60
Complexity of Super-Coherence Problems in ASP Mario Alviano 1 , Wolfgang Faber 1 and Stefan Woltran 2 1 University of Calabria, Italy 2 Vienna University of Technology, Austria Pescara, 1 September 2011 CILC 2011 Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP

Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Complexity ofSuper-Coherence Problems

in ASP

Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2

1 University of Calabria, Italy2 Vienna University of Technology, Austria

Pescara, 1 September 2011CILC 2011

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP

Page 2: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Outline

1 Super-coherent ASP ProgramsIntroduction, Motivation and ContributionDefinitions and Examples

2 Main ResultsProof SketchConsequence of our results

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP

Page 3: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Introduction

Answer Set Programming (ASP)Logic Programming under stable model semanticsAssociates each program with a (possibly empty) set ofstable models

Coherence ProblemDeciding whether a program has at least one stable model.

Super-coherence ProblemDeciding whether a program P is such that P ∪ F is coherentfor each set F of facts.

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 1 / 17

Page 4: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Why Studying Super-coherence?

1 Dynamic Magic Sets only apply to super-coherentprograms [A., Faber; 2010]

2 Super-coherent programs are non-constrainingAdding extensional information to these programs willalways result in stable modelsImportant for modular evaluation: If the top-part of a splitprogram is super-coherent, coherence of the full programcan be checked by only considering the bottom-part

3 Incoherent programs are one of the main criticisms of ASP(especially in database theory)

Coherence has been of interest for quite some timeSuper-coherence emerges naturally when a fixed programand a variable database are considered

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 2 / 17

Page 5: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Why Studying Super-coherence?

1 Dynamic Magic Sets only apply to super-coherentprograms [A., Faber; 2010]

2 Super-coherent programs are non-constrainingAdding extensional information to these programs willalways result in stable modelsImportant for modular evaluation: If the top-part of a splitprogram is super-coherent, coherence of the full programcan be checked by only considering the bottom-part

3 Incoherent programs are one of the main criticisms of ASP(especially in database theory)

Coherence has been of interest for quite some timeSuper-coherence emerges naturally when a fixed programand a variable database are considered

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 2 / 17

Page 6: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Why Studying Super-coherence?

1 Dynamic Magic Sets only apply to super-coherentprograms [A., Faber; 2010]

2 Super-coherent programs are non-constrainingAdding extensional information to these programs willalways result in stable modelsImportant for modular evaluation: If the top-part of a splitprogram is super-coherent, coherence of the full programcan be checked by only considering the bottom-part

3 Incoherent programs are one of the main criticisms of ASP(especially in database theory)

Coherence has been of interest for quite some timeSuper-coherence emerges naturally when a fixed programand a variable database are considered

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 2 / 17

Page 7: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Main Contribution

What is the complexity of deciding super-coherence of ASPprograms?

Recall: deciding coherence isΣP

2 -complete for disjunctive programsNP-complete for non-disjunctive programs

Contributions

We prove ΠP3 -completeness in the disjunctive case

We prove ΠP2 -completeness in the non-disjunctive case

Note: We focus on propositional programs.

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 3 / 17

Page 8: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Outline

1 Super-coherent ASP ProgramsIntroduction, Motivation and ContributionDefinitions and Examples

2 Main ResultsProof SketchConsequence of our results

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP

Page 9: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Syntax

An ASP program P is a finite set of rules r of the form

p1 ∨ · · · ∨ pn ← q1, . . . , qj , not qj+1, . . . , not qm.

At(P): the set of atoms appearing in P

Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 4 / 17

Page 10: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Syntax

An ASP program P is a finite set of rules r of the form

p1 ∨ · · · ∨ pn ← q1, . . . , qj , not qj+1, . . . , not qm.

At(P): the set of atoms appearing in P

Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 4 / 17

Page 11: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics

Let P be an ASP program and I ⊆ At(P) an interpretation.Atoms in I are true; atoms not in I are falseA rule is satisfied if at least one head atom is truewhenever all body literals are trueIf all rules of P are satisfied, then I is a model of P

Definition (Stable Models)

Compute the FLP reduct — P I

Delete from P every rule with a false body literal

I is a stable model if I is a subset-minimal model of P I

SM(P): the set of all stable models of P

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 5 / 17

Page 12: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics

Let P be an ASP program and I ⊆ At(P) an interpretation.Atoms in I are true; atoms not in I are falseA rule is satisfied if at least one head atom is truewhenever all body literals are trueIf all rules of P are satisfied, then I is a model of P

Definition (Stable Models)

Compute the FLP reduct — P I

Delete from P every rule with a false body literal

I is a stable model if I is a subset-minimal model of P I

SM(P): the set of all stable models of P

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 5 / 17

Page 13: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . .

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 14: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . .

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 15: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . .

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 16: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . . minimal!

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 17: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . .

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 18: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . .

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 19: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . . countermodel: {“NP 6= P ”}

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 20: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . .

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 21: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . .

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 22: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”“ASP harder than SAT ” ← not “PH collapses ”

Stable models1 {“NP 6= P ”, “ASP harder than SAT ”}2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}3 {“NP = P ”, “PH collapses ”}

Compute the reduct, andCheck minimality. . . minimal!

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 6 / 17

Page 23: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Super-coherence Problems

Definition (Super-coherent Programs)

A program P is super-coherent if, for every set of facts F , theprogram P ∪ F is coherent, that is, SM(P ∪ F ) 6= ∅.

We are interested in the complexity of the following decisionalproblems:

Deciding super-coherence of disjunctive programsDeciding super-coherence of normal programs

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 7 / 17

Page 24: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 25: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

A positive programPositive programs are coherentAdding facts cannot introduce negation

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 26: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

A positive programPositive programs are coherentAdding facts cannot introduce negation

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 27: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 28: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

A stratified programStratified programs are coherentAdding facts cannot introduce cycles

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 29: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

A stratified programStratified programs are coherentAdding facts cannot introduce cycles

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 30: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 31: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

An odd-cycle free programOdd-cycle free programs are coherentAdding facts cannot introduce new cycles

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 32: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (1)

Example 1a ∨ b.

Example 2a← not b.

Example 3a← not b.b ← not a.

An odd-cycle free programOdd-cycle free programs are coherentAdding facts cannot introduce new cycles

1 Positive programs are super-coherent2 Stratified programs are super-coherent3 Odd-cycle free programs are super-coherent

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 8 / 17

Page 33: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (2)

Up to odd-cycle free programs, it is a trivial problemThe general case is not so easy!

Which of the programs is super-coherent?

P = { a ←← not b, not c

c ← not b }

Q = { a ← cb ∨ c ←

c ← not a }

We have:SM(P) = SM(Q) = {{a, c}} , butSM(P ∪ {b}) = {{a,b}} and SM(Q ∪ {b}) = ∅.In fact, P is super-coherent!

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 9 / 17

Page 34: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (2)

Up to odd-cycle free programs, it is a trivial problemThe general case is not so easy!

Which of the programs is super-coherent?

P = { a ←← not b, not c

c ← not b }

Q = { a ← cb ∨ c ←

c ← not a }

We have:SM(P) = SM(Q) = {{a, c}} , butSM(P ∪ {b}) = {{a,b}} and SM(Q ∪ {b}) = ∅.In fact, P is super-coherent!

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 9 / 17

Page 35: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Introduction, Motivation and ContributionDefinitions and Examples

Deciding Super-coherence (2)

Up to odd-cycle free programs, it is a trivial problemThe general case is not so easy!

Which of the programs is super-coherent?

P = { a ←← not b, not c

c ← not b }

Q = { a ← cb ∨ c ←

c ← not a }

We have:SM(P) = SM(Q) = {{a, c}} , butSM(P ∪ {b}) = {{a,b}} and SM(Q ∪ {b}) = ∅.In fact, P is super-coherent!

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 9 / 17

Page 36: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Outline

1 Super-coherent ASP ProgramsIntroduction, Motivation and ContributionDefinitions and Examples

2 Main ResultsProof SketchConsequence of our results

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP

Page 37: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Main Results

TheoremThe problem of deciding super-coherence for disjunctiveprograms is ΠP

3 -complete.

TheoremThe problem of deciding super-coherence for normal programsis ΠP

2 -complete.

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 10 / 17

Page 38: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Outline

1 Super-coherent ASP ProgramsIntroduction, Motivation and ContributionDefinitions and Examples

2 Main ResultsProof SketchConsequence of our results

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP

Page 39: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Membership

ΠP3 -membership follows by the following algorithm for the

complementary problem:

guess a set F ⊆ At(P) and check SM(P ∪ F ) = ∅ via anoracle-callchecking SM(P ∪ F ) = ∅ is known to be in ΠP

2 [Eiter,Gottlob; 95]

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 11 / 17

Page 40: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness

ΠP3 -hardness is shown via a reduction from the evaluation

problem of QBFs Φ = ∀X∃Y∀Zφ to super-coherence ofprograms PΦ in two steps:

1 we define required properties for PΦ and show forprograms satisfying these properties:

Φ is true if and only if PΦ is super-coherent2 we provide a poly-time construction of PΦ from Φ

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 12 / 17

Page 41: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (1)

Definition (Φ-reduction)Let Φ = ∀X∃Y∀Zφ be a QBF with φ in DNF; call a program Psatisfying the following properties a Φ-reduction:

1 P is given over atoms U = X ∪ Y ∪ Z ∪ X ∪ Y ∪ Z ∪ {u, v ,w};2 P has as its models: U and for each I ⊆ X , J ⊆ Y ,

M[I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {v ,u}M ′[I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {v ,w};

3 models of PM[I,J] are M[I, J] and O[I] = I ∪ (X \ I);

4 models of PM′[I,J] are M ′[I, J] and ∀K ⊆ Z s.t. I ∪ J ∪ K 6|= φ,

N[I, J,K ] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ K ∪ (Z \ K ) ∪ {v};

5 models of PU are given only by the models mentioned above.

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 13 / 17

Page 42: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (1)

Definition (Φ-reduction)Let Φ = ∀X∃Y∀Zφ be a QBF with φ in DNF; call a program Psatisfying the following properties a Φ-reduction:

1 P is given over atoms U = X ∪ Y ∪ Z ∪ X ∪ Y ∪ Z ∪ {u, v ,w};2 P has as its models: U and for each I ⊆ X , J ⊆ Y ,

M[I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {v ,u}M ′[I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {v ,w};

3 models of PM[I,J] are M[I, J] and O[I] = I ∪ (X \ I);

4 models of PM′[I,J] are M ′[I, J] and ∀K ⊆ Z s.t. I ∪ J ∪ K 6|= φ,

N[I, J,K ] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ K ∪ (Z \ K ) ∪ {v};

5 models of PU are given only by the models mentioned above.

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 13 / 17

Page 43: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · O[Im]

PM[Im,Jn ]

N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · · N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PM′[Im,Jn ]

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

O[I0] · · · O[Im]N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

· · · N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ false

Φ true

Page 44: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · O[Im]

PM[Im,Jn ]

N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · · N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PM′[Im,Jn ]

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

O[I0] · · · O[Im]N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

· · · N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ false

Φ true

Page 45: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · O[Im]

PM[Im,Jn ]

N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · · N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PM′[Im,Jn ]

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

O[I0] · · · O[Im]N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

· · · N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ falseLet I0 be s.t.∀Y∃Z φ(I0) is false.

Force I0 via facts.

All models havecountermodels.

Not a super-coherentprogram!

Φ true

Page 46: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · ����M[Im, Jn] M′[I0, J0] · · · ����M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · ���O[Im]

����PM[Im,Jn ]

N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

����PM′[Im,Jn ]

M[I0, J0] · · ·����M[Im, Jn] M′[I0, J0] · · ·����M′[Im, Jn]

O[I0] · · ·���O[Im]N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ falseLet I0 be s.t.∀Y∃Z φ(I0) is false.

Force I0 via facts.

All models havecountermodels.

Not a super-coherentprogram!

Φ true

Page 47: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · ����M[Im, Jn] M′[I0, J0] · · · ����M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · ���O[Im]

����PM[Im,Jn ]

N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

����PM′[Im,Jn ]

M[I0, J0] · · ·����M[Im, Jn] M′[I0, J0] · · ·����M′[Im, Jn]

O[I0] · · ·���O[Im]N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ falseLet I0 be s.t.∀Y∃Z φ(I0) is false.

Force I0 via facts.

All models havecountermodels.

Not a super-coherentprogram!

Φ true

Page 48: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · ����M[Im, Jn] M′[I0, J0] · · · ����M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · ���O[Im]

����PM[Im,Jn ]

N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

����PM′[Im,Jn ]

M[I0, J0] · · ·����M[Im, Jn] M′[I0, J0] · · ·����M′[Im, Jn]

O[I0] · · ·���O[Im]N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ falseLet I0 be s.t.∀Y∃Z φ(I0) is false.

Force I0 via facts.

All models havecountermodels.

Not a super-coherentprogram!

Φ true

Page 49: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · O[Im]

PM[Im,Jn ]

N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · · N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PM′[Im,Jn ]

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

O[I0] · · · O[Im]N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

· · · N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ false

Φ trueRemove inapplicablecountermodels.

There is always amodel with nocountermodels (forany choice of facts).

A super-coherentprogram!

Page 50: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · O[Im]

PM[Im,Jn ]

�������N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

PM′[Im,Jn ]

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

O[I0] · · · O[Im]�������N[I0, J0,K ] s.t.

I0 ∪ J0 ∪ K 6|= φ· · ·

��������N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ false

Φ trueRemove inapplicablecountermodels.

There is always amodel with nocountermodels (forany choice of facts).

A super-coherentprogram!

Page 51: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · O[Im]

PM[Im,Jn ]

�������N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

PM′[Im,Jn ]

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

O[I0] · · · O[Im]�������N[I0, J0,K ] s.t.

I0 ∪ J0 ∪ K 6|= φ· · ·

��������N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ false

Φ trueRemove inapplicablecountermodels.

There is always amodel with nocountermodels (forany choice of facts).

A super-coherentprogram!

Page 52: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 1: Required Properties (2)LemmaFor any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

· · ·⊂ ⊂

· · ·

O[I0]

PM[I0,J0]

· · · O[Im]

PM[Im,Jn ]

�������N[I0, J0,K ] s.t.I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · ·��������N[Im, Jn,K ] s.t.

Im ∪ Jn ∪ K 6|= φ

PM′[Im,Jn ]

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

O[I0] · · · O[Im]�������N[I0, J0,K ] s.t.

I0 ∪ J0 ∪ K 6|= φ· · ·

��������N[Im, Jn,K ] s.t.Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17

Φ false

Φ trueRemove inapplicablecountermodels.

There is always amodel with nocountermodels (forany choice of facts).

A super-coherentprogram!

Page 53: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Hardness — Step 2: Poly-time Reduction

Definition

For any QBF Φ = ∀X∃Y∀Zφ with φ =∨n

i=1 li,1 ∧ · · · ∧ li,mi aDNF, define PΦ as follows:{x ∨ x ←; u ← x , x ; w ← x , x ; x ← u,w ; x ← u,w | x ∈ X} ∪{y ∨ y ← v ; u ← y , y ; w ← y , y ; y ← u,w ;y ← u,w ; v ← y ; v ← y | y ∈ Y} ∪{z ∨ z ← v ; u ← z,not w ; u ← z,not w ; v ← z; v ← z;z ← w ; z ← w ; z ← u; z ← u; w ∨ u ← z, z | z ∈ Z} ∪{w ∨ u ← li,1, . . . , li,mi | 1 ≤ i ≤ n}{v ← w ; v ← u; v ← not u}.

LemmaFor any QBF Φ = ∀X∃Y∀Zφ, the program PΦ is a Φ-reduction.

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 15 / 17

Page 54: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Outline

1 Super-coherent ASP ProgramsIntroduction, Motivation and ContributionDefinitions and Examples

2 Main ResultsProof SketchConsequence of our results

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP

Page 55: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Related Problem: Uniform Equivalence with Projection

Definition (Oetsch, Tompits, Woltran; 2007)Given programs P and Q, and two sets A,B of atoms,P ≡A

B Q if and only if, for each set F ⊆ A,

{I ∩ B | I ∈ SM(P ∪ F )} = {I ∩ B | I ∈ SM(Q ∪ F )}.

Known: complexity of deciding P ≡AB Q is ΠP

3 -complete fordisjunctive programs;

however, hardness was only shown for bound contextalphabets A ⊂ U

Consequence of our results: P ≡AB Q remains ΠP

3 -hard forA = U and Q the empty program

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 16 / 17

Page 56: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Related Problem: Uniform Equivalence with Projection

Definition (Oetsch, Tompits, Woltran; 2007)Given programs P and Q, and two sets A,B of atoms,P ≡A

B Q if and only if, for each set F ⊆ A,

{I ∩ B | I ∈ SM(P ∪ F )} = {I ∩ B | I ∈ SM(Q ∪ F )}.

Known: complexity of deciding P ≡AB Q is ΠP

3 -complete fordisjunctive programs;

however, hardness was only shown for bound contextalphabets A ⊂ U

Consequence of our results: P ≡AB Q remains ΠP

3 -hard forA = U and Q the empty program

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 16 / 17

Page 57: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Super-coherent ASP ProgramsMain Results

Proof SketchConsequence of our results

Related Problem: Uniform Equivalence with Projection

Definition (Oetsch, Tompits, Woltran; 2007)Given programs P and Q, and two sets A,B of atoms,P ≡A

B Q if and only if, for each set F ⊆ A,

{I ∩ B | I ∈ SM(P ∪ F )} = {I ∩ B | I ∈ SM(Q ∪ F )}.

Known: complexity of deciding P ≡AB Q is ΠP

3 -complete fordisjunctive programs;

however, hardness was only shown for bound contextalphabets A ⊂ U

Consequence of our results: P ≡AB Q remains ΠP

3 -hard forA = U and Q the empty program

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 16 / 17

Page 58: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Conclusion Outline

We studied the property of super-coherence; i.e. (here:propositional) programs which remain coherent no matterwhich facts are addedSuper-coherent programs have some nice properties andapplicationsComplexity of deciding whether a program issuper-coherent is rather high:

ΠP3 -complete for disjunctive programs

ΠP2 -complete for normal programs

Future Work: Are there certain problems which becomeeasier for super-coherent programs?

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 17 / 17

Page 59: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Conclusion Outline

We studied the property of super-coherence; i.e. (here:propositional) programs which remain coherent no matterwhich facts are addedSuper-coherent programs have some nice properties andapplicationsComplexity of deciding whether a program issuper-coherent is rather high:

ΠP3 -complete for disjunctive programs

ΠP2 -complete for normal programs

Future Work: Are there certain problems which becomeeasier for super-coherent programs?

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 17 / 17

Page 60: Complexity of Super-Coherence Problems in ASP · Complexity of Super-Coherence Problems in ASP Mario Alviano1, Wolfgang Faber1 and Stefan Woltran2 1 University of Calabria, Italy

Conclusion Questions? Outline

We studied the property of super-coherence; i.e. (here:propositional) programs which remain coherent no matterwhich facts are addedSuper-coherent programs have some nice properties andapplicationsComplexity of deciding whether a program issuper-coherent is rather high:

ΠP3 -complete for disjunctive programs

ΠP2 -complete for normal programs

Future Work: Are there certain problems which becomeeasier for super-coherent programs?

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 17 / 17

Thank you!