Complex Numbers 5 6 7 Handout

Embed Size (px)

Citation preview

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    1/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    Chapter 13: Complex NumbersSections 13.5, 13.6 & 13.7

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    2/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    DenitionProperties

    1. Complex exponential

    The exponential of a complex number z = x + iy is dened as

    exp(z ) = exp( x + iy ) = exp( x ) exp( iy )= exp( x ) (cos( y ) + i sin(y )) .

    As for real numbers, the exponential function is equal to itsderivative, i.e.

    d

    dz exp(z ) = exp( z ). (1)

    The exponential is therefore entire.

    You may also use the notation exp(z

    ) = e z

    .

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    3/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    DenitionProperties

    Properties of the exponential functionThe exponential function is periodic with period 2 i : indeed,for any integer k Z ,

    exp(z + 2 k i ) = exp( x ) (cos( y + 2 k ) + i sin(y + 2 k ))= exp( x ) (cos( y ) + i sin(y )) = exp( z ).

    Moreover,

    | exp(z )| = | exp(x )| | exp(iy )| = exp( x ) cos2(y ) + sin 2(y )= exp( x ) = exp ( e (z )) .

    As with real numbers,exp(z 1 + z 2) = exp( z 1) exp(z 2);

    exp(z ) = 0.

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    4/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    Trigonometric functionsHyperbolic functions

    2. Trigonometric functions

    The complex sine and cosine functions are dened in a waysimilar to their real counterparts,

    cos(z ) = e iz + e iz

    2 , sin(z ) =

    e iz e iz

    2i . (2)

    The tangent, cotangent, secant and cosecant are dened asusual. For instance,

    tan( z ) = sin(z )cos(z )

    , sec(z ) = 1cos(z )

    , etc.

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    5/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    Trigonometric functionsHyperbolic functions

    Trigonometric functions (continued)

    The rules of differentiation that you are familiar with stillwork.

    Example:Use the denitions of cos(z ) and sin(z ),

    cos(z ) = e iz + e iz

    2 , sin(z ) =

    e iz e iz

    2i .

    to nd (cos(z )) and (sin(z )) .

    Show that Eulers formula also works if is complex.

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    6/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    Trigonometric functionsHyperbolic functions

    3. Hyperbolic functionsThe complex hyperbolic sine and cosine are dened in a waysimilar to their real counterparts,

    cosh(z ) = e z + e z

    2 , sinh(z ) =

    e z e z

    2 . (3)

    The hyperbolic sine and cosine, as well as the sine and cosine,are entire.

    We have the following relations

    cosh(iz ) = cos( z ), sinh(iz ) = i sin(z ),(4)

    cos(iz ) = cosh( z ), sin(iz ) = i sinh(z ).

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    7/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    DenitionPrincipal value of ln( | z | )

    4. Complex logarithmThe logarithm w of z = 0 is dened as

    e w = z .

    Since the exponential is 2 i -periodic, the complex logarithm ismulti-valued.

    Solving the above equation for w = w r + iw i and z = re i

    gives

    e w = e w r e iw i = re i = e w r = r w i = + 2p ,

    which implies w r = ln( r ) and w i = + 2p , p Z .

    Therefore,ln(z ) = ln( |z |) + i arg(z ).

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    8/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    DenitionPrincipal value of ln( | z | )

    Principal value of ln(z

    )

    We dene the principal value of ln(z ), Ln(z ), as the value of

    ln(z ) obtained with the principal value of arg(z ), i.e.

    Ln(z ) = ln( |z |) + i Arg(z ).

    Note that Ln( z ) jumps by 2 i whenone crosses thenegative real axisfrom above.

    y

    x 0

    Arg( z )=

    1

    1

    Arg( z )> -

    The negative real axis is called a branch cut of Ln(z ).

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    9/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    DenitionPrincipal value of ln( | z | )

    Principal value of ln(z

    ) (continued)

    Recall thatLn(z ) = ln( |z |) + i Arg(z ).

    Since Arg(z ) = arg( z ) + 2 p , p Z , we therefore see thatln(z ) is related to Ln(z ) by

    ln(z ) = Ln( z ) + i 2p , p Z .

    Examples:

    Ln(2) = ln(2), but ln(2) = ln(2) + i 2p , p Z .Find Ln( 4) and ln( 4).

    Find ln(10 i ).

    Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    10/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    DenitionPrincipal value of ln( | z | )

    Properties of the logarithmYou have to be careful when you use identities like

    ln(z 1z 2) = ln( z 1)+ln( z 2), or ln z 1z 2= ln( z 1) ln(z 2).

    They are only true up to multiples of 2 i .

    For instance, if z 1 = i = exp( i / 2) and z 2 = 1 = exp( i ),

    ln(z 1) = i 2

    + 2 p 1i , ln(z 2) = i + 2 p 2i , p 1, p 2 Z ,

    andln(z 1 z 2) = i

    32

    + 2 p 3i , p 3 Z ,

    but p 3 is not necessarily equal to p 1 + p 2.Chapter 13: Complex Numbers

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    11/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    DenitionPrincipal value of ln( | z | )

    Properties of the logarithm (continued)Moreover, with z 1 = i = exp( i / 2) and z 2 = 1 = exp( i ),

    Ln(z 1) = i 2 , Ln(z 2) = i ,

    andLn(z 1 z 2) = i

    2

    = Ln( z 1) + Ln( z 2).

    However, every branch of the logarithm (i.e. each expressionof ln(z ) with a given value of p Z ) is analytic except at thebranch point z = 0 and on the branch cut of ln( z ). In thedomain of analyticity of ln(z ),

    d dz

    (ln(z )) = 1z . (5)

    Chapter 13: Complex Numbers

    C l i l

  • 8/13/2019 Complex Numbers 5 6 7 Handout

    12/12

    Complex exponentialTrigonometric and hyperbolic functions

    Complex logarithmComplex power function

    Denition

    5. Complex power function

    If z = 0 and c are complex numbers, we dene

    z c = exp ( c ln(z ))= exp ( c Ln(z ) + 2 pc i ) , p Z .

    For c C , this is again a multi-valued function, and we denethe principal value of z c as

    z c = exp ( c Ln(z ))

    Chapter 13: Complex Numbers