOP OF BEARING

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

OR 1

00 m

m (4

”) S

HOE

(TYP

.)

40 m

m (1

1 /2”

)5

mm

(3/16

”)W

ELDE

DW

IRE-

MES

H

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

SECT

ION

8 - J

OIS

TB

EARI

NG

ON

STEE

LB

EAM

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 69

TYPICAL DETAILS

16

STEE

LDE

CK

THE

MET

AL S

TUD

AND

THE

TOP

PLAT

ECA

PACI

TY, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

CEIL

ING

EXTE

NSI

ON

T + 38 mm (1 1/2”)TOP OF BEARING

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

SHO

E (T

YP.)

40 m

m (1

1 /2”

)5

mm

(3/16

”)W

ELDE

DW

IRE-

MES

H

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

STEE

L DE

CK

THE

MET

AL S

TUD

AND

THE

TOP

PLAT

E CA

PACI

TY, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

CEIL

ING

EXTE

NSI

ON

T + 38 mm (1 1/2”)TOP OF BEARING

90 m

m (3

1 /2”)

MIN

. FOR

100 m

m (4

”) S

HOE

(TYP

.)65

mm

(2 1 /2

”) M

IN. F

OR 75

mm

(3”)

SHO

E (T

YP.)

40 m

m (1

1 /2”

)5

mm

(3/16

”)

WEL

DED

WIR

E-M

ESH

NO

TE: S

TAG

GER

ED J

OIS

TS

CEIL

ING

EXTE

NSI

ON

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

SECT

ION

10 -

JOIS

TB

EARI

NG

ON

STEE

LST

UD

WA

LL

SECT

ION

11 -

JOIS

TSB

EARI

NG

ON

STEE

LST

UD

WA

LL

STEE

L DE

CK

STEE

L BEA

M, A

CCOR

DING

TO

THE

SPEC

IFIC

ATIO

NSOF

THE

CON

SULT

ING

ENGI

NEER

(U.N

.O)

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

T + 38 mm (1 1/2”)TOP OF BEARING

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

OR 1

00 m

m (4

”) S

HOE

(TYP

.)40

mm

(1 1 /

2”)

5 m

m (3

/16”)

CEIL

ING

EXTE

NSI

ON

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

SECT

ION

9 - J

OIS

TSB

EARI

NG

ON

STEE

LB

EAM

STEE

LDE

CK

THE

WOO

D W

ALL

AND

THE

TOP

PLAT

E CA

PACI

TY, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

CEIL

ING

EXTE

NSI

ON

T + 38 mm (1 1/2”)TOP OF BEARING

90 m

m (3

1 /2”

) MIN

.FO

R 10

0 m

m (4

”) S

HOE

(TYP

.)

SHOE

AN

CHOR

ED T

O TH

E PL

ANK

WIT

H SC

REW

S OR

NAI

LS

WEL

DED

WIR

E-M

ESH

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

SECT

ION

12 -

JOIS

TB

EARI

NG

ON

AW

OO

DW

ALL

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 70

TYPICAL DETAILS

17

STEE

L DE

CK

THE

WOO

D W

ALL

AND

THE

TOP

PLAT

E CA

PACI

TY, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

T + 38 mm (1 1/2”)TOP OF BEARING

SHOE

AN

CHOR

ED T

O TH

E PL

ANK

WIT

H SC

REW

S OR

NAI

LS

NO

TE: S

TAG

GER

ED J

OIS

T

90 m

m (3

1 /2”)

MIN

. FOR

100 m

m (4

”) S

HOE

(TYP

.)

CEIL

ING

EXTE

NSI

ON

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

SECT

ION

13 -

JOIS

TSB

EARI

NG

ON

WO

OD

STU

DW

ALL

STEE

L DE

CK

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

WEL

DED

WIR

E-M

ESH

SUPP

ORT A

NGLE

, ACC

ORDI

NG TO

THE

SPEC

IFICA

TION

S OF

THE C

ONSU

LTIN

G EN

GINE

ER

CEIL

ING

EXTE

NSI

ON

TEM

PORA

RY S

UPPO

RT U

NDER

EACH

JOIS

T AND

EA

CH EN

D UN

TIL A

LL FL

OORS

HAV

E BEE

N PO

URED

(PRO

VIDE

D AN

D DE

SIGN

ED B

Y OTH

ERS)

T + 38 mm (1 1/2”)TOP OF BEARING

ACCO

RDIN

G TO

THE S

PECI

FICAT

IONS

OF

THE C

ONSU

LTIN

G EN

GINE

ERAN

GLE

ANCH

ORED

TO

THE

MAS

ONRY

WAL

L, A

CCOR

DIN

GTO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

FIBR

E BO

ARD

12 m

m (1

/2”)

DO N

OT W

ELD

THE S

HOE

ON TH

E ANG

LE

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)SE

CTIO

N14

- EX

PAN

SION

JOIN

TAT

INTE

RMED

IATE

FLOO

RS(A

TM

ASON

RYW

ALL)

STEE

L DE

CK

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(FIL

L TH

E M

ASON

RY B

LOCK

WIT

H M

ORTA

R,UN

DER

THE

HAM

BRO

SHOE

)

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

T + 38 mm (1 1/2”)TOP OF BEARING

12 m

m (1

/2”)Ø

ROD

x 6

00 m

m (2

4”)

@ 6

00 m

m (2

4”)c

/c.

GREA

SE O

R W

RAP

THIS

EN

DOF

ROD

WIT

H BU

ILDI

NG

PAPE

RDO

NOT

WEL

D TH

E SH

OEON

THE

EM

BEDE

D M

ATER

IAL

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R

CEIL

ING

EXTE

NSI

ON

FIBR

E BO

ARD

12 m

m (1

/2”)

90 m

m (3

1 /2”)

MIN

. FOR

100 m

m (4

”) S

HOE

(TYP

.)

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

SECT

ION

15 -

EXPA

NSI

ON

JOIN

TAT

ROO

F(A

TM

ASO

NRY

WA

LL)

SUPP

ORT

ANGL

E, A

CCOR

DING

TO

THE

SPEC

IFIC

ATIO

NS O

F THE

CON

SULT

ING

ENGI

NEER

STEE

L DE

CK

STEE

L BE

AM, A

CCOR

DIN

G TO

TH

E SP

ECIF

ICAT

ION

S OF

THE

CO

NSU

LTIN

G EN

GIN

EER

(U.N

.O)

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

T + 38 mm (1 1/2”)TOP OF BEARING

40 m

m5

mm

OR1 1

/2”3 /1

6”

DO N

OT W

ELD

THE

SHOE

ON

THE

AN

GLE

CEIL

ING

EXTE

NSI

ON

FIBR

E BO

ARD

12 m

m (1

/2”)

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

OR 1

00 m

m (4

”) S

HOE

(TYP

.)

STIF

FEN

ER (I

F RE

QUIR

ED)

NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

SECT

ION

16 -

EXPA

NSI

ON

JOIN

TAT

FLO

ORS

(AT

STEE

LB

EAM

)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 71

TYPICAL DETAILS

18

SOLI

D M

ASON

RY W

ALL

OR R

EIN

FORC

ED C

ONCR

ETE

WAL

L, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

WEL

DED

WIR

E-M

ESH

STEE

L DE

CK

STEE

L DE

CK A

NCH

ORED

TO T

HE W

ALL

T + 38 mm (1 1/2”)TOP OF BEARING50

mm

(2”)

MIN

.TY

P.

REBA

R(IF

REQ

UIRE

D BY

THE

CO

NSU

LTIN

G EN

GIN

EER)

NOMINALSLAB (T)

NOMINALJOIST DEPTH

(D)TOTALSLAB

SECT

ION

20 -

JOIS

TPA

RALL

ELTO

AM

ASO

NRY

WA

LLO

RCO

NCR

ETE

WA

LL

STEE

L DE

CK

CEIL

ING

EXTE

NSI

ON

WEL

DED

WIR

E-M

ESH

FIBR

E BO

ARD

12 m

m (1

/2”)

T + 38 (1 1/2”)TOP OF BEARING

40 m

m (1

1 /2”

)5

mm

(3/16

”)

12 m

m (1

/2”)Ø

ROD

x 6

00 m

m (2

4”)

@ 6

00 m

m (2

4”)c

/cGR

EASE

OR

WRA

P TH

IS E

ND

OF R

OD W

ITH

BUIL

DIN

G PA

PER

CEIL

ING

EXTE

NSI

ON

DO N

OT W

ELD

THE

SHOE

ON

THE

BEA

M

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

OR F

OR 1

00 m

m (4

”) S

HOE

(TYP

.)

STEE

L BE

AM A

CCOR

DIN

G TO

TH

E SP

ECIF

ICAT

ION

S OF

THE

CO

NSU

LTIN

G EN

GIN

EER

(UN

O)NOMINALJOIST DEPTH

(D)TOTALSLAB

NOMINALSLAB

(T)

SECT

ION

17 -

EXPA

NSI

ON

JOIN

TAT

ROO

F(A

TST

EEL

BEA

M)

SOLI

D M

ASON

RY W

ALL,

AC

CORD

ING

TO T

HE S

PECI

FICA

TION

SOF

THE

CON

SULT

ING

ENGI

NEE

R

FIBRE

BOA

RD 12

mm

(1 /2”)

WEL

DED

WIR

E-M

ESH

STEE

L DE

CK

DO N

OT W

ELD

THE

STEE

L DE

CKON

THE

EM

BEDE

D M

ATER

IAL

T + 38 mm (1 1/2”)TOP OF BEARING

75 m

m (3

”) M

IN.

TYP.

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

NOMINALSLAB (T)

NOMINALJOIST DEPTH

(D)TOTALSLAB

SECT

ION

19 -

JOIS

TPA

RALL

ELTO

EXPA

NSI

ON

JOIN

T

STEE

L DE

CK

DIAM

ETER

� 20

0 mm

(8”)

** R

EBAR

ARO

UND

THE

HO

LE IS

NOT

REQ

UIRE

D**

THE

QUA

NTIT

Y OF H

OLE

AT

150 m

m (6”

) & M

ORE

OF

THE J

OIST

IS

NO

T IM

PORT

ANT

END

OFSL

AB

NOMINALSLAB

(T)OP

ENIN

GSE

E TY

PICA

LRE

INFO

RCEM

ENT

FOR

SLAB

OPE

NIN

G.

NOMINALJOIST DEPTH

(D)

WEL

DED

WIR

E-M

ESH

TEM

PORA

RY

SUPP

ORT

(DES

IGNE

D &

SUPP

LIED

BY O

THER

S)150 m

m (6”

)MI

N.15

0 mm

(6”)

MIN.

150 m

m (6”

)MI

N.

20 mm (3/4”) MIN.APPLICABLE

IN EACH CASE

20 mm (3/4”) MIN.APPLICABLE

IN EACH CASE

TOTALSLAB

HOLE

HO

LE

HOLE

SECT

ION

18 -

MIN

IMU

MCL

EARA

NCE

FOR

OPE

NIN

GA

ND

HO

LEIN

THE

SLA

B

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 72

TYPICAL DETAILS

19

REIN

FORC

EMEN

T IN

SULA

TED

CON

CRET

E W

ALL,

ACC

ORDI

NG

TO T

HE S

PECI

FICA

TION

SOF

THE

CON

SULT

ING

ENGI

NEE

R

STEE

L DE

CK

WEL

DED

WIR

E-M

ESH

50 m

m (2

”) M

IN.

TYP.

T + 38 mm (1 1/2”)TOP OF BEARING

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

NOMINALSLAB

(T)

NOMINALJOIST DEPTH

(D)TOTALSLAB

SECT

ION

21 -

JOIS

TPA

RALL

ELTO

ACO

NCR

ETE

WA

LLW

ITH

INSU

LATE

DFO

RM

STEE

L BE

AM,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

ARC

WEL

DIN

G19

mm

(3/4”

) TYP

. WEL

DED

WIR

E-M

ESH

STEE

L DE

CK

T + 38 mm (1 1/2”)TOP OF BEARING

50 m

m (2

”) M

IN.

TYP.

OR

#12

SELF

TAP

PIN

G FA

STEN

ERS

NOMINALSLAB

(T)

NOMINALJOIST DEPTH

(D)TOTALSLAB

SECT

ION

22 -

JOIS

TPA

RALL

ELTO

AST

EEL

BEA

M

ARC

WEL

DIN

G20

mm

(3/4”

) TYP

.

MET

AL D

ECK

WEL

DED

WIR

E-M

ESH

THE

MET

AL S

TUD

AND

THE

TOP

PLAT

E CA

PACI

TY,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

50 m

m (2

”) M

IN.

TYP.

T + 38 mm (1 1/2”)TOP OF BEARING

OR

#12

SELF

TAP

PIN

G FA

STEN

ERS

NOMINALSLAB (T)

NOMINALJOIST DEPTH

(D)

TOTALSLAB

SECT

ION

23 -

JOIS

TPA

RALL

ELTO

AST

EEL

STU

DW

ALL

STEE

L DE

CK

WEL

DED

WIR

E-M

ESH

WOO

D W

ALL

AND

THE

TOP

PLAT

E CA

PACI

TY,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

MET

AL D

ECK

ANCH

ORED

TO

THE

PLAN

K W

ITH

WOO

D SC

REW

#12

T + 38 mm (1 1/2”)TOP OF BEARING

75 m

m (3”

) MIN

.TY

P.

NOMINALSLAB

(T)

NOMINALJOIST DEPTH

(D)TOTALSLAB

SECT

ION

24 -

JOIS

TPA

RALL

ELTO

AW

OO

DW

ALL

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 73

TYPICAL DETAILS

20

ANGL

E W

ELDE

D TO

THE

TOP

CHO

RD T

O GE

T A

THIC

KER

SLAB

OF

50 m

m (2

”) A

ND

MOR

E(S

EE S

ECTI

ON O

F BA

LCON

Y)

50 mm (2”)AND MORE

SECT

ION

25 -

THIC

KER

SLA

B

ANGL

E FO

RTH

ICKE

R SL

AB

WEL

DED

WIR

E-M

ESH

STEE

L DE

CK

SEE

SPEC

IFIC

ATIO

NS

OF T

HE A

RCHI

TECT

REBA

RS, S

EE

THE

CON

SULT

ING

ENGI

NEE

R

SLOP

E

TEM

PORA

RY S

UPPO

RTFO

R BA

LCON

Y(D

ESIG

NED

& S

UPPL

IED

BY O

THER

S)SO

LID

MAS

ONRY

WAL

L, A

CCOR

DIN

G TO

THE

SPEC

IFIC

ATIO

NS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(FIL

L TH

E M

ASON

RY B

LOCK

WIT

H M

ORTA

R,

UNDE

R TH

E JO

IST

SHOE

)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

THICKER SLAB(TS)

DEEP

SHO

E TO

SUIT

THE T

HICK

ER S

LAB

REBA

R(IF

REQ

UIRE

D BY

THE

CONS

ULTI

NG E

NGIN

EER)25 mm (1”)

S + TSTOP OF BEARING

NOMINALSLAB (T)

NOMINALJOIST DEPTH (D)

TOTAL SLAB(S)

SECT

ION

27 -

CAN

TILE

VERE

DB

ALC

ON

Y

(JO

IST

PERP

END

ICU

LAR

TOB

ALC

ON

Y)

HEAD

ER B

EAM

WEL

DED

WIR

E-M

ESH

STEE

LDE

CK

80 mm(3 1/8”)

20 m

m (3

/4”)

5 m

m (3

/16”)

TOTALSLAB

IF T

HER

E IS

A J

OIS

T SI

TTIN

G O

N T

HE

HEA

DER

BEA

MTH

E D

IMEN

SIO

N 8

0 m

m (3

1 /8”

) WIL

L B

ECO

ME

76 m

m (3

”)

NOMINALSLAB

(T)SE

CTIO

N26

- H

EAD

ERSU

PPO

RT

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 74

TYPICAL DETAILS

21

IMPO

RTA

NT;

BRI

DG

ING

AN

GLE

S TO

BE

INST

ALL

ED A

FTER

FO

RMS

STRI

PPED

BU

TB

EFO

RE T

HE

REM

OVA

L O

F B

ALC

ON

Y TE

MPO

RARY

SU

PPO

RTS

SEE

SPEC

IFIC

ATIO

NS

OF T

HE A

RCHI

TECT

SLOP

EW

ELDE

DW

IRE-

MES

H

SEE

PLAN

SEE

PLAN

50 m

m (2

”) M

IN.

TYP.

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)25 mm (1”)

STEE

L DE

CK

ANGL

E FO

RTH

ICKE

R SL

AB

S + TSTOP OF BEARING

NOMINALSLAB (T)

NOMINALJOIST

DEPTH (D)

THICKER SLAB(TS)

TOTAL SLAB (S)

REBA

R,RE

BAR,

ACCO

RDIN

G TO

THE

ACCO

RDIN

G TO

THE

SPEC

IFICA

TION

S OF

THE

SPEC

IFICA

TION

S OF

THE

CONS

ULTI

NG EN

GINE

ERCO

NSUL

TING

ENGI

NEER

REBA

R,AC

CORD

ING

TO TH

ESP

ECIFI

CATI

ONS

OF TH

ECO

NSUL

TING

ENGI

NEER

BRID

GIN

G TO

BOT

TOM

CHO

RD M

AY

BE N

ECES

SARY

IF U

PLIF

T DU

E TO

CA

NTI

LEVE

R BA

LCON

Y EX

CEED

S GR

AVIT

Y LO

AD. (

IF R

EQUI

RED

BYTH

E EN

GIN

EER)

TEM

PORA

RY

SUPP

ORT

FOR

BALC

ONY

(DES

IGNE

D &

SUPP

LIED

BY O

THER

S)

SOLI

D M

ASON

RY W

ALL,

ACC

ORDI

NG

TO T

HE S

PECI

FICA

TION

S OF

THE

CO

NSU

LTIN

G EN

GIN

EER

BRID

GIN

G TO

BOT

TOM

CHO

RD M

AY

BE N

ECES

SARY

IF U

PLIF

T DU

E TO

CA

NTI

LEVE

R BA

LCON

Y EX

CEED

S GR

AVIT

Y LO

AD. (

IF R

EQUI

RED

BYTH

E EN

GIN

EER)

IMPO

RTA

NT;

BRI

DG

ING

AN

GLE

S TO

BE

INST

ALL

ED A

FTER

FO

RMS

STRI

PPED

BU

TB

EFO

RE T

HE

REM

OVA

L O

F B

ALC

ON

Y TE

MPO

RARY

SU

PPO

RTS

SEE

SPEC

IFIC

ATIO

NS

OF T

HE A

RCHI

TECT

SLOP

EW

ELDE

DW

IRE-

MES

H

SOLI

D M

ASON

RY W

ALL,

ACCO

RDIN

G TO

THE

SP

ECIF

ICAT

ION

S OF

THE

CO

NSU

LTIN

G EN

GIN

EER

STEE

L DE

CKTE

MPO

RARY

SU

PPOR

TFO

R BA

LCON

Y(D

ESIG

NED

& SU

PPLIE

D BY

OTH

ERS)

SEE

PLAN

SEE

PLAN

50 m

m (2

”) M

IN.

TYP.

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

25 mm (1”)

S + TSTOP OF BEARING

THICKER SLAB(TS)

REBA

R,RE

BAR,

ACCO

RDIN

G TO

THE

ACCO

RDIN

G TO

THE

SPEC

IFICA

TION

S OF

THE

SPEC

IFICA

TION

S OF

THE

CONS

ULTI

NG EN

GINE

ERCO

NSUL

TING

ENGI

NEER

REBA

R,AC

CORD

ING

TO TH

ESP

ECIFI

CATI

ONS

OF TH

ECO

NSUL

TING

ENGI

NEER

NOMINALSLAB (T)

NOMINALJOIST

DEPTH (D)

TOTAL SLAB (S)

SECT

ION

29 -

CAN

TILE

VERE

DB

ALC

ON

Y(J

OIS

TPA

RALL

ELTO

BA

LCO

NY)

SECT

ION

28 -

CAN

TILE

VERE

DB

ALC

ON

Y(S

HA

LLO

WJO

IST

PARA

LLEL

TOB

ALC

ON

Y)

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 75

TYPICAL DETAILS

22

SECT

ION

30 -

MA

XIM

UM

DU

CTO

PEN

ING

S

D

D =

MAX

IMUM

DIA

MET

ER

R

S =

MAX

IMUM

SQU

ARE

R =

MAX

IMUM

REC

TAN

GLE

PAN

ELTO

P OF

SLA

B

NOMINALJOIST DEPTH

** W

EB O

PEN

INGS

ARE

ALI

GNED

ON

LY W

ITH

JOIS

TS W

HICH

HAV

E ID

ENTI

CAL

LEN

GTHS

**

SS

DEPT

HPA

NEL

D

S R

(in.)

(in.)

(in.)

(in.)

(in. x

in.)

820

4 1 /

43

1 /2

6 x

2 1 /

2

1020

5 1 /

24

1 /2

7 x

3 1 /

4

1224

7 1 /

45

3 /4

9 x

4 1 /

4

1424

8 1 /

26

3 /4

9 1 /

2x

5 1 /

4

11 x

4 1

/416

249

1 /2

7 1 /

210

1/2

x 5

1 /2

13 x

418

2410

1/4

8 1 /

411

x 6

1/4

12 1

/2x

520

2411

912

x 6

1/4

13 x

5 1

/222

2412

9 3 /

412

x 7

1/2

14 x

5 1

/224

2412

1/2

1013

x 7

14 x

6

DEPT

HPA

NEL

D

S R

(mm

)(m

m)

(mm

)(m

m)

(mm

x m

m)

200

508

110

9015

0 x

6025

050

814

011

518

0 x

8030

061

018

514

523

0 x

110

350

610

215

170

240

x 13

028

0 x

110

400

610

240

190

265

x 14

033

0 x

100

450

610

260

210

280

x 16

031

5 x

130

500

610

280

225

305

x 16

033

0 x

140

550

610

305

245

305

x 19

035

5 x

140

600

610

315

255

330

x 18

035

5 x

150

NO

TE

: Th

e m

axim

um

lim

itat

ion

has

bee

n d

eter

min

ed f

rom

th

e jo

ist

geo

met

ryw

ith

a b

ott

om

ch

ord

of

50 m

m (

2”)

and

web

of

22 m

m (

7/8”

). If

mo

rein

form

atio

n n

eed

ed, p

leas

e co

nta

ct t

he

Ham

bro

tec

hn

ical

dep

artm

ent.

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 76

TYPICAL DETAILS

23

8.3 DTC (LH SERIES)SECTION NO. DESCRIPTION PAGE

1 Standard Shoe

2 Bolted Joists at Steel Beam

3 Bolted Joist at Column (Flange / Web).................................................. 24

4 Joist Bearing on Steel Beam

5 Minimum Clearance for Openings and Holes in the Slab

6 Joist Parallel to a Steel Beam

7 Thicker Slab.................................................. 25

8 Flange Hanger for Steel Beam and Wall

9 Flange Hanger for Insulated Concrete Form

10 Maximum LH Duct Openings .............................................. 26

11 Joist Parallel to a Concrete Wall With Insulated Form

12 Joist Bearing on Concrete Wall With Insulated Form .............................................. 27

}}}

}

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 77

TYPICAL DETAILS

24

CEIL

ING

EXTE

NSI

ON

- T +

35

mm

(1 3 /8

) = S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S- S

HO

E W

IDTH

= 1

90 m

m (7

1 /2”

)

TOP OF BEARING

STEE

L CO

LUM

N, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

WEL

DED

WIR

E-M

ESH

21 x

32 m

m (13

/16”x

1 1 /4”)

SLO

TS @

165 m

m (6

1 /2”)

c /c (H

AMBR

O SH

OE)

21m

m (1

3 /16”

)Ø H

OLE

S @

165

mm

(6 1 /

2”) c /c

(SU

PPO

RT)

SLAB(T)

T + 35 (1 3/8”)

NOMINALJOIST DEPTH

(D)

100

mm

(4”)

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.) (2

(2

1 /2”

)65

mm

65 m

m(2

1 /2”

)65

mm

TOP

CHOR

D

TOP

OF S

LAB

(T)SLAB

100

mm

(L 4

” x

3” x

3 /8”

x 6

”)L

100

x 75

x 1

0 x

150

mm

75 mm (3”)

(4”)

FIRS

T DI

AGON

AL

39 mm (1 1/2”) 10 mm (3/8”)

T +

35 m

m (1

3 /8”

) = S

LAB

TH

ICKN

ESS

+ SH

OE

THIC

KNES

S

TOP OF BEARING

STEE

L BE

AM,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

WEL

DED

WIR

E-M

ESH

CEIL

ING

EXTE

NSI

ON

90 m

m (3

1 /2”

) MIN

. FOR

100

mm

(4”)

SHO

E (T

YP.)

65 m

m (2

1 /2”

) MIN

. FOR

75

mm

(3”)

SHO

E (T

YP.)

SLAB(T)

T + 35 mm (1 3/8”)

NOMINALJOIST DEPTH

(D)

5 m

m (3

/16”)

40 m

m (1

1 /2”

)

POUR

STO

P(B

Y OT

HERS

)

SECT

ION

3 - B

OLT

EDJO

IST

ATCO

LUM

N(F

LAN

GE

/ WEB

)SE

CTIO

N1

- STA

ND

ARD

SHO

E

SECT

ION

4 - J

OIS

TB

EARI

NG

ON

STEE

LB

EAM

CEIL

ING

EXTE

NSI

ON

T +

1 3 /8

” =

SLA

B T

HIC

KNES

S +

SHO

E TH

ICKN

ESS

TOP OF BEARING

STEE

L BE

AM, A

CCOR

DIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

(U.N

.O)

WEL

DED

WIR

E-M

ESH

21 x

32 m

m (13

/16” x

1 1 /4

”) SL

OTS

@ 16

5 mm

(6 1 /2

”) c /c

(HAM

BRO

SHOE

)

21 m

m (13

/16”)

Ø HO

LES

@ 16

5 mm

(6 1 /2

”) c /c

(SUP

PORT

)

CEIL

ING

EXTE

NSI

ON

FLAN

GE B

ETW

EEN

102 m

m (4”

) & 12

5 mm

(4 7 /8”

)58

mm

(2 1 /4”

) FLAN

GE B

ETW

EEN

127 m

m (5”

) & 15

0 mm

(5 7 /8”

)70

mm

(2 3 /4”

) FLAN

GE B

ETW

EEN

152 m

m (6”

) & 18

8 mm

(7 3 /8”

)10

2 mm

(4”)

FLAN

GE B

ETW

EEN

190 m

m (7

1 /2”) &

228 m

m (8

7 /8”)

127 m

m (5”

)FL

ANGE

BET

WEE

N 23

0 mm

(9”) &

252 m

m (9

7 /8”)

152 m

m (6”

)FL

ANGE

BET

WEE

N 25

4 mm

(10”)

& 30

3 mm

(11 7 /8”

)20

3 mm

(8”)

FLAN

GE O

F 305

mm

(12”)

& M

ORE

230 m

m (9”

)

SLAB(T)

T + 35 mm (1 3/8”)

NOMINALJOIST DEPTH

(D)

SECT

ION

2 - B

OLT

EDJO

ISTS

ATST

EEL

BEA

M

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 78

TYPICAL DETAILS

25

WEL

DED

WIR

E-M

ESH ST

EEL

BEAM

,AC

CORD

ING

TO T

HE S

PECI

FICA

TION

SOF

THE

CON

SULT

ING

ENGI

NEE

R (U

.N.O

)

FLAN

GE H

ANGE

R(F

IXED

, SEE

ED-

D500

)

SLAB(T)

* TH

E HA

NGE

R PL

ATE

IS U

SED

TO T

HICK

EN

UNDE

R SI

DE O

F TH

E CO

NCR

ETE

SLAB

.

* 4

DIF

FERE

NTS

STA

NDA

RD T

HICK

NES

S

OF C

ONCR

ETE

CAN

BE

CON

SIDE

RED

W

ITH

THE

HAN

GER

PLAT

E

(SEE

DET

AIL)

158 mm (6 1/4”)

82 mm (3 1/4”)

108 mm(4 1/4”)

184 mm(7 1/4”)

HAN

GER

PLAT

ERO

LLBA

R

SECT

ION

6 - J

OIS

TPA

RALL

ELTO

AST

EEL

BEA

M

SECT

ION

7 - T

HIC

KER

SLA

B

FLAN

GE H

ANGE

R (T

YPE

F.H)

ROLL

BAR

STEE

L BE

AM, C

ONCR

ETE

WAL

L, W

OOD

WAL

L,ST

EEL

STUD

WAL

L OR

MAS

ONRY

WAL

L

25 @

300 m

m (1”

@ 12

”)5 m

m (3 /

16”)

SECT

ION

8 - F

LAN

GE

HA

NG

ERFO

RST

EEL

BEA

MA

ND

WA

LL

WEL

DED

WIR

E-M

ESH

DIAM

ETER

� 20

0 mm

(8”)

** RE

BAR A

ROUN

D THE

HOLE

IS N

OT RE

QUIRE

D**

THE Q

UANT

ITY OF

HOLE

AT 7”

& M

ORE O

F THE

JOIST

IS NO

T IMP

ORTA

NT

SLAB(T)

OPEN

ING

SEE

TYPI

CAL

REIN

FORC

EMEN

TFO

R SL

AB O

PENI

NG.

NOMINAL JOIST DEPTH(D)

END

OFSL

AB

178 m

m (7”

)M

IN.

178 m

m (7”

)M

IN.

178 m

m (7”

)M

IN.

20 mm (3/4”)(APPLICABLE AT

EACH CASE)

20 mm (3/4”)(APPLICABLE AT

EACH CASE)

HOLE

HO

LE

HOLE

SECT

ION

5 - M

INIM

UM

CLEA

RAN

CEFO

RO

PEN

ING

SA

ND

HO

LES

INTH

ESL

AB

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 79

TYPICAL DETAILS

26

FLAN

GE H

ANGE

R(T

YPE

M.H

)RO

LLBA

R

20 m

m (3

/4”)Ø

HOL

ESAT

600

mm

(24”

) c/c

FOR

ANCH

ORED

REIN

FORC

ED IN

SULA

TED

CON

CRET

E W

ALL

SECT

ION

9 - F

LAN

GE

HA

NG

ERFO

RIN

SULA

TED

CON

CRET

EFO

RM

D

S

D =

MAX

IMUM

DIA

MET

ER

R

S =

MAX

IMUM

SQU

ARE

R =

MAX

IMUM

REC

TAN

GLE

TOP

OF S

LAB

JOIST DEPTHNOMINAL

PAN

ELPA

NEL

PAN

ELPA

NEL

** W

EB O

PEN

INGS

ARE

ALI

GNED

ON

LY W

ITH

JOIS

TS W

HICH

HAV

E ID

ENTI

CAL

LEN

GTHS

**

SECT

ION

10 -

MA

XIM

UM

DU

CTO

PEN

ING

S(L

H)

SECT

ION

10 -

MA

XIM

UM

LH D

UCT

OPE

NIN

GS

TAB

LES

DEPT

HPA

NEL

D

S R

(in.)

(in.)

(in.)

(in.)

(in. x

in.)

2424

16 1

/213

1/4

18 x

10

3 /4

22 x

8 3

/426

2417

1/2

1418

x 1

222

x 9

3/4

2824

18 3

/415

18 x

13

1 /4

24 x

93 /

4

3024

19 3

/415

3/4

22 x

11

3 /4

27 x

8 3

/432

2420

1/2

16 1

/222

x 1

2 3 /

4

27 x

9 1

/234

2421

1/2

17 1

/422

x 1

3 3 /

4

29 x

8 3

/436

2422

1/4

1824

x 1

3 1 /

4

29 x

9 1

/238

2423

18 1

/224

x 1

4 1 /

4

29 x

10

1 /4

DEPT

HPA

NEL

D

S R

(mm

)(m

m)

(mm

)(m

m)

(mm

x m

m)

610

610

415

335

455

x 27

556

0 x

225

660

610

445

360

455

x 30

556

0 x

250

711

610

475

380

460

x 33

561

0 x

245

762

610

500

400

560

x 30

068

5 x

220

813

610

525

420

560

x 32

568

5 x

240

864

610

545

435

560

x 35

073

5 x

225

914

610

565

455

610

x 33

573

5 x

240

965

610

585

470

610

x 36

073

5 x

260

NO

TE

: Th

e m

axim

um

lim

itat

ion

has

bee

n d

eter

min

ed f

rom

th

e jo

ist

geo

met

ry,

wit

h a

bo

tto

m c

ho

rd o

f 50

mm

(2”

) an

d w

eb o

f 35

mm

(1

3/8”

). If

mo

rein

form

atio

n n

eed

ed, p

leas

e co

nta

ct t

he

Ham

bro

tec

hn

ical

dep

artm

ent.

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 80

TYPICAL DETAILS

27

FLAN

GE H

ANGE

R(F

IXED

, SEE

ED-

D500

)

REIN

FORC

ED IN

SULA

TED

CON

CRET

E W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

WEL

DED

WIR

E-M

ESH

REBA

R(IF

REQ

UIRE

D BY

THE

CO

NSU

LTIN

G EN

GIN

EER)

(T)SLAB

JOIST DEPTHNOMINAL

(D)

SECT

ION

11 -

JOIS

TPA

RALL

ELTO

ACO

NCR

ETE

WA

LLW

ITH

INSU

LATE

DFO

RM

CEIL

ING

EXTE

NSI

ON

TOP OF BEARING

REIN

FORC

ED IN

SULA

TED

CON

CRET

E W

ALL,

ACCO

RDIN

G TO

THE

SPE

CIFI

CATI

ONS

OF T

HE C

ONSU

LTIN

G EN

GIN

EER

WEL

DED

WIR

E-M

ESH

CEIL

ING

EXTE

NSI

ON

90 m

m (3

1 /2”)

MIN

. FOR

100 m

m (4

”) S

HOE

(TYP

.)

SLAB(T)

T + 35 mm (1 3/8”)

NOMINALJOIST DEPTH

(D)

REBA

R(IF

REQ

UIRE

D BY

THE

CON

SULT

ING

ENGI

NEE

R)

NO

ANCH

ORED

PLA

TE O

R M

ECHA

NIC

ALFA

STEN

ER IS

REQ

UIRE

D TO

FIX

TH

E JO

IST

TO T

HE C

ONCR

ETE

WAL

L.

NOT

CH R

IGID

INSU

LATI

ON (T

YP.)

SECT

ION

12 -

JOIS

TB

EARI

NG

ON

CON

CRET

EW

ALL

WIT

HIN

SULA

TED

FORM

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 81

28

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 82

SPECIFICATIONS

1

9. SPECIFICATIONS

PART 1 - GENERAL

1.1 SCOPE

The supplier shall:

(a) Furnish all labor, materials, equipment and services necessary for, and incidental to, the fabrication of theHambro Composite Floor System in accordance with these specifications and applicable drawings. HambroSteel joists and Rollbar shall be manufactured and marketed by Hambro or their authorized representatives.

(b) Fully coordinate the Hambro Composite FloorSystem with the other structural, mechanical, electri-cal and architectural components of the buildings.

PART 2 - TYPICAL SPECIFICATION

2.1 CODES

All fabrication shall be in strict accordance with the HambroShop Standard Practice, using steel conforming to CanadianStandards Association CAN/CSA G40.21-04 or similar ASTMStandards, or their engineering equivalent capacities.

2.2 DESIGN

Flexural design shall be by the Limit States Designmethod and as described in the Hambro literature. Theslab shall be designed in accordance with CAN/CSA A23.3-04 “Design of Concrete Structures for Buildings”, thetop chord shall be designed in accordance withCAN3-S136-M94 “Cold-Formed Steel Structural Members”,the bottom chord and webs shall be designed inaccordance with CAN/CSA S16.01 - “Steel Structures forBuildings (Limit States Design)”.

2.3 QUALIFICATIONS

(a) All welding materials and methods used for fabrica-tion shall be in accordance with the requirements ofthe Canadian Welding Bureau.

(b) All field welders shall be certified, qualified operators in accordance with the requirements of CWB for thematerials and methods being used, except thatHambro joist repairs or modifications that may berequired may be done by factory approved personnel.

2.4 DRAWINGS

(a) Submit detailed erection drawings to the Architect,Engineer or the General Contractor for approvalshowing material lists, mark numbers, types, loca-tions, and spacing of all joists and accessories. Showmethod of attachment of the joist to supportingmembers. Contract drawing notes relative to theHambro system shall be considered a part of thisspecification as though fully set forth herein.

(b) Shop drawings prepared only from approved erectiondrawings shall be used for fabrication and erection.

(c) Figured dimensions only shall be used, scalingdrawings shall not be permitted.

2.5 HANDLING AND STORAGE

Care shall be exercised at all times to avoid damage toHambro joists through careless handling during unload-ing, storing and erecting.

PART 3 - PRODUCTS

3.1 MATERIALS

(a) Hambro joists:

1- All composite joists shall be fabricated in accordancewith Section 2.1 and 2.2 of these Specifications.

2- Top chord member shall act as a continuous shearconnector of cold rolled steel, minimum 13 gaugewith Fy = 350 MPa (50 ksi) minimum.

3- Bottom chord member shall consist of either hot rolled angles with Fy = 380 MPa (55 ksi) minimumor cold rolled angles of equal capacities of steel.

4- Web members shall consist of minimum 13 mm (1/2”)diameter hot rolled bars of Fy = 350 MPa (50 ksi)minimum.

5- All composite joists shall be shop painted with arust inhibitive primer. According to CISC/CPMAStandard 1-73a one coat paint.

(b) Rollbar shall be designed specifically to support 10 mm (3/8”) to 15 mm (5/8”) plywood forms, a 2 kPa (40 psf) construction load and slab weight until theslab has cured sufficiently (concrete cylinder strengthof 3.5 MPa (500 psi)), and act as temporary bridgingand spacers for Hambro composite joists.

(c) Standard bearing shoes shall be angle shape 100 x 50 x 6 x 120 (4” x 2” x 1/4” x 4 3/4”) wide, unlessotherwise noted.

(d) Slab reinforcement shall be minimum 152 x 152 MW13.3 x MW13.3 ( 6 x 6 - 8/8) weldedwire fabric, with Fy = 400 MPa (60 ksi) minimumunless otherwise required by structural engineer.

(e) Forms shall be 1 220 mm (4’-0”) or 1 500 mm (4’-11”)plywood sheets, and may be 10 mm (3/8”) to 15 mm (5/8”)thick.

(f) Concrete

1- Minimum ultimate compressive strength f’c = 20 MPa(3 000 psi) at 28 days for Hambro design.

2- Standard density i.e. 2 450 kg/m3 (145 pounds / ft.3).

3- Maximum size coarse aggregate: 19 mm (3/4”).

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 83

SPECIFICATIONS

2

3.2 FABRICATION

(a) Fabrication shall be in accordance with the HambroShop Standard Practice.

(b) The joist top chord shall be fabricated to allow for40 mm (1 1/2”) embedment into the concrete slab.

(c) Provide Hambro joist bottom chord ceiling exten-sions unless otherwise noted.

(d) After installation, permissible Hambro joist sweepshall be 25 mm (1”) in 6 m (20’-0”).

(e) Hambro joists shall be fabricated with an appropriatecamber to suit span and slab thickness. The cambershall be designed according to the non-composite dead load.

3.3 QUALITY CONTROL

Joist shall be manufactured in a fabricator’s facility having a continuous quality control program. Theinspection shall include checking of size, span,assembly and weld.

PART 4 - EXECUTION

4.1 ERECTION

(a) Installation shall be in accordance with the latestInstallation Manual for the Hambro CompositeFloor System, approved erection drawings andany amendments which may be issued by the manu-facturer.

(b) All joists shall be erected in such a manner so that they are vertical, level and plumb and at the proper elevation. Any shimming that may be required shallbe done with metal.

(c) Special conditions requiring top and/or bottom bracing shall be shown on erection drawings pre-pared by supplier.

(d) Welded Wire Fabric - Lapping shall be in accordancewith the provisions of CAN/CSA A23.3-04 andHambro construction drawings.

(e) End anchorage - Joist shoes shall be properlywelded, anchored or embedded as per engineer’s orarchitect’s drawings.

(f) Concreting Practice

1- Do not pour concrete in excess of the slab thick-ness stated on the erection drawings.

2- Do not drop large bucket loads in concentratedareas over Hambro joists. Lightly vibrate concrete.

3- Construction joints made parallel to the joists should bemade midway between the joists but never closer than150 mm (6”) to the top chord. Construction joints madeperpendicular to the joists should be located over thesupporting wall or beam.

4- It is recommended that the following publications be followed:

(a) CAN/CSA A23.3-04 “Design of Concrete Struc-tures for Buildings”.

(b) CAN/CSA A23.2-04 “Methods of Test for Concrete”.

(c) CAN/CSA A23.1-04 “Concrete Materials andMethods of Concrete Construction”.

(g) Stripping - Under normal conditions form work may bestripped at such time as the concrete has reached a cylinder strength of 3.5 MPa (500 psi).

(h) Construction Loads

1- Bundles of plywood or roll bars should not be placedon joist system but rather on supporting walls orbeams.

2- During construction, the minimum non-compositejoist capacity for a 70 mm (2 3/4”) slab and joistspacing of 1 251 mm (4’-1 1/4”) on center, shall be3.5 kN/m (240 plf). Joists spaced at greater than1 251 mm (4’-1 1/4”) on center shall have their non-composite capacity adequately increased to carry theadditional load. Construction loads may be appliedwhen the concrete has reached a cylinder strength of7 MPa (1000 psi).

(i) Minimum joist bearing shall be as follows:

1- Steel support: 65 mm (2 1/2”) for 75 mm (3”) shoe90 mm (3 1/2”) for 100 mm (4”) shoe.

2- Masonry, concrete, wood and metal stud support: 90 mm (3 1/2”). Bearing surface of supporting unitsto comply with applied shoe end reaction, basedon minimum supplied bearing area of 107 cm2

(16.6 in.2).

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 84

BUSINESS UNITS AND THEIR WEB ADDRESSES

1

www.canam.ws www.canam.ws

www.canamgroup.ws

www.hambro.ws www.murox.ws

PUBLICATIONS TECHNICAL QUESTIONS

www.structalstructure.ws www.structalbridges.ws www.technyx.ws

» FLOOR SYSTEM D500TM

FLOOR SYSTEM D510TM

FLOOR SYSTEM MD2000®

TECHNICAL MANUALINSTALLATION MANUAL

www.hambro.ws

»»»»

www.canaminternational.ws

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 85

2

Canada - Main Office270, chemin Du TremblayBoucherville, Quebec J4B 5X9Telephone: 450-641-4000Toll-free: 1-866-506-4000Fax: 450-641-4001

United States - Main Office450 East Hillsboro BoulevardDeerfield Beach, Florida 33441Telephone: 954-571-3030Toll-free: 1-800-546-9008Fax: 954-571-3031Fax: 1-800-592-4943

www.hambro.ws

Printed in Canada 03/2009© Canam Group Inc., 2003-2009

For local sales offices or distributors call:1-800-506-4000

Canam as well as all logos identifying each business unit, are trademark of Canam Group Inc.except for Hambro, which is a trademark of Hambro® International (Structures) Limited, awholly-owned subsidiary of Canam Group Inc.

MEP-Technical Manual CDN 0408.qxd 08/04/2009 18:06 Page 86