26
1 United Technologies Research Center Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity S. M. Opalka, D. L. Anton, X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka Savannah River National Laboratory Aiken, SC J. Strickler F.-J. Wu Albemarle Corp. Baton Rough, LA B. C. Hauback H. W. Brinks O. L. Martin Institute for Energy Kjeller, Norway C. Qiu G. B. Olson QuesTek, LLC/ Northwestern U. Evanston, IL 2005 DOE Hydrogen Program Review May 23-26, 2005 Arlington, VA Project ID # ST6 This presentation does not contain proprietary or confidential information

Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

1United Technologies Research Center

Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity

S. M. Opalka, D. L. Anton,X. Tang & D. A. Mosher

United Technologies Research CenterE. Hartford, CT

R. ZidanT. Motyka

Savannah River National Laboratory

Aiken, SC

J. StricklerF.-J. Wu

Albemarle Corp.Baton Rough, LA

B. C. HaubackH. W. BrinksO. L. Martin

Institute for EnergyKjeller, Norway

C. QiuG. B. OlsonQuesTek, LLC/Northwestern U.

Evanston, IL

2005 DOE Hydrogen Program ReviewMay 23-26, 2005

Arlington, VAProject ID # ST6

This presentation does not contain proprietary or confidential information

Page 2: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

2United Technologies Research Center

Overview• Timeline

– 11/30/02 Start– 12/31/06 End– 40% Complete

• Budget– $2.9 M Total Program

• $2.1M DoE• $0.8M (27%) UTC/ALB

– $0.43M DoE FY’04– $0.68M DoE FY’05

• Barriers– Gravimetric Density: 2 kWh/kg– Volumetric Density: 1.5 kWh/l– Charging rate: 1.5 kgH2/min.– Discharging rate: 4 gH2/sec.– Safety: Meets or exceeds

applicable standards– Durability: 1000 cycles

• Partners– SRNL– Albemarle

– IFE– QuesTek LLC

Page 3: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

3United Technologies Research Center

ObjectivesTotal Program ObjectivesTo develop new complex hydride compounds that can:-Reversibly store > 7.5 weight % capacity, -Discharge H2 at rates required for PEM fuel cell operation, -Recharge for 1000 cycles with 100 % recovery.

First Year (2004) Objectives-Implement and validate new atomic-thermodynamic predictive methods.-Search out quaternary systems for high H capacity candidates formed from Na, Li, Ti, and/or Mg combined with Al and H, using multi-pronged approach:

Atomic-Thermodynamic ModelingSolid State Processing (SSP)

Molten State Processing (MSP)Solution Based Processing (SBP)

Page 4: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

4United Technologies Research Center

Approach Virtual and Experimental Processing Methods

Solution Based Processing, SBP (Albemarle)- Excellent control- High purity products- Expensive processing- Cost- effective high

volume production

Molten State Processing, MSP (SRNL)- Rapid screening

- Wide range of T & P

- Includes metastable

phases

- Expensive equipment

Solid State Processing, SSP (UTRC)- Very rapid, low cost

screening- Limited conditions- High cost for high

volume production

Atomic-Thermodynamic Modeling (UTRC)- Survey broad

compositional spaces - Supplement

thermodynamic data- Generate descriptions

of phase behavior

Discover reversible high H compounds, AkxAeyM+iz(AlH4)(x+2y+iz), formed

between alkali (Ak) and alkaline earth (Ae) hydrides, metals (M), AlH3, and H2.

Unique aspect of approach: utilize a wide range of modeling and synthesis methods to search out and discover new high H2 capacity systems.

Page 5: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

5United Technologies Research CenterCoupled methodologies provide the capability to discover and evaluate high H

capacity candidates’ thermodynamic phase behavior, prior to experimentation.

Accomplishments:Established Atomic-Thermodynamic Flowpath

Computational ThermodynamicsAssessment / database development

Direct Method Lattice DynamicsFinite temperature thermodynamic predictions

Density Functional Theory (DFT)Ground state (0 K) structures & enthalpies

INPUT: High H candidate phases

OUTPUT: Multi-order phase diagram & property predictions

Candidates with competitive ∆Hform(0 K)

Favorable candidates ∆Gform (298 K)

Page 6: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

6United Technologies Research CenterValidation with experiment: lattice dynamic predictions in excellent agreement

with thermodynamic assessment of experimental Na alanate dissociation data.

Accomplishments:Validation of First Principles (FP) Predictions

10-1

100

101

102

103

PH

2, atm

1.5 2.0 2.5 3.0 3.5

1000/T(K)

Dymova 1974D

undoped NaAlH4(liq)

undoped Na3AlH6

NaAlH

NaAlH44 →→

1/3Na

1/3Na33 AlHAlH

66 ((αα)+2/3Al+H

)+2/3Al+H22

NaNa33 AlHAlH

66 ((αα))→→3NaH+Al+1.5H

3NaH+Al+1.5H22

NaNa33 AlHAlH

66 ((ββ))

Thomas 1999T

Ti-doped NaAlH4

Ti-doped Na3AlH6

Gross 2002G

Ti-doped NaAlH4

Bogdanovic 1997: PCIB

Ti-doped NaAlH4

Na3AlH6 from Ti-doped NaAlH4

Ti-doped Na3AlH6

Bogdanovic 2000: PCIB

Ti-doped NaAlH4

Na3AlH6 from Ti-doped NaAlH4

Bogdanovic 2000: dissociationB

Ti-doped NaAlH4

Ti-doped Na3AlH6

Lattice Dynamics PredictionThermodynamic Assessment

Dymova 1974Dymova 1974

undoped NaAlH undoped NaAlH44(liq)(liq)

undoped Na undoped Na33AlHAlH66

NaAlH4 →

1/3Na3 AlH

6 (α)+2/3Al+H2

Na3 AlH

6 (α)→3NaH+Al+1.5H

2

Na3 AlH

6 (β)

Thomas 1999Thomas 1999

Ti-doped NaAlH Ti-doped NaAlH44

Ti-doped Na Ti-doped Na33AlHAlH66

Gross 2002Gross 2002

Ti-doped NaAlH Ti-doped NaAlH44

Bogdanovic 1997: PCIBogdanovic 1997: PCI

Ti-doped NaAlH Ti-doped NaAlH44

Na Na33AlHAlH66 from Ti-doped NaAlH from Ti-doped NaA 4

Ti-doped Na Ti-doped Na33AlHAlH66

Bogdanovic 2000: PCIBogdanovic 2000: PCI

Ti-doped NaAlH Ti-doped NaAlH44

Na Na33AlHAlH66 from Ti-doped NaAlH from Ti-doped NaA 4

Bogdanovic 2000: dissociationBogdanovic 2000: dissociation

Ti-doped NaAlH Ti-doped NaAlH44

Ti-doped Na Ti-doped Na33AlHAlH66

Experimental Data

Page 7: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

7United Technologies Research Center

Accomplishments:Integrated Experimental & FP Predicted Data

Predictions extend computational thermodynamics beyond experimental realm. Phase diagrams calculated from integrated assessment of experimental data and predictions used to evaluate candidate phase stability over a wide range of T & P.

10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

106

108

PH

2, atm

0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

1000/T(K)

liq(NaH)liq(NaH)

liq(Na)liq(Na)

bcc(Na)bcc(Na)

NaHNaH

NaAlHNaAlH44

αα-Na-Na33AlHAlH

66

ββ-Na-Na33AlHAlH

66

←←

10-1

100

101

102

103

104

105

PH

2, atm

0 5 10 15 20 25

Al, at.%

NaH+fcc(Al)NaH+fcc(Al)

αα-Na-Na33AlHAlH66+fcc(Al)+fcc(Al)

NaAlHNaAlH44+fcc(Al)+fcc(Al)

<--NaH<--NaH

<--liquid<--liquid

αα-N

a-N

a 33AlH

AlH

66

NaA

lHN

aAlH

44

Potential diagram 100oC Isothermal phase section100oC

Page 8: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

8United Technologies Research Center

Accomplishments:Virtually Surveyed Multiple Quaternary Spaces

AlNa

Ti

H

TiH2

AlH3

NaH Na3AlH6

NaAlH4

TiH2-xTi3Al

Al2Ti

Al3Ti

Aerial View of Na-Ti-Al-H Quaternary Pyramid

Year II Quaternary Systems:To Date:Na-Mg-Al-HLi-Mg-Al-HSurveyed >40 Phases to dateIdentified Numerous Candidates!

Year I Quaternary Systems:Na-Ti-Al-HLi -Ti-Al-HNa-Li-Al-HSurveyed >170 PhasesNo Candidates Found!

FP atomic-thermodynamic methodologies used to accelerate survey of broad compositional phase spaces, reducing and focusing experimental effort.

High Capacity Media Criteria:7.5 wt% retrievable H capacityStability ∆Gformation<< O∆Gdehydrogenation O

BCCNa/Ti

Phases Simulated:Complex hydridesCompeting phasesLower order phasesHypothetical End-

Members

Page 9: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

9United Technologies Research Center

Accomplishments:Integrated Predictions and Experiments

Successfully employed FP predictions to evaluate Na2LiAlH6 structure and phase behavior. Explained observed synthesis and disproportionation reactions.

Na2LiAlH6 Reactions

0.010.1

110

1001000

10000

200 300 400 500 600

T (K)

K (e

quil.

con

stan

t) o

r P (a

tm)

4/3NaAlH4+2/3LiH <=> 2/3Na2LiAlH6+2/3Al+H2

2/3Na2LiAlH6 <=> 4/3NaH+2/3LiH+2/3Al+H2

2/3LiAlH4+4/3NaH <=> 2/3Na2LiAlH6

2/9Li3AlH6+4/9Na3AlH6 <=> 2/3Na2LiAlH6Na2LiAlH6 P21/cStable Low T StructureID from Collaboration

First two reactions correspond to a 2-step 5.2 w/o H2 reversible system.

1st, 3rd & 4th reactions for synthesis.

Dissociation Pressure/ Mole H2 Released

NaAl H4 = 1/3Na3AlH6+2/3Al+H2

2/3Na3AlH6=2NaH+2/3Al+H2

0.0010.01

0.11

10100

1000

0.0015 0.002 0.0025 0.003 0.00351/T (K)

P (a

tm)

Predicted and experimental (Fossdal et. al, J. Alloys Compd., in press.)dissociation P are in excellent agreement.

100oC

2/3Na2LiAlH64/3NaH+2/3LiH+2/3Al+H2

∆H = 52.4kJ/Mol

NaAlH41/3Na3AlH6+2/3Al+H2

2/3Na3AlH6 2NaH+2/3Al+H2

4/3NaAlH4+2/3LiH 2/3Na2LiAlH6+2/3Al+H22/3Na2LiAlH6

4/3NaH+2/3LiH+2/3Al+H22/3LiAlH4+4/3NaH 2/3Na2LiAlH62/9Li3AlH6+4/9Na3AlH6

2/3Na2LiAlH6

Page 10: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

10United Technologies Research Center

Accomplishments:Identification of High Capacity Candidates

Atomic Structure

LiMgAlH6 Candidate

Combined predictive methodologies are effective in identifying and evaluating new candidate hydrides, yielding recommendations for experimental evaluation.

Some Proposed LiMgAlH6 Disproportionation Reactions

0.11

10100

100010000

100000

0.001 0.0015 0.002 0.0025 0.003 0.0035

1/T(K)

Dis

soci

atio

n Pr

essu

re (a

tm)

Some Proposed LiMgAlH6 Disproportionation Reactions

0.11

10100

100010000

100000

0.001 0.0015 0.002 0.0025 0.003 0.0035

1/T(K)

Dis

soci

atio

n Pr

essu

re (a

tm)

2/3 (LiMgAlH6 <=> LiH+MgH2+Al+3/2H2) 4.7w/o H2

(17LiMgAlH6 17LiH+Al12Mg17+5Al+42.5H2)/42.5 7.9 w/o H2

100oCNumerous possible disproportionation products are currently being evaluated. Actual reversible H2 content dependent upon identification of most favorable dehydrogenation end products.

Many mixed alkali/alkaline earth alanate candidates

predicted to have ∆Hform (0 K)>-8 kJ/mol*atom

Page 11: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

11United Technologies Research Center

AccomplishmentsNew High H Capacity Material Search Strategy

A method of predicting destabilized alanate compounds with in-siturechargeability can be described thermodynamically as:

M1(AlH4)y + M2Hx <=> M1M2Hi + Al + (4y+x-i)/2H2

where:∆G ~ 0 ~ Gf

oM1M2Hi + Gf

oAl + RTln(PH2) – Gf

oM1(AlH4)y – Gf

oM2Hx

Systematic Approach: -Comprehensively search databases to select candidates from known phases.

-Identify candidate phase chemical reactions, prioritize according to H2 storage capacity.

-Where thermodynamic data is unavailable, predict thermochemical properties.

-Conduct thermodynamic assessments combining both experimental and predicted data

to evaluate in-situ reversibility for hydrogen storage.

at 70<T<120oC & 1<P<100 bar and M1 & M2 are metal ions.

New modeling tools used to select candidates for focused synthetic evaluation.

Page 12: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

12United Technologies Research Center

AccomplishmentsNew Hydrogen Storage Opportunities

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

2 2.2 2.4 2.6 2.8 3 3.2 3.4

1000/TPr

essu

re

• All in-situ rechargeable systems have ∆Hf ≈ 40 kJ/mole H2.• ∆Hf ≈ 0 kJ/mole H2 reactions can only be achieved at ~106 bar.• This results from ∆Sf for MHx approximately constant.

2LiBH4 + MgH2 MgB2 +2LiH + 4H2* 11.4 w/o H260

ord

ers

o f m

a gni

t ud e

in P

H2

1.E-30

1.E-27

1.E-24

1.E-21

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

1.E+03

1.E+06

1.E+09

1.E+12

1.E+15

1.E+18

1.E+21

1.E+24

1.E+27

1.E+30

0 0.5 1 1.5 2 2.5 3 3.5 4

1000/T

Pres

sure

2H(g) H2(g)

H2O(g) H2(g) + O2(g)

6 or

d er s

of m

agn i

tude

in P

H2

In-situ windowof reversibility

25<T<120oC1<P<100 bar

Complete Range of Systems Near Reversible SystemsMgH2+ Si Mg2Si+H2

* 5.0 w/o H2

H2O(g) H2(g) + O2(g)

2H(g) H2(g)

** Vajo et. al, MRS (2004)1000/T 1000/T

Thermodynamic assessments of in-situ reversible hydrogen storage reactions.

Page 13: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

13United Technologies Research Center

Al

Na

AlH6

H2

AlH3

NaH2

Al

Na Tm

NaAlH4

Na3AlH6

H

AlH

NaH

TmH

1:1:1Na:Tm:Al

Na:Ti:AlNa:Li:Al

Na:Mg:AlNa:Ti:Li:Al

Na:Ti:Mg:AlNa:Li:Mg:Al

Li:Mg:Al

Am/Ae/Tm

25 30 35 40 45 50 550

400

60 65 70 75 80 85Two-Theta (deg)

0

400

62-3324> Al - Aluminum62-1323> Halite - Na Cl

62-9625> Ti H2 - Titanium Hydride (1/2) - Ht60-7922> Na (Al H4) - Sodium Tetrahydridoaluminate

42-0786> AlH6Na3 - Sodium Aluminum Hydride60-1644> Na Al Cl4 - Sodium Tetrachloroaluminate

Inte

nsity

(CPS

)

74.5 wt% NaCl, 150A, RIR = 4.879.9 wt% TiH2, 99A, RIR = 7.497.0 wt% Al, 59A, RIR = 4.455.9 wt% Na3AlH6, Hi T, 227A, RIR = 1.52, est.2.8 wt% NaAlH4, 505A, RIR = 2.81

possible trace of NaAlCl4

WPF

theta calBkd & Ka2 Subtd 38.8o

NaAlCl4

NaCl

Na3AlH6NaAlH4

TiH2Al

NaCl

NaCl

NaCl NaCl NaClNaCl

TiH2

TiH2 TiH2

Na3AlH6

Processing• Hand Mix XRD• SPEX Mill 3 hr. XRD• 200barH2/60oC/20 hr XRD• 200barH2/80oC/20 hr XRD• 200barH2/100oC/20 hr XRD• 200barH2/120oC/20 hr XRD

AnalysisSemi-quantitative analysis using:

MDI Corp. Jade 7.0utilizing data bases:

ICDD/PDF-2 Release 2002ICSD Release 2004/2.

AccomplishmentsSolid State Processing (SSP) System Surveys

High throughput SSP screening of 7 quaternary/quinary systems completed.

Page 14: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

14United Technologies Research Center

NaH:TiCl2:AlH3 = 3:1:1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3hrs. 60oC/200bar/20hrs 80oC/200bar/20hrs 100oC/200bar/20hrs 120oC/200bar/20hrs

Aim Composition Hand Mixed SPEX Milled Charged Charged Charged Charged

Mol

ecul

ar %

NaClAlNaTiH1.924TiH1.5b-Na3AlH6a-Na3AlH6NaAlH4AlH3TiCl2NaHTiCl2 signal is absorbed

2NaH + TiCl2 + AlH3 -> 2NaCl + TiH2 + Al + 5/2 H2

The most effective method was to add cations as hydride species. This method readily produced NaAlH4 upon SPEX milling.

No previously unidentified phases found in the Na-Li-Ti-Al-H systems.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3hrs. 60oC/200bar/20hrs 80oC/200bar/20hrs 100oC/200bar/20hrs 120oC/200bar/20hrs

Aim Composition Hand Mixed SPEX Milled Charged Charged Charged Charged

Mol

ecul

ar %

Na

TiH1.924

TiH1.5

b-Na3AlH6

a-Na3AlH6

NaAlH4

Al

Ti

NaH

slight absorption of

NaH by Ti

reduction of Na & generation of

TiH1.5

hydrogenation of Ti,hydrogenation of Na, generation of TiH1.9 &

generation of significant β-Na3AlH6

generation of NaAlH4

NaH + Ti + Al + H2 => NaAlH4 + TiHx

3NaH + Ti + Al + H2 => Na3AlH6 + TiHx

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3hrs. 60oC/200bar/20hrs 80oC/200bar/20hrs 100oC/200bar/20hrs 120oC/200bar/20hrs

Aim Composition Hand Mixed* SPEX Milled Charged Charged Charged Charged

Mol

ecul

ar %

Al

NaAlH4AlH3

TiH2NaH

NaH +TiH2 + AlH3 => TiH2 + NaAlH4

NaH:TiCl2:Al

NaH:Ti:Al

NaH:TiH2:AlH3

Cations introduced via chloride additions led to far too much MClx to be effective.

Primary metal additions were only an effective method of synthesizing NaxAlHy at temperatures > 100oC.

AccomplishmentsDevelopment of SSP NaH:TiH2:AlH3 Method

NaH+TiH2+AlH3 => TiH2+NaAlH4

2NaH+TiCl2+AlH3=>2NaCl+TiH2+Al+3/2H2

NaH+Ti+Al+5/2H2 => NaAlH4+TiHx

3NaH+Ti+Al+5/2H2 => Na3AlH6+TiHx

Page 15: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

15United Technologies Research Center

XRD Analysis of Constituent PhasesCAP04-031

LiH:MgH2:AlH3 = 1:1:1

0%

20%

40%

60%

80%

100%

3hrs. 60oC/200bar/20hrs 80oC/200bar/20hrs 100oC/200bar/20hrs 120oC/200bar/20hrs

Aim Composition Hand Mixed* SPEX Milled Charged Charged Charged Charged

Mol

ecul

ar %

Al2Li3MgLi3AlH6LiAlH4NaMgH3AlNaAlH4AlH3MgH2LiH

LiH + MgH2 + AlH3 => 2/3Al + MgH2 + 1/3Li3AlH6

LiH + MgH2 + AlH3 => LiH + MgH2 + AlLi3AlH6 <=> 3LiH + Al + 3/2H2

5.6wt% 80<T<100oC

unidentified peaks at 9.5 & 30o

at 80oC

LiH + MgH2 + AlH3 => MgH2 + LiAlH4

LiH:MgH2:AlH3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3hrs. 60oC/200bar/20hrs 80oC/200bar/20hrs 100oC/200bar/20hrs 120oC/200bar/20hrs

Aim Composition Hand Mixed* SPEX Milled Charged Charged Charged Charged

Mol

ecul

ar %

LiNa2AlH6NaAlH4 (L2q)AlAlH3TiH2LiHNaH

NaH + LiH + TiH2 + AlH3 => TiH2 + 1/3NaAlH4 + 1/3Al + 1/3LiNa2AlH6 + 2/3Li?

NaH + LiH + TiH2 + AlH3 => TiH2 + 1/2Al + 1/2LiNa2AlH6 + 1/2Li?

2NaAlH4 + LiH <=> LiNa2AlH6 + Al + 3/2H2 2.6w/o

NaH:TiH2:LiH:AlH3

0%

20%

40%

60%

80%

100%

3hrs. 60oC/200bar/20hrs 80oC/200bar/20hrs 100oC/200bar/20hrs 120oC/200bar/20hrs

Aim Composition Hand Mixed* SPEX Milled Charged Charged Charged Charged

Mol

ecul

ar %

NaMgH3NaAlH4 (L2q)AlAlH3TiH2MgH2NaH

NaH + MgH2 + TiH2 + AlH3 => MgH2 + TiH2 + NaAlH4

NaH + MgH2 + TiH2 + AlH3 => 1/2MgH2 + TiH2 + 1/2NaAlH4 + 1/2NaMgH3 + 1/2Al

NaAlH4 + MgH2 <=> NaMgH3 + Al + 3/2H2 3.7wt%

NaH:MgH2:TiH2:AlH3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3hrs. 60oC/200bar/20hrs 80oC/200bar/20hrs 100oC/200bar/20hrs 120oC/200bar/20hrs

Aim Composition Hand Mixed* SPEX Milled Charged Charged Charged Charged

Mol

ecul

ar %

LiNa2AlH6NaMgH3NaAlH4 (L2q)AlAlH3LiHMgH2NaH

NaH + MgH2 + LiH + AlH3 => 3/4MgH2 + 1/8LiNa2AlH2 + 1/2NaAlH4 + 1/4NaMgH3 + 3/8Al

NaH + MgH2 + LiH + AlH3 => 3/4MgH2 + 3/8LiNa2AlH6 + 1/4NaMgH3 + 1/2Al + 5/8LiH(?)

LiH absrobed

4NaAlH4 + LiH + 2MgH2 <=> LiNa2AlH6 + 2NaMgH3 + 3Al + 5H2 3.99wt%

AccomplishmentsSSP NaH-LiH:MgH2:TiH2:AlH3 System Survey

NaH:MgH2:LiH:AlH3

NaAlH4+MgH2 NaMgH3+Al+3/2H2 3.7 w/o4NaAlH4+LiH+2MgH2

Na2LiAlH6+2NaMgH3+3Al+9/2H2 3.3 w/o

2NaAlH4+LiH Na2LiAlH6+Al+3/2H2 2.6 w/o Li3AlH6 3LiH + Al+3/2H2 5.6 w/o

Numerous mixed compound systems identified having H2 capacities ranging from 2.6-5.6 w/o, and which are rechargeable ≤ 200 bar at T<120oC.

Page 16: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

16United Technologies Research Center

20 30 40 50 60x10^3

2.0

4.0

6.0

8.0

10.0

70 80 90 100 110 120Two-Theta (deg)

x10^3

2.0

4.0

6.0

8.0

10.0

[05-080.MDI] CAP05-004k,0.065gLiH,).21gMgH2,0.48gNi,0.24gAlH3,SPX3h,Chg100C,190b,20h <Psi97-003-7756> Nickel - Ni97-002-1490> Mg H2 - Magnesium Hydride97-003-3329> Al - Aluminum97-007-6165> Li3 Al D6 - Trilithium Aluminium Deuteride

Inte

nsity

(Cou

nts)

theta cal

Bkd & Ka2 Subtd

59.5 w% Ni, 317A, RIR = 8.15, shi-0.01416.6 w% MgH2, 166A, RIR = 2.73, shi+0.00720.4 w% Al, 364A, RIR = 4.47, shi-0.0093.5 w% Li3AlH6, 412A, RIR = 0.96, shi-0.135

R/E = 2.60

Al

AlH6

H2

AlH3

NaH

Al

Am Tm

NaAlH4

Na3

AlH6

H

TmAl3

NaH

TmAl

Tm3Al

CY ‘04:Hand Mix, Ball Mill60, 80, 100 & 120oC

/200bar/20 hrsCY ’05:Hand Mix, Ball Mill100oC/200bar/20 hrs

Li:Ni:AlNa:Ni:AlMg:Ni:Al

Li:Mg:Ni:AlNa:Mg:Ni:Al

Li:Co:Al

Ak/Ae/Tm

Na:Co:AlMg:Co:Al

Na:Mg:Co:AlLi:Fe:AlNa:Fe:AlMg:Fe:Al

Mg2NiH4Mg2CoH5Mg2FeH6

Li2Mg(NiH4)2Na2Mg(CoH5)2LiNaMg(FeH6)2

?

1:1:1Am/Ae:Tm:Al

• Moving on to transition metal substituted systems.• Maximize compositional ranges covered by using fewer thermal treatments.

AccomplishmentsSSP 2005 Approach Going Forward

Page 17: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

17United Technologies Research Center

20 30 40 50 60 70 80 90

NaHLiHNaAlH4

Na3AlH6

Na2LiAlH6

Tape TSS Holder sUnidentif. ?

s

s

T

T

?

NaH + LiH +NaAlH4 =>Na2LiAlH6 Range ofProcessing Conditions

RT-600oC200 bar

8 hr dwell timeQuiescent or agitated1 liter ~600g capacity

Demonstrated MSP advantages: Solvent- and anion-free processing produces high yields of clean complex hydrides. One liter pressure vessel scaleable to meet system demonstration requirements.

Processing Conditions190oC, 200 bar, 15 min. dwell time, agitated

AccomplishmentsMolten State Processing (MSP) Proof of Concept

Page 18: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

18United Technologies Research Center

AccomplishmentsMSP Compositional System Surveys

10 20 30 40 50 60 70 80Two-Theta (deg)

0

500

1000

1500

2000

2500

3000

Inte

nsity

(Cou

nts)

[lump.xrdml] NaKLiAlH6 #189-2778> KH - Potassium Hydride

43-1437> KAlH4 - Potassium Aluminum Hydride76-0172> NaH - Sodium Hydride

42-0848> AlH6LiNa2 - Lithium Sodium Aluminum Hydride42-0786> AlH6Na3 - Sodium Aluminum Hydride

?

?

?

Film

10 20 30 40 50 60 70 80Two-Theta (deg)

0

500

1000

1500

2000

2500

3000

Inte

nsity

(Cou

nts)

[lump.xrdml] NaKLiAlH6 #189-2778> KH - Potassium Hydride

43-1437> KAlH4 - Potassium Aluminum Hydride76-0172> NaH - Sodium Hydride

42-0848> AlH6LiNa2 - Lithium Sodium Aluminum Hydride42-0786> AlH6Na3 - Sodium Aluminum Hydride

?

?

?

Film

30 40 50 60 70 80Two-Theta (deg)

0

1000

2000

3000

4000

5000

6000

Inte

nsity

(Cou

nts)

[20050113-001.xrdml] Mg, SAH Introducing Mg01-070-3873> NaMgH3 - Sodium Magnesium Hydride

03-065-2869> Al - Aluminum01-089-5003> Mg - Magnesium

01-074-0934> MgH2 - Magnesium Hydride01-073-0088> NaAlH4 - Sodium Aluminum Hydride

01-077-2064> NaCl - Sodium Chloride

30 40 50 60 70 8030 40 50 60 70 80Two-Theta (deg)

0

1000

2000

3000

4000

5000

6000

Inte

nsity

(Cou

nts)

[20050113-001.xrdml] Mg, SAH Introducing Mg01-070-3873> NaMgH3 - Sodium Magnesium Hydride

03-065-2869> Al - Aluminum01-089-5003> Mg - Magnesium

01-074-0934> MgH2 - Magnesium Hydride01-073-0088> NaAlH4 - Sodium Aluminum Hydride

01-077-2064> NaCl - Sodium Chloride

NaAlH4+LiH+KH=> LiNa2AlH6+KAlH4+NaH+KH+Na3AlH6+ ?

Processing Conditions

NaAlH4+MgH2=> Al+NaMgH3+Mg

190oC, 200 bar, 15 min. dwell time, agitatedProcessing Conditions

190oC, 200 bar, 15 min. dwell time, agitated

Multiple unidentified peaks

identified

Four quaternary/quinary composition systems investigated to date:Na-Li-Al-HNa-Ti-Al-H Na-K-Li-Al-HNa-Mg-Al-H

89-2778> KH - Potassium Hydride43-1437> KAlH4 - Potassium Aluminum Hydride

76-0172> NaH - Sodium Hydride42-0848> AlH6LiNa2 - Lithium Sodium Aluminum Hydride

42-0786> AlH6Na3 - Sodium Aluminum Hydride

89-2778> KH - Potassium Hydride43-1437> KAlH4 - Potassium Aluminum Hydride

76-0172> NaH - Sodium Hydride42-0848> AlH6LiNa2 - Lithium Sodium Aluminum Hydride

42-0786> AlH6Na3 - Sodium Aluminum Hydride

NaMgH3 - Sodium Magnesium Hydrid03-065-2869> Al - Aluminum

01-089-5003> Mg - Magnesium01-074-0934> MgH2 - Magnesium Hydrid

01-073-0088> NaAlH4 - Sodium Aluminum Hydride01-077-2064> NaCl - Sodium Chloride

NaMgH3 - Sodium Magnesium Hydrid03-065-2869> Al - Aluminum

01-089-5003> Mg - Magnesium01-074-0934> MgH2 - Magnesium Hydrid

01-073-0088> NaAlH4 - Sodium Aluminum Hydride01-077-2064> NaCl - Sodium Chloride

Multiple unidentified peaks observed in Na:Li:K:Al:H system provided evidence for formation of new compounds.

Page 19: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

19United Technologies Research Center

After Fusion At 200 bar, 190oC,15 min.

TPD discharge experiments showed MSP hydrides to be more active than conventionally ball milled hydrides. This material is being kinetically examined for possible use in CCHSS#2.

Before FusionSolid-state processed NaAlH4 + 4%TiH2

AccomplishmentsMSP Produced Highly Active NaAlH4

Page 20: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

20United Technologies Research Center

AccomplishmentsSolution Based Processing (SBP) Ti/Na Alanates

2%Ti+3

4%Ti+3

10%Ti+3

NaAlH4

NaAlH4

NaAlH4 Na3AlH6

Na3AlH6

Al

Al/Al3Ti

NaClNaClNaCl

NaCl

NaAlH4

NaAlH4NaAlH4

NaAlH4

NaAlH4

Al/Al3Ti

TiCl4(THF)2 + Al(i-Bu)3 TiCl3(THF)3NaAlH4 + xTiCl3(THF)3 NaTixAl1-xH4 + ….

Mole ratioTi:Al

2:100 4:100 10:100 33:100

Mole ratioH2:Ti

7.7 6.7 6.4 5.7

NaTixAl1-xH4xAl3Ti + 6xH2 + (1-3x)NaAlH4

Hydrogen Evolution as a Function of Time and Temperature

050

100150200250300350400450500

0 20 40 60 80 100 120 140

Time (min.)

H 2 E

volu

tion

(ml)

-10

-5

0

5

10

15

20

25

Tem

pera

ture

(deg

C)

2% Ti+3

•Complete solution doping reaction at 25oC.•Disproportionation to Al3Ti.•New ordered phases observed in related systems.

Demonstrated SBP synthesis route to homogeneous Ti+3 doped alanates. This material is being kinetically examined for possible use in CCHSS#2.

Page 21: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

21United Technologies Research Center

Future Work

FY’05 Deploy integrated methods to search and discover high capacity systems.FY’06 Refine new system compositions. Catalyze improved kinetic performance.

Thermodynamics Survey of Compositional Space

Phase Behavior PredictionsFY’05 Designed Endproducts

FP ModelingNew Phase Simulations

Thermodynamic PredictionsFY’05 Ak/Ae with Al, B & TM

ExperimentationSynthesis, Characterization,

Performance Evaluation

New phase structures

ID systems withcompetitive stability

Discovery of High H Capacity Hydrides

Discovery of High H Coupled Reactions

ID compositional targets

Recommendsyntheses

Solution Based ProcessingNew Phases from Chemical

Design and SynthesisFY’05 Ak/Ae with Al, B & TM

Solid State ProcessingNew Phases from

Mechanochemical MixingFY’05 Ak/Ae with Ni, Co, Fe

Molten State ProcessingNew Phases fromHigh T & P Fusion

FY’05 Ak/Ae with V, Cr, Mn

Parallel Search Strategies

New phase properties

Validate predictionsRefine compositionsRefine

compositions

Ak = alkaliAe = alkaline earthTM = transition metals

Page 22: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

22United Technologies Research Center

Responses to Previous Year Reviewers’ Comments

• Comment“Consider broadening to include non-alanate materials?”By adding other complexing elements such as B, Ga … vastly increases the scope of investigation, thus limiting empirical investigations into all possible combinations. Additions of these elements will be investigated atomistically and empirically where modeling indicates high hydrogen capacity materials are stable.

• Comment“DOE should consider how this project relates to or coordinates with the Sandia Metal Hydride Center of Excellence?”UTRC has always maintained a high degree of communication with SNL and many of its CoE partners through DoE sponsored meetings, IEA meetings, and laboratory visits. This communication will continue.

• Comment– “Need validation that the modeling is predicting properties correctly.”– “Need to insure that the modeling efforts are not independent of experiment.”

As shown in the progress to date, modeling and empirical results have shown very good agreement. We have a very high confidence level in modeling predictions when phonon approach is incorporated. The modeling & empirical efforts are designed to be interdependent with each other, and are closely coordinated with monthly meetings used to exchange data, ideas, and concepts.

Page 23: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

23United Technologies Research Center

Backup Slides

Page 24: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

24United Technologies Research Center

O. M. Løvvik, S. M. Opalka, H. W. Brinks, and B. C. Hauback, “Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6,” Phys. Rev. B 69 134117-134125 (2004).

H.W. Brinks, B.C. Hauback, C.M. Jensen, and R. Zidan, “Synthesis and crystal structure of Na2LiAlD6,” J. Alloys Compd. 392(1-2) 27-30 (2005).

O. M. Lovvik and S. M. Opalka, “First-principles calculations of Ti-enhanced NaAlH4,” Phys. Rev. B 71 054103-1-10 (2005).

O. M. Lovvik, O. Swang, and S. M. Opalka, “Modeling alkali alanates for hydrogen storage by density-functional band-structure calculations” submitted 4/05 J. Mater. Res.

C. Qiu, S. M. Opalka, G. B. Olson, and D. L. Anton, “The Na-H System: from First Principles Calculations to Thermodynamic Modeling,” submitted 4/05 Phys. Rev. B. Two related papers on the Na-Al-H and Na-Ti-Al-H system currently in preparation.

Presentations

Publications

O. M. Løvvik and S. M. Opalka, “First-principles calculations of Ti-enhanced NaAlH4.” International Symposium of Metal Hydrogen Systems (MH2004), Cracow, Poland, September 10, 2004.

R. Zidan, “Development and Characterization of Complex Hydrides,” Invited Speaker, ASM Material Solution Conference, Columbus, OH, Oct. 18-21, 2004.

R. Zidan, “Hydrogen Storage R&D Key Issues for the Hydrogen Economy,” and “Solid-State Hydrogen Storage Systems,”Hydrogen Economy Workshop, Invited Speaker as Representative for the Department of Energy, Cairo, Egypt, January 31 –February 2, 2005.

C. Qiu, S. M. Opalka, D. L. Anton, and G. B. Olson, “Thermodynamic Modeling of Sodium Alanates,” Materials Science & Technology 2005, to be held in Pittsburgh, PA, on September 25-28, 2005.

S. M. Opalka, O. M. Lovvik, H. W. Brinks, B. C. Hauback, and D. L. Anton, “Combined Experimental-Theoretical Investigations of the Na-Li-Al-H System,” Materials Science & Technology 2005, to be held in Pittsburgh, PA, on September 25-28, 2005.

Multiple collaborations foster H2 storage research progress and communication.

Page 25: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

25United Technologies Research Center

SafetyRisk Identification

DoE Hydrogen Storage Safety Review Committee use only not for public dissemination 1

Burn Rate Test

13.110

16.082.97

20.016.90

24.2011.09

Partially Discharged CCH#0-33

DoE Hydrogen Storage Safety Review Committee use only not for public dissemination 13

Water Immersion Test

4.120

4.23.11

4.24.12

4.27

Partially Discharged CCH#0-33

DoE Hydrogen Storage Safety Review Committee use only not for public dissemination 14

Water Injection31.06

031.200.14

31.230.17

1:01.0930.03

Partially Discharged CCH#0-33

DoE Hydrogen Storage Safety Review Committee use only not for public dissemination 17

Dust Explosion Testing

430584137.5137.5TcoC

17110<7<7MIE mJ

306590140MEC g/m3

St-1St-1St-3St-3Dust Class

139124326869Kst bar-m/s

51142612003202Rmax bar/s

7.47.38.911.9Pmax bar-g

Lycopodium Spores

Pitt. Seam Coal Dust

NaH+AlNaAlH4

Reference MaterialsTest Materials

Pmax = maximum explosion pressure, Rmax = pressure rise maximum, Kst = maximum scaled rate of pressure rise,MEC = minimum explosive concentration, MEI = minimum spark ignition energy, Tc = minimum dust cloud ignition temperature

•Dust explosion: class St-3, Highly Explosive when finely divided and dispersed.

Fire risk quantitatively

assessed

Explosion risks quantitatively

assessed

Appendix V- UTRC Risk Assessment Form Date Room Number Participants 5/4/04 S145H Tom Ververis, Xia Tang, Ron Brown, Jodi Vecchiarelli

No Process, Task or Step

Potential hazard

Controls in Place Likelihood Occurrence

Potential Impact

Risk Rank

Controls Required To reduce risk further/Name/Date

1 Mixing Powder Media Preparation

Fire, Explosion All work is done in glovebox filled with Nitrogen Containers inside glove box sealed Gloves inspected every day Nitrogen pressure checked every day Moisture and O2 sensor in glovebox Positive pressure maintained in glove box

2 3 6 Med

2 Hydrogen Storage Running Test

Failure of High Pressure Systems Fire, Explosion

Restricted use Risk assessments Local rules and procedures Pressure rated components Pressure relief valves Automatic controllers; Redundant valves Detailed Procedures; Employee training Critical valve Maintenance Remote gas line shutoff and purge if loss of power or ventilation All test stands in hoods All equipment leak tested (H2 sniffer) Flash arrestor Moisture filters

2 3 6 Med

Lower Pressure

3 Hydrogen Storage, Running Test

High Temp. Oil Bath, Burns, Oil spill

Warning sign “Hot Oil” Secondary containment Redesigned Jack stand gard in place Located in hood.

2 2 4 Low

4 Vacuum System (Hydrogen),Running Test

Explosion Special Hydrogen Vac. Pumps Sparkless

2 3 6 Med

5 Working in glovebox

Ergonomic pain Limited time in glovebox to 45 minutes max. Set up to avoid awkward reaching

2 2 4 Low

6 Lifting, transporting samples

Ergonomics Training, procedures Weight kept to < 30 pounds

2 2 4 Low

Comprehensive risk assessment performed on all major operations

quantitatively describing both impact and probability of occurrence.

Page 26: Complex Hydride Compounds with Enhanced Hydrogen …X. Tang & D. A. Mosher United Technologies Research Center E. Hartford, CT R. Zidan T. Motyka ... Coupled methodologies provide

26United Technologies Research Center

SafetyRisk Mitigation

Material handled under inert gas

Incoming material stored in fire cabinet

Materials tested in commercial equipment installed in a glove

box

Media stored under inert gas

All risks reduced to low impact or negligible probability.