68
NASA Technical Paper 3644 Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center Hampton, Virginia Hans Bichsel Washington University Seattle, Washington John W. Wilson, Judy L. Shinn, and Francis A. Cucinotta Langley Research Center Hampton, Virginia Francis F. Badavi Christopher Newport University * Newport News, Virginia National Aeronautics and Space Administration Langley Research Center • Hampton, Virginia 23681-2199 October 1997 https://ntrs.nasa.gov/search.jsp?R=19970036323 2020-04-22T20:50:45+00:00Z

Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

NASA Technical Paper 3644

Comparison of Stopping Power and RangeDatabases for Radiation Transport Study

H. Tai

Langley Research Center • Hampton, Virginia

Hans Bichsel

Washington University • Seattle, Washington

John W. Wilson, Judy L. Shinn, and Francis A. Cucinotta

Langley Research Center • Hampton, Virginia

Francis F. Badavi

Christopher Newport University * Newport News, Virginia

National Aeronautics and Space AdministrationLangley Research Center • Hampton, Virginia 23681-2199

October 1997

https://ntrs.nasa.gov/search.jsp?R=19970036323 2020-04-22T20:50:45+00:00Z

Page 2: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Available eleclronically at the following URL address: http:lltechreports.larc.nasa.govlltrslltrs.html

Printed copies available from the following:

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

Page 3: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Contents

Abstract ........................................................................... 1

1. Introduction ..................................................................... 1

2. General Theoretical Considerations ................................................... 1

3. Basic Formula of Energy Loss ....................................................... 2

4. Range-Energy Relations ............................................................ 4

5. Description of LaRC code .......................................................... 4

5.1. Electronic Stopping Power for Protons ............................................. 4

5.2. Electronic Stopping Power for tx Particles ........................................... 4

5.3. Electronic Stopping Power for Other Ions ........................................... 5

5.4. Nuclear Stopping Power ......................................................... 5

6. Numerical Results ................................................................ 5

7. Concluding Remarks .............................................................. 6

References ........................................................................ 6

Tables ............................................................................ 8

too111

Page 4: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia
Page 5: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Abstract

The codes used to calculate stopping power and range for the space radiation

shielding program at the Langley Research Center are based on the work of Zieglerbut with modifications. As more experience is gained from experiments at heavy ion

accelerators, prudence dictates a reevaluation of the current databases. Numerical

values of stopping power and range calculated from four different codes currently in

use are presented for selected ions and materials in the energy domain suitable for

space radiation transport. This study of radiation transport has found that for mostcollision systems and for intermediate particle energies, agreement is less than I per-

cent, in general, among all the codes. However, greater discrepancies are seen for

heavy systems, especially at low particle energies.

1. Introduction

Both analytical and experimental approaches are

needed when studying the transport of space radiation for

the purpose of protecting astronauts and flight instru-

ments. Experimental work is important because it serves

as the ultimate verification, but it is expensive and time-

consuming. Analytical (or computational) approaches,

therefore, are needed as a tool to obtain the necessary

information. One essentially tries to solve the Boltzmann

transport equations (ref. 1) with proper boundary condi-

tions and data input files, such as stopping power, ranges,

nuclear fragmentation cross sections, nuclear absorptioncross section. Accurate and reliable information about

stopping powers and ranges is therefore important in the

study of radiation transport. The purpose of this report is

not to give an in-depth description of the physical mech-anism nor the various computational models but rather to

compare the numerical results generated by some of the

codes currently in use and to establish how the resultscalculated with different codes differ from each other.

The present code (referred to as the "LaRC code") is

based on the work of Ziegler (refs. 2 to 7) with the heavy

ion Thomas-Fermi scaling rule being used. However,

modifications to Ziegler's basic method were made.

Ziegler (Ziegler code) based his algorithm on a fit to

experimental data, and for the present study we use it in

the same domain. For extrapolations to other domains ofinterest, we made some exceptions to Ziegler's method.

Bichsel (RSTAN and RSHEV codes) states that his

parameters are based on more recent experimental data.The third and fourth sets of limited data are from the

work of Hubert (Hubert code) (ref. 8) and Janni (Janni

code) (ref. 9). The values of stopping power and range

generated by these codes are presented for different pairs

of particles and absorbers in different energy domains. Insections 2, 3, and 4, the basic definition and nomencla-

ture of stopping power and range theory are discussed,

and in section 5, the LaRC code is briefly described. Insection 6, the numerical comparisons generated by dif-

ferent codes are briefly discussed.

2. General Theoretical Considerations

A fast charged particle traversing matter makes colli-

sions and loses energy to atomic electrons and nuclei. An

important difference in the loss mechanism is present if

the medium is in a gas phase or in a condensed phase. In

isolated atoms, the smallest energy losses are to discreteexcited electronic states, and ionization occurs for energy

transfer exceeding the binding energy of each atomicshell (ref. 10). When atoms are brought closer together to

form a liquid or solid, their valence electrons are under

the influence of the cores of surrounding atoms. A coreconsists of the nucleus and all the electrons inside the

valence shell. For metals, the valence electrons form a

conduction band where the electrons are nearly free. If a

charged particle moves through the solid, the transfer ofvery small energies to the electrons by Rutherford scat-

tering is not observed. Instead many thousands of

valence electrons interact simultaneously with the parti-

cle, and this interaction leads to many bodies in excited

states. For metals, this process is called a plasmon excita-tion; for insulators, a collective excitation.

For particles heavier than electrons, the collisionswith absorber electrons and nuclei have different conse-

quences. The electrons can receive large amounts of

energy from the incident particle without causing signifi-cant deflections, whereas the nuclei absorb very little

energy but cause scattering of the incident particle

because of their greater mass. The deflection of the parti-cle from its incident direction results mainly from elastic

collisions with the nuclei. The scattering is confined to

rather small angles; therefore, a heavy particle keeps a

more or less straight path until it nears the end of its

range.

The study of stopping power and range theory has

attracted physicists for the nine decades since the days

Madame Curie discovered radioactivity in materials.

Hundreds of papers and dozens of review articles have

been written on this vast subject. (See, e.g., refs. 10 to

22.) The stopping power is defined as the mean energy

Page 6: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

lossperunit pathlength-dE/dx. Therangeof aparticleof giveninitial kineticenergyE 0 is defined as the mean

path length traveled before coming to rest. In the contin-

uous slowing-down approximation, the range R(Eo) can

be expressed as the integral over the reciprocal of stop-

ping power from zero energy to E0.

correction terms (refs. 24, 25, and 26), the final equationcan be written as

41_Z_Z2 e4 f C(_) +s- ZTv Nl 0-%-

For speeds v greater than c/137, the basic loss mech-

anism is well understood, especially for light ions such as

protons and alpha particles. The analytical predictions

and experimental results agree within 3 percent. How-

ever, when the ion and/or the target are heavy or the inci-dent energy is low, the calculations and experimental

results begin to show larger discrepancies. At lower par-

ticle energies (i.e., at v < c/137), which are comparable

with those of outer atomic electrons, capture and loss of

electrons by the penetrating particle complicate its

energy loss processes.

3. Basic Formula of Energy Loss

A particle of mass M l and charge Zle penetrates a

material composed of atoms of atomic number Z 2 andatomic mass M 2. The projectile interacts via the electro-

magnetic force with the electrons and nuclei of the

medium and via the strong nuclear force with the nucleiof the absorber. For thin absorbers, the nuclear force can

be disregarded to first order because the ratio of the

nuclear to atomic cross sections is very small (=10-8).

The projectile slows down mainly by losing energy to theelectrons of the absorbing medium. Different approaches

to this energy loss lead to similar expressions. The com-

monly accepted model is the Bethe solution, and most

recently developed approaches follow closely the Betheapproach by fine-tuning some of the parameters in themodel.

+ Z21L2(_) + _ [ G( M I,[J) - _(_) ] }(l)

where

222

is the asymptotic stopping number, e is the electronic

charge, N is the density of the atoms in the target,

ra is mass of electron, c is speed of light, 13 = v/c, and72= 1/(1 - _2). Equation (1) serves as the common foun-

dation of most theoretical treatments of stopping power.

The various parameters in equation (1) are consid-

ered next. The mean excitation energy I is treated as a

property of each material defined by

where

In(1) = Z fn ln(En) (3)n

2/. = h2z---(4)

is the dipole oscillator strength for the nth energy level

and h = h/2n (where h is the Planck constant). Equa-tion (4) satisfies the Thomas-Reiche-Kuhn sum rule

Bethe's treatment (ref. 23) of the energy loss is

based on the Born approximation applied to the colli-sions between the heavy particle and the atomic elec-

lyons. In this theory, the projectile heavy particle is

assumed to be structureless, and the target nucleus isassumed infinitely massive. The differential cross section

for a process in which the heavy particle transfers a given

momentum to the atomic electrons is given by the squareof the matrix element of the Coulomb interaction

between appropriate initial and final states. Plane wavesare used for the wave functions of the incident and scat-

tered heavy particle. The initial state of the atom for the

ground state is described by the unperturbed atomic wave

function; for the final state, by the wave function for one

of the excited states. Multiplying the cross section for

a given energy loss by the energy loss and summing

over all possibilities give the final expression for the

average energy lost per atom. With relativistic and other

Z fn = 1 (5)n

However, Rustgi, Leung, and Long have shown thatfor the heavy systems, a sum-rule calculation in a semi-

relativistic approach may lead to inaccurate results

(refs. 27 and 28). The determination of/presents consid-

erable difficulty because the most important excitationenergies E n lie in the range of 10 to 1000 eV where the

oscillator strengths fn are poorly known. Usually, thevalue of I is treated as an adjustable parameter deter-

mined empirically. For rough estimates of I, the approxi-mation (ref. 29)

11.2

I = 11.7 + _Z2 eV (Z2_< 13)

1--9.5+1 eV (Z2 > 13 )

(6)

2

Page 7: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

is useful,togetherwith theBraggrulefor compoundsandcompositematerials

n e ln(1) = _ n i ln(li) (7)i

where n i is the electron density associated with element i

and n e is the average electron density.

In equation (1), the correction terms are as follows:

Shell correction: The asymptotic expression for the

stopping power depends on the assumption that

the speed of the incident heavy particle is much

higher than that of the atomic electrons in their

normal bound states. This approximation is inade-

quate, especially for the inner shell electrons of

the heavy elements that move with much faster

speeds. The correction C([_)/Z 2 is defined as an aver-

age over the contributions of the several shells, with

C = C K + CL + .... Each shell correction can be esti-

mated by using hydrogenic wave functions (refs. 16,26, 30, 31, and 32).

Barkas term: The term LI(I] ) arises from polariza-

tion of the target electrons by the incident particle.

The Barkas effect is the difference in stopping power

of heavy particles of opposite charge under other-

wise equal conditions. Positively charged projectiles

draw atomic electrons closer to them, whereas nega-

tively charged projectiles repel electrons. The obser-

vation of the Barkas effect signaled the start of a gen-

eral study of the departure of energy loss phenomena

from the scaling law of the plane-wave Born approx-imation. These differences are alternatively called

Z31 effects because the theoretical accounts that have

been developed to address this phenomenon treat

terms to this order. Since the Z_ term appears to

arise from distortions of the target electron motion or

wave function during the collision, it is also referred

to as a "polarization effect" So far, the status of

experiment and theory does not provide a definite

conclusion. The role of high-order terms in inner-

shell ionization as the primary origin of the Barkaseffect has been suggested. (See refs. 33 and 34.)

Bloeh term: The term L2(_) arises from correctionsto the approximation that for close collisions, the

outgoing electrons can be represented by planewaves (refs. 33, 34, and 35). Bloch considered an

intermediate impact parameter bl, and assumed thatthe electrons confined to the interior of a cylinder of

radius b I cannot be represented by plane waves. Thisassumption introduces transverse momentum com-

ponents that interfere with one another under the

influence of the scattering potential; this results inthe Bloch correction term

2£ 1Z_L2([3 ) = -y

j=l j(j2 + y2)

(8)

where y = ZlOt./[_ and the fine structure constant ot

equals 1/137.04.

Mott term: The term G(M¿,_) is a kinematic recoil

correction, which becomes important for relativistic

projectiles. For a spinless nucleus, the correction is

(ref. 21)

G(MI,[_ ) = In(1 +2t)---t[_2

27

(9)

where t = mTIM 1.

Density correction: The term _5(13)arises from the

dielectric response of a solid absorber as a whole to

the electric field generated by the projectile and the

work done by the interaction. Sternheimer (ref. 36)

and Sternheimer and Peierls (ref. 37) have given the

expressions as well as the parameters to be used in

an approximation for the density effect correction.

Shinn et al. (ref. 38) have taken the asymptotic

expression suggested by Sternheimer as a correctionin the LaRC code.

Other corrections: The corrections in equation (2)

may not be independent. For example, Basbas

(ref. 33) has suggested that to separate Bo from L1

and L2 may not be plausible. In addition to the cor-

rections mentioned previously, other important cor-rections at ultrarelativistic velocities include (1) radi-

ative correction, (2) projectile structure correction

(represented by the nuclear form factor), and

(3) bremsstrahlung and pair production.

At small projectile energies, the various correction

terms in equation (2) become large compared with B0. Inparticular, for 2my 2 = 1, Bo becomes zero. For example,

as pointed out by Bichsel (ref. 26) for ct particles

impinging on uranium (I = 840 eV), B o equals 0 at

E0 = 1.5 MeV, and S consists only of correction terms.

For smaller energies, an empirical approach is used to

describe S. Heavy ions at small energies have electrons

attached and thus have a reduced charge Z l < Z 1. If Z lis defined to give the correct observed stopping power, it

is not equal to the mean charge per particle of a beam

leaving an absorber. An equation commonly used for the

3

Page 8: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

effectivechargehasbeenpublishedin references39and40andis

Z1 = 1 - exp(-1.316x + 0.1112x 2 - 0.0650x 3)Z 1

(10)

where x = IO0_IZ_/3.

In the LaRC code, the following formula proposedby Barkas (ref. 41) has been used:

z;-- = 1 - exp(-1.25x)Z l

(11)

The difference in Z_ in equations (10) and (11) is no

more than 2 percent for all speeds and Z 2. Hubert,Bimbot, and Gauvin published another effective charge

pararneterization formula (ref. 8), which depends on both

Z 1 and target charge number Z 2.

4. Range-Energy Relations

The mean path length in the continuous slowing-

down approximation (CSDA) is defined as

_EE° S -1R(Eo) = dE (12)

where Emi n is the thermal energy of the particle. For

practical purpose, Emi n can be set to zero.

5. Description of LaRC code

An outline of the procedures used in the LaRC code

is given in this section with energy E in kiloelectronvolts.

5.1. Electronic Stopping Power for Protons

In the LaRC code, which follows the approach of

Ziegler, the section that evaluates the stopping power ofprotons is generated in subroutine ATOPP. The modified

Ziegler results are used as follows:

Sp =

)

al,fE (0<E_< 10 keY) /

l

SLSH ( 10 keY < E < 999 keV)(SL + SH) - _

a6F ( a7[_2 _ _] Llnt _-T- <,OOOkoV E)

(13)

where

S L = a2 E0"45 (14)

a'Ia4 1S H = -_ In l+-_+a5E (15)

, { c,o'177)C = X a7+i [ln(E)]i-1 1-exp 2 Ti=1

(16)

where Ziegler's parameter a i is used and 5 equals the

density effect obtained from the Sternheimer asymptotic

form. In equations (13), in the high-energy expression,the density effect and the post factor in equation (16) (the

term in braces, that is, {1-exp[-2(105/E)2]}) have

been added to the Ziegler expression. This post factor

was chosen so that shell correction vanishes for large E.

(See section 4 in ref. 17.) The coefficients al,a 2..... a12can be found in tables 1 and 2 in reference 13.

5.2. Electronic Stopping Power for a Particles

In the LaRC code, the section that evaluates the stop-ping power of a particles is generated in subroutine

ATOPA with the following algorithms:

So_ ---

• a 2

ale (E < 1 keV)"

SLSH(1 keV <E< 104 keV)

(S L + Sn)

S I (10 4 keV <E < 2 x 104 keV)

"1 E ----(12 > 1--04)1 'c [E-.-(2xI04)14S2 x 104 J °l + 2 x 104 J P

(2 x 104 keV <E<4 × 10 a keV)

4Sp (E > 4 x 104 keV)

(17)

where

S L = al Ea2 (18)

f '0304SH = E In 1 + -----_-- + a 5 (19)

$1= exp{a6+a 7 lnI'm_----)+a8[ln(l_0)l 2

(20)

Page 9: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Thecoefficientsal,a 2 ..... a9 for the t_ particle are

from reference 5. Ziegler's coefficients are for the phase

of material where experiments were performed exceptfor hydrogen where values for the condensed phase are

used. The term Sp is simply the proton stopping power atthe corresponding speed.

5.3. Electronic Stopping Power for Other Ions

The scaling scheme from the stopping power of the

particle was adopted to obtain the ion stopping power

in subroutine SIONA by

, 2(Zion)

Sion - , 2 S_ (21)(z_)

where S a is the stopping power of _ particles and Z isthe effective charge defined in equation (11).

5.4. Nuclear Stopping Power

In the LaRC code, the section that evaluates the

stopping power of incident ion due to the screened

Coulombic potential of the target nucleus is generated

as ATOPN. The treatment of Ziegler is followed in

expressing the universal nuclear stopping power in terms

of reduced energy and universal screen length. (See

ref. 2.)

6. Numerical Results

Proton stopping power results generated by the

LaRC code and the results published in reference 4 (from

the multivolume work edited by Ziegler) are presented

for nine targets at a low energy of 0.01 MeV to a medium

energy of 100 MeV, where Ziegler's table ends. Al-

though some modifications to Ziegler's parameters were

made, such as density effect and cutoff factor, the numer-

ical differences in these energy ranges are small; thus, anumerical comparison is not presented. However, the dif-

ferences are expected to increase as ultrarelativistic ener-

gies are approached. Ziegler's results would have a

logarithmic divergence behavior which is not physical,

whereas the present results clearly have been properly

corrected by the cutoff factor in equation (16). Next the

contribution of the density effect correction to the total

stopping power was explored. The formalism of

Sternheimer (ref. 36) as implemented by Shinn et al.

(ref. 38) was adopted; however, only the asymptotic

expression, which is much easier to implement, was

used. Armstrong and Alsmiller (ref. 42) have shown

overestimation by using the asymptotic formula because

the value of the density effect is no more than 6 percent.

Slight inaccuracies in a small correction are assumed tohave negligible influence and can be tolerated. The data

in table 1 clearly show when the density effect eontrib-

utes appreciably as a function of impinging energy. At

extremely high energies, for example, beyond 500 GeV,

the data in table 1 suggest that density effect could make

more than a 20-percent contribution to the total stopping

power.

In table 2, the present results and the stopping power

values of Janni are given. He used a different scheme forthe corrections. For the shell correction, he obtained a

total correction by calculating the correction of each sub-

shell and then summing the results. For the density

effect, the correction was calculated from first principles

for each material from the fundamental equations; the

material independent term was not included. The

adjusted ionization potentials were determined in a

weighted least-squares analysis by fitting the Bethe equa-

tion to the experimental data. In the low-energy region, a

different fit of experimental data was used including

nuclear stopping. In table 2, when comparing the data

from the LaRC and Janni codes, good agreement is found

with the proton energy above 40 keV except when iron isthe target. Then a consistent discrepancy of 5 to 10 per-

cent throughout the whole energy range is seen. Also, the

difference between the two results can go as high as

30 percent at the low-energy end (10 keV).

In tables 3, 4, and 5, the results from the LaRC and

the Hubert codes are presented. The tables of Hubert,

Bimbot, and Gauvin (ref. 8), whose scheme includes a

more elaborate effective charge parameterization for-

mula that includes a dependence on Z 2 (the target atomic

number), are used. Hubert claims that the dependence is

necessary in order to be able to reproduce the whole set

of experimental stopping powers. From tables 3, 4, and 5,

for the limited systems and the energy specified, whichlacks low energies, however, the two results seem to

agree very well.

The results of the LaRC and Bichsel codes are pre-sented in tables 6 to 11. Because Bichsel states that his

code is only reliable for EIA > 2.5 MeV/nucleon and for

Z 1 < 20, the low-energy data are questionable; these datashould be disregarded in tables 6 to 11. For the space

radiation transport studies, p, e_, C, Ca, Ar, and Fe were

used as the projectile ions; C, Cu, Au, U, and H20, as the

targets. The energy range is from =2 MeV to =50 GeV,

depending upon the collision partners. In fact, two

slightly different versions of the Bichsel code were used:RSTAN and RSHEV. In the RSTAN code, Bichsel uses

the K- and L-shell corrections originally derived by

Walske with the nonrelativistic hydrogen approximation

(refs. 31 and 32), and he further uses the scaling proce-dure on the L-shell for the outer shells, whereas in

RSHEV he uses the separate subshell corrections for

three L-subshells, five M-subshells, and the scaling pro-

cedure for the outer shells (N, O, and P). The RSHEV

5

Page 10: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

code is supposedly more suitable for heavier targets

because of more detailed shell correction treatment.

Which code was used is clearly stated in tables 6 to 11.

The RSHEV code was used for targets Au and U and all

projectiles except Fe, and the RSTAN code was used for

Fe projectiles and targets Au and U simply because it

generated better agreement. The reason for this better

agreement is not clear. Tables 6 to 11 are arranged

according to weight of the projectile and the target; the

last target, water, is a compound. Table 6 gives stopping

powers which show good agreement, especially for

lighter targets. The range values show greater difference

because of the larger difference in stopping values in the

low-energy domain, which contributes to the range val-

ues through integration. In tables 6 to 1 1, as the projectile

gets heavier, in general, the agreement gets worse with

the Fe-U system being the worst (table 11 (e)). At a total

energy of 145.60 MeV (2.6 MeV/nucleon), the differ-

ence can be as high as 35 percent in stopping power and

43 percent in range values. Of course, the discrepancy is

expected as the colliding system gets heavier; this

implies that the physics involved becomes more compli-

cated. However, judging from tables 5, 1 l(d), and 1 l(e),

for iron as the projectile, the results indicate that the

LaRC code agrees better with the Hubert code than with

the Bichsel RSTAN code. Sometimes, the range values

calculated at low energy by Bichsel show negative

results (e.g., in table 10(c)) which of course are the result

of an interpolation error.

7. Concluding Remarks

With four different codes, a numerical comparison

of stopping power for selected collision pairs of materials

covering a wide range of energies was performed. The

purpose of this study was to survey the currently avail-

able stopping power and range prediction codes and to

reassess the present databases in the Langley transport

code. For the lighter projectiles, such as protons and

alpha particles, in a wide energy domain, the agreement

is fairly good for light targets. The discrepancy is less

than 3 percent for stopping power values but is a little

worse for range values. As the target becomes heavier, in

general the discrepancy gets worse, especially for low

energies. Based on this numerical exercise, the stopping

power and range databases used in the Langley transport

code are still acceptable for most impact energies and in

most of the collision systems. For the extremely low

energies and extremely heavy systems, further experi-

mental data are needed for the databases.

NASA Langley Research Center

Hampton, VA 23681-2199

May 23, 1997

6

References

1. Wilson, John W.; Townsend, Lawrence W.; Schimmerling,

Walter; Khandelwal, Govind S.; Khan, Ferdous; Nealy,

John E.; Cucinotta, Francis A.; Simonsen, Lisa C.; Shinn,

Judy L.; and Norbury, John W.: Transport Methods and Inter-

actions for Space Radiations. NASA RP- 1257, 1991.

2. Ziegler, J. E; Biersack, J. P., and Littmark, U.: The Stopping

and Range of Ions in Solids. The Stopping and Ranges of lons

in Matter, Volume 1, J. F. Ziegler, ed., Pergamon Press, 1985.

3. Andersen, H. H.: Bibliography and Index of Experimental

Range and Stopping Power Data. The Stopping and Ranges of

Ions in Matter, Volume 2, J. E Ziegler, ed., Pergamon Press,

1977.

4. Andersen, H. H.: Hydrogen Stopping Powers and Ranges in

All Elements. The Stopping and Ranges of Ions in Matter,

Volume 3, J. E Ziegler, ed., Pergamon Press, 1977.

5. Ziegler, J. F.: Helium: Stopping Powers and Ranges in All Ele-

mental Matter. The Stopping and Ranges of Ions in Matter,

Volume 4, J. E Ziegler, ed., Pergamon Press, 1977.

6. Ziegler, J. E: Handbook of Stopping Cross-Sections for Ener-

getic Ions in All Elements. The Stopping and Ranges of lons in

Matter, Volume 5, J. E Ziegler, ed., Pergamon Press, 1977.

7. Littrnark, U.; and Ziegler, J. E: Handbook of Range Distribu-

tions for Energetic Ions in All Elements. The Stopping and

Ranges of Ions in Matter, Volume 6, J. E Ziegler, ed.,Pergamon Press, 1977.

8. Hubert, E; Bimbot, R.; and Gauvin, H.: Range and Stopping-

Power Tables for 2.5-500 MeV/Nucleon Heavy Ions in Solids.

At. Data & Nucl. Data Tables, vol. 46, no. 1, Sept. 1990,

pp. 1-213.

9. Janni, Joseph F.: Proton Range-Energy Tables, 1 keV-

10 GeV--Energy Loss, Range, Path Length, Time-of-Flight,

Straggling, Multiple Scattering and Nuclear Interaction Proba-

bility. At. Data & Nucl. Data Tables, vol. 27.

Part l--Compounds, nos. 2/3, Mar./May 1982, pp. 147-339.

Part 2--Elements. nos. 4/5, July/Sept. 1982, pp. 341-527.

10. Bichsel, Hans: Charged Particle-Matter Interactions. Atomic,

Molecular, and Optical Physics Handbook, Gordon W. E

Drake, ed., American Inst. Phys., 1996, pp. 1032-1045.

11. Bethe, H.: Quantenmechanik der Ein- und Zwei-

Elektronenprobleme. Handbook of Physics, Bd. XXIV, Kap. 3,

Julius Springer (Berlin), 1933, pp. 273-560.

12. Livingston, M. Stanley; and Bethe, H. A.: Nuclear Physics--

C. Nuclear Dynamics, Experimental. Rev. Mod. Phys., vol. 9,

no. 3, July 1937, pp. 245-390.

13. Bohr, N.: The Penetration of Atomic Particles Through Matter.

K. Dan. Vidensk. Selsk. Mat.-Fys. Medd., vol. 18, no. 8, 1948.

14. Bethe, Hans A.; and Ashkin, Julius: Passage of Radiations

Through Matter. Experimental Nuclear Physics, Volume I,

E. Segr_, ed., John Wiley & Sons, Inc., 1953, pp. 166-357.

Page 11: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

15. Allison, S. K.; and Warshaw, S. D.: Passage of Heavy Particles

Through Matter. Rev. Mod. Phys., vol. 25, no. 4, Oct. 1953,

pp. 779-817.

16. Uehling, Edwin A.: Penetration of Heavy Charged Particles

in Matter. Annual Review of Nuclear Science, Volume 4,

James G. Beckerley, Martin D. Kamen, and Leonard I. Schiff,

eds., Annual Reviews, Inc., 1954, pp. 315-350.

17. Fano, U.: Penetration of Protons, Alpha Particles, and Mesons.

Annual Review of Nuclear Science, Volume 13, Emilio Segr6,

ed., Annual Reviews, Inc., 1963, pp. 1-66.

18. Northcliffe, Lee C.: Passage of Heavy Ions Through Matter.

Nucl. Sci., vol. 13, 1963, pp. 67-102.

19. Bichsel, H.: Charged-Particle Interactions. Radiation Dosime-

try, Volume 1, Second ed., Frank H. Attix and William C.

Roesch, eds., Academic Press, 1968, pp. 157-224.

20. Bichsel, Hans: Passage of Charged Particles Through

Matter. American Institute of Physics Handbook, Third ed.,

Dwight E. Gray, ed., McGraw-Hill Book Co., Inc., 1972,

pp. 8-142-8-347.

21. Ahlen, Steven P.: Theoretical and Experimental Aspects of the

Energy Loss of Relativistic Heavily Ionizing Particles. Rev.

Mod. Phys., vol. 52, no. 1, Jan. 1980, pp. 121-173.

22. lnokuti, Mitio: Inelastic Collisions of Fast Charged Particles

With Atoms and Molecules_The Bethe Theory Revisited.

Rev. Mod. Phys., vol. 43, no. 3, July 1971, pp. 297-347.

23. Bethe, H.: Zur Theorie des Durchgangs schneller Korpusku-

larstrahlen durch Materie. Ann. Phys., 5 Folge, Bd. 5, 1930,

pp. 325-400.

24. Bethe, H.: Bremsformel ftir Elektronen relativistischer

Geschwindigkeit. Z. Phys., vol 76, 1932, pp. 293-299.

25. Moiler, C.: Passage of Hard _-Rays Through Matter. Ann.

Phys., vol. 14, no. 5, Aug. 15, 1932, pp. 531-585.

26. Bichsel, Hans: Stopping Power and Ranges of Fast Ions in

Heavy Elements. Phys. Rev. A, vol. 46, no. 9, Nov. 1, 1992,

pp. 5761-5773.

27. Rustgi, M. L.; Leung, P. T.; and Long, S. A. T.: Limitation of

the Semirelativistic Approach in Sum Rules and Related

Calculations in Atomic Physics. Phys. Rev. A, vol. 37, no. 5,

Mar. 1, 1988, pp. 1775-1778.

28. Leung, P. T.: Bethe Stopping-Power Theory for Heavy-

Target Atoms. Phys. Rev. A, vol. 40, no. 9, Nov. 1, 1989,

pp. 5417-5419.

29. Dalton, Patricia; and Tumer, J. E.: New Evaluation of Mean

Excitation Energies for Use in Radiation Dosimetry. Health

Phys., vol. 15, 1968, pp. 257-262.

30. Bichsel, Hans: Stopping Power of M-Shell Electrons

for Heavy Charged Poles. Phys. Rev. A, vol. 28, 1983,

pp. 1147-1153.

31. Walske, M. C.: The Stopping Power of K-Electrons. Phys.

Rev., second ser., vol. 88, no. 6, Dec. 15, 1952, pp. 1283-1289.

32. Walske, M. C.: Stopping Power of L-Electrons. Phys. Rev.,

second ser., vol. 101, no. 3, Feb. 1, 1956, pp. 940-944.

133. Basbas, George: Inner-Shell Ionization and the Z 3 and Barkas

Effects in Stopping Power. Nucl. Instr. & Methods Phys. Res.,

vol. B4, 1984, pp. 227-238.

34. Bichsel, Hans: Barkas Effect and Effective Charge in the

Theory of Stopping Power. Phys. Rev. A, vol. 41, no. 7, Apr. 1,

1990, pp. 3642-3647.

35. Bloch, F.: Zur Bremsung rashc bewegter Teilchen beim Durch-

gang durch Materie. Ann. Phys., 5 Folge, Bd. 16, 1933, p. 285.

36. Sternheimer. R. M.: The Density Effect for the Ionization Loss

in Various Materials. Phys. Rev., second ser., vol. 88, no. 4,

Nov. 15, 1952, pp. 851-859.

37. Sternheimer, R. M.; and Peierls, R. E: General Expression for

the Density Effect for the Ionization Loss of Charged Particles.

Phys. Rev. B. vol. 3, no. 11, June 1, 1971, pp. 3681-3692.

38. Shinn, Judy L.; Farhat, Hamidullah; Badavi, Francis F.; and

Wilson, John W.: Polarization Correction for Ionization Loss

in a Galactic Cosmic Ray Transport Code (HZETRN). NASA

TM-4443, 1993.

39. Booth, W.; and Grant, I. S.: Energy Loss of Oxygen and Chlo-

rine Ions in Solid. Nucl. Phys., vol. 63, 1965, pp. 481-495.

40. Pierce, T. E.; Bowman, W. W.; and Blann, M.: Stopping

Powers of S 32, C 35, Br 79 and 1127 Ion in Mylar. Phys. Rev.,

vol. 172, 1968, pp. 287-290.

41. Barkas, Walter H.: Nuclear Research Emulsions--l. Tech-

niques and Theory. Academic Press, Inc., 1963.

42. Armstrong, T. W.; and Alsmiller, R. G., Jr.: An Approxi-

mate Density-Effect Correction for the Ionization Loss of

Charged Particles. Nucl. lnstrum. & Methods, vol. 82, 1970,

pp. 289-290.

7

Page 12: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 1. Stopping Power Calculated by LaRC Code for Protons on Various Targets

(a) Target, 4He; atomic density, 189 x 1022 atoms/cm 2

Energy,GeV

1234589

205090

100200500600700

Stopping power, MeV-cm2/g

Without densitycorrection

2.111.951.951.982.012.112.142.362.622.802.833.043.323.383.43

With densitycorrection

2.111.951.951.982.012.112.122.222.362.452.462.572.712.732.76

Difference,

percent

0.00.00.00.00.00.00.75.6

10.212.713.115.718.619.119.5

(b) Target, 7Li; atomic density, 4.60 × 1022 atoms/cm 3

Energy,GeV

12468

902040608090

100200400500800

Stopping power, MeV-cm2/g

Without densitycorrection

1.801.661.691.761.811.842.022.202.30

With densitycorrection

1.801.661.691.721.741.751.841.931.98

2.382.412.432.622.802.862.98

2.022.032.042.142.232.262.32

Difference,

percent

0.00.00.02.03.84.59.0

12.314.115.215.616.018.420.521.122.3

8

Page 13: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table1.Continued

(c)Target,9Be;atomicdensity,1.21x 1023atoms/cm3

Energy,GeV

124689

2040608O90

10020040060O8OO

1000

Stoppingpower,MeV-cm2/gWithoutdensity

correction1.801.671.701.761.821.852.042.222.322.402.432.462.652.842.953.033.09

Withdensitycorrection

1.801.671.661.681.701.711.801.891.951.982.002.012.112.202.262.302.32

Difference,percent

0.00.02.14.76.57.2

11.514.716.317.417.918.220.522.423.524.224.7

Energy,GeV

1258

20405O8O90

1002005OO8OO

(d)Target,12C;atomicdensity,1.14x 1023atoms/cm3

Stoppingpower,MeV-cm2/gWithoutdensity

correction1.981.841.922.022.262.462.532.672.712.742.953.233.37

With densitycorrection

1.981.841.851.892.002.102.132.202.222.242.342.482.55

Difference,

percent

0.00.03.36.3

11.414.715.617.417.918.220.523.124.2

9

Page 14: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table1.Continued

(e)Target,2°Ne;atomicdensity,3.59x 1022atoms/cm3

Energy,GeV

124589

205080

100200500

Stoppingpower,MeV-cm2/gWithoutdensity

correction1.851.731.771.811.911.942.152.422.562.632.843.11

Withdensitycorrection

1.851.731.771.811.911.942.032.172.242.272.372.51

Difference,percent

0.00.00.00.00.00.25.5

10.512.613.616.319.3

(f) Target,27A1;atomicdensity,6.02x 1022atoms/cm3

Energy,GeV

12569

20508090

500600

Stoppingpower,MeV-cm2/gWithoutdensity

correction1.771.651.741.771.862.072.332.472.503.003.06

Withdensitycorrection

1.771.651.741.771.821.922.052.122.132.392.41

Difference,percent

0.00.00.00.02.17.2

12.114.214.720.621.1

10

Page 15: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table1.Continued

(g)Target,56Fe;atomicdensity,8.99x 1022atoms/cm3

Energy,GeV

12489

205080

100200500800

Stoppingpower,MeV-cm2/gWithoutdensity

correction1.531.431.481.601.631.822.062.182.242.432.682.81

Withdensitycorrection

1.531.431.481.581.591.681.801.861.891.992.112.18

Difference,percent

0.00.00.01.32.27.5

12.514.715.618.221.222.5

(h)Target,63Cu;atomicdensity,8.48× 1022atoms/cm3

Energy,GeV

12589

20408O

1002005OO

Stoppingpower,MeV-cm2/gWithoutdensity

correction1.551.461.551.641.671.862.052.242.302.492.75

Withdensitycorrection

1.551.461.551.631.651.741.831.931.962.052.18

Difference,percent

0.00.00.00.31.26.7

10.714.115.017.720.7

11

Page 16: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table1.Continued

(i)Target,l°7Ag;atomic density, 5.85 x 1022 atoms/cm 3

Energy,GeV

12469

20406080

100200400800

Stopping power, MeV-cm2/g

Without densitycorrection

1.421.341.391.461.541.731.912.012.092.152.332.522.70

With densitycorrection

1.421.341.391.461.541.651.741.791.831.861.952.042.14

Difference,

percent

0.00.00.00.00.04.58.8

11.012.413.416.318.820.9

(j) Target, 132Xe; atomic density, 1.40 x 1022 atoms/cm 3

Energy,GeV

12468

20406080

100200400500800

1000

Stopping power, MeV-cm2/g

Without density With densitycorrection correction

1.33 1.331.25 1.251.30 1.301.37 1.371.421.631.791.891.962.022.192.372.422.542.60

1.421.631.721.771.811.841.922.012.042.102.12

Difference,

percent

0.00.00.00.00.00.03.96.37.99.1

12.315.115.917.518.2

12

Page 17: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table1.Continued

(k)Target,197Au;atomicdensity,5.90x 1022atoms/cm3

Energy,MeV

1259

20508090

100200500

Stoppingpower,MeV-cm2/gWithoutdensity

correction1.231.161.251.361.531.751.861.891.922.092.31

Withdensitycorrection

1.231.161.251.361.491.601.651.671.681.761.88

Difference,percent

0.00.00.00.02.98.8

11.311.912.415.518.9

(1)Target,2°spb;atomicdensity,3.29x 1022atoms/cm3

Energy,GeV

12468

2040608090

100200400600800

1000

Stoppingpower,MeV-cm2/g

Withoutdensitycorrection

1.211.151.201.261.321.511.671.771.84

Withdensitycorrection

1.211.151.201.261.321.501.581.631.66

Difference,percent

0.00.00.00.00.00.75.57.99.5

1.871.892.062.232.332.402.45

1.681.691.771.861.911.941.97

10.110.713.916.618.018.919.6

13

Page 18: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 1. Concluded

(m) Target, 238U; atomic density, 4.82 x 1022 atoms/cm 3

Energy,GeV

12468

2040506080

100200400600800

1000

Stopping power, MeV-cm2/g

Without densitycorrection

1.171.111.161.221.271.461.621.671.711.781.832.002.162.262.332.38

With densitycorrection

1.171.111.161.221.271.441.511.541.56i .601.621.701.781.831.871.89

Difference,

percent

0.00.00.00.00.01.86.57.98.9

10.511.614.817.418.819.720.4

14

Page 19: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table2. StoppingPowerCalculatedbyLaRCandJanniCodesfor ProtonsonVariousTargets(a)Target,4He

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10000.00

Stoppingpower,MeV-cm2/g

LaRCcode212.59592.13988.431091.481079.06542.19362.74286.5296.6661.2645.6714.549.297.062.912.322.111.982.082.14

Jannicode198.88530.25983.771089.801059.90553.46381.41290.4397.8861.9746.1714.679.367.122.932.342.121.992.092.18

Difference,percent

-6.9-11.7-0.5-0.2-1.82.04.91.41.31.11.10.90.80.80.80.80.30.60.62.0

(b)Target,7Li

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10000.00

Stoppingpower,MeV-cm2/g

LaRCcode139.10392.06661.91740.47741.29414.16290.23229.2480.6151.5138.5412.367.906.012.481.981.801.691.731.76

Jannicode

126.38374.78678.26756.68751.89418.37285.45223.97

78.7250.2037.5412.067.725.882.441.951.771.641.711.76

Difference,

percent

-10.1-4.6

2.42.11.41.0

-1.7-2.4-2.4-2.6-2.7-2.5-2.3-2.1-1.9-1.8-1.7-3.1-1.3-0.1

15

Page 20: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 2. Continued

(c) Target, aBe

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10000.00

Stopping power, MeV-cm2/g

LaRC code

164.86479.96697.98676.52629.82376.14274.36218.90

78.5050.4037.8012.227.835.962.471.981.801.661.691.72

Janni code

128.53412.43673.18702.85684.02400.93282.75222.86

78.7150.3237.6812.167.805.942.471.971.791.631.691.73

Difference,

percent

-28.3-16.4

-3.73.87.96.23.01.80.3

-0.1---0.3-0.5-0.4-0.4-0.3-0.5-0.9-2.0-0.3

0.4

(d) Target, 12C

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10000.00

Stopping power, MeV-cm2/g

LaRC code

145.69421.85697.19753.11729.71399.32288.25228.96

83.6854.1240.7613.32

8.566.532.722.181.981.841.881.91

Janni code

123.66400.88683.14740.10734.25423.04288.05229.27

84.9854.8441.2613.43

8.636.582.742.192.001.891.972.03

Difference,

percent

-17.8-5.2-2.1-1.8

0.65.6

-0.10.11.51.31.20.80.80.80.70.70.62.24.85.9

16

Page 21: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table2.Continued

(e) Target,2°Ne

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10000.00

Stopping power, MeV-cm2/g

LaRC code

67.51187.71331.72398.46429.75317.88230.22188.6072.5947.6136.1412.09

7.835.992.522.031.851.771.881.95

Janni code

52.22160.43321.52395.97426.00311.63219.65183.6473.0447.9836.4412.187.886.032.542.041.861.781.891.97

Difference,

percent

-29.3-17.0

-3.2-0.6-0.9-2.0-4.8-2.7

0.60.80.80.70.70.60.60.50.50.40.41.3

(f) Target, 27A1

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.0O

100.00400.00700.00

1000.002000.004000.005 000.006000.008000.009000.00

10000.00

Stopping power, MeV-cm2/g

LaRC code

99.88296.03463.98471.91446.91284.76215.58172.5067.4644.5133.9011.46

7.445.702.411.94

Janni code

77.84253.92

4316.18449.58431.00276.94213.16171.5867.6744.6834.0411.507.465.722.411.94

1.771.651.701.741.771.811.821.83

.77

.63

.66

.68

.71

.75

.76

.78

Difference,

percent

-28.3-16.6

-6.4-5.0-3.7-2.8-1.1-0.5

0.30.40.40.30.30.20.2

-0.0-0.3-1.1-2.5-3.2-3.8-3.7-3.3-3.0

17

Page 22: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table2.Continued

(g)Target,56Fe

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10O00.0O

Stopping power, MeV-cm2/g

LaRC code

39.43115.24205.74248.69269.58203.03150.39124.62

52.4135.3427.24

9.536.254.822.061.661.531.481.571.61

Janni code

36.26122.24210.21252.80276.65226.03159.23130.60

55.0837.2228.7310.06

6.605.082.181.761.611.521.591.64

Difference,

percent

-8.75.72.11.62.6

10.25.64.64.85.05.25.35.35.25.35.25.12.60.92.1

(h) Target, 63Cu

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10000.00

Stopping power, MeV-cm2/g

I.aRC code

38.20112.20194.08223.22231.11181.62144.66119.5251.5034.9827.06

9.586.304.862.091.691.551.511.611.66

Janni code

31.39103.24180.84205.36215.52179.95140.54118.1851.5235.0327.10

9.596.304.862.091.691.551.481.551.60

Difference,

percent

-21.7-8.7-7.3-8.7-7.2-0.9-2.9-1.1

0.00.20.20.20.10.00.00.0

-0.1-2.0--4.2-3.7

18

Page 23: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table2.Continued

(i)Target,l°TAg

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10000.00

Stoppingpower,MeV-cm2/g

LaRCcode33.12

100.21173.15197.32201.38145.24114.8792.5042.2229.3623.028.465.624.361.901.541.421.391.491.56

Jannicode28.9696.71

163.98181.06186.16146.52113.1792.7542.3329.4423.118.475.624.361.901.541.421.361.431.49

Difference,percent-14.4-3.6-5.6-9.0-8.20.9

-1.50.30.30.30.40.20.1

-0.0-0.1-0.1-0.2-2.5-4.1-5.3

(j)Target,132Xe

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.00

10000.00

Stoppingpower,MeV-cm2/g

LaRCcode30.7393.80

164.95192.51200.31143.37113.9085.4338.9027.1021.277.865.234.071.781.441.331.301.401.47

Jannicode34.48

103.40217.83241.46234.67140.35102.4784.7238.7227.0521.217.865.224.051.771.441.331.301.401.47

Difference,percent

10.99.3

24.320.314.6-2.2

-11.2-0.8-0.5-0.2-0.3-0.0-0.3-0.4-0.4-0.3-0.2-0.1-0.1-0.1

19

Page 24: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table2.Continued

(k)Target,197Au

Energy,MeV

0.0010.010.040.070.100.401.004.007.00

10.0040.0070.00

100.00400.00700.00

1000.004000.007000.008000.00

10000.00

Stopping power, MeV-cm2/g

LaRC code

15.5947.4485.94

105.77116.8596.9263.7531.7022.6418.016.934.673.661.631.331.231.631.311.331.38

Janni code

14.5347.1685.3299.85

107.5394.8462.9931.8722.7516.076.924.653.631.611.321.221.611.271.291.32

Difference,

percent

-7.3--0.6--0.7-5.9-8.7-2.2-1.2

0.50.5

-12.1-0.2-0.4-1.0-1.1-0.9-0.9-1.9-3.4-3.8-4.6

(1) Target, 2°8pb

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

108.00400.00700.00

1000.004000.007000.00

10000.00

Stopping power, MeV-cm2/g

LaRC code

16.1549.3689.40

109.96121.49

99.7575.3363.0231.2022.3017.76

6.834.603.611.611.311.211.201.291.36

Janni code

12.8440.0585.18

111.70122.8998.3076.4563.9431.4522.3017.756.804.573.571.591.301.201.181.251.31

Difference,

percent

-25.7-23.2

-5.01.61.1

-1.51.51.40.8

-0.0-0.1-0.6-0.6-1.0-1.3-1.1-1.0-1.8-2.9-3.9

2O

Page 25: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table2.Concluded

(m)Target,238U

Energy,MeV

0.0010.010.040.070.100.400.701.004.007.00

10.0040.0070.00

108.00400.00700.00

1000.004000.007000.00

10000.00

Stopping power, MeV-cm2/g

LaRC code

19.0058.74

105.97129.07140.73101.7573.0960.7129.5721.1516.856.524.403.451.551.261.171.161.251.32

Janni code

16.7154.2699.94

117.17123.3495.2873.5761.5329.5621.1716.816.524.393.441.531.251.161.141.221.27

Difference,

percent

-13.7-8.3-6.0

-10.2-14.1

-6.80.71.3

-0.00.1

-0.20.1

-0.1-0.4-0.7-0.6-0.5-1.4-2.4-3.3

21

Page 26: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table3.StoppingPowerCalculatedbyLaRCandHubertCodesfor_ ParticlesonVariousTargets

(a)Target,12C

Energy,MeV

10162026324460

120160220260360600

12002000

Stoppingpower,MeV-cm2/g

LaRCcode477.18736.19283.10220.10194.90150.93117.5967.1153.2441.3136.2428.2219.4812.69.83

Hubertcode477.60336.40283.30230.60195.50151.30117.6067.0053.2041.3636.3228.3419.5312.739.86

Difference,percent

0.10.10.10.20.30.20.0

-0.2-0.20.10.20.40.20.90.3

(b)Target,27A1

Energy,MeV

10162026324460

120160220260360600

12002000

Stoppingpower,MeV-cm2/g

LaRCcode377.81271.23230.23188.77160.96125.8698.9057.3945.8035.7631.4524.6317.1111.148.72

Hubertcode377.90271.30230.30189.10161.30126.0098.8057.1045.6135.6631.4024.6317.1111.208.73

Difference,percent

0.00.00.00.20.20.1

-0.1-0.5-0.4-0.3-0.2-0.0-0.1

0.50.0

22

Page 27: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table3.Concluded

(c)Target,63Cu

Energy,MeV

10162026324460

120160220260360600

12002000

Stoppingpower,MeV-cm2/g

LaRCcode279.90207.02177.95147.88127.31100.8980.2247.6038.2730.1126.5820.9514.699.657.60

Hubertcode279.90207.00178.00148.10127.60101.1080.1047.4038.1030.0026.5120.9214.659.687.59

Difference,percent-0.0-0.00.00.10.20.2

-0.2-0.4-0.5-0.4-0.3-0.2-0.30.2

-0.1

(d)Target,197Au

Energy,MeV

10162026324460

120160220260360600

12002000

Stopping power, MeV-cm2/g

LaRC code

161.46125.94110.7694.6083.0967.6454.9433.9627.7022.1119.6615.7111.237.495.95

Hubert code

161.40125.90110.7094.5083.0067.4054.7233.7927.5922.0619.6315.6911.177.425.87

Difference,

percent

-0.0-0.0-0.1--0.1-0.1-0.4-0.4-0.5-0.4-0.3-0.2-0.1-0.5-1.1-1.3

23

Page 28: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table4. StoppingPowerCalculatedbyLaRCandHubertCodesfor2°NeIonsonVariousTargets

(a)Target,12C

Energy,MeV

5080

100130160220300600800

11001300180030006000

10000

Stopping power, MeV-cm2/g

LaRC code

8877.677073.756229.825280.014587.633652.212892.361674.231330.011032.78

905.99705.72487.24315.27245.82

Hubert code

9245.007138.006213.005221.004518.003584.002836.001653.001319.001029.00904.70707.10487.90318.30247.10

Difference,

percent

4.00.9

-0.3-1.1-1.5-1.9-2.0-1.3-0.8-0.4-0.1

0.20.10.90.5

(b) Target, 27A1

Energy,MeV

5080

100130160220300600800

110013001 80030006000

10000

Stopping power, MeV-cm2/g

LaRC code

7028.875706.985066.594331.753788.613045482432.551431.651144.13

893.83786.42615.81427.97278.68218.20

Hubert code

7299.005840.005145.004371.003808.003044.002421.001422.001138.00891.00784.60615.80427.80280.00218.20

Difference,

percent

3.72.31.50.90.5

-0.0-0.5-0.7-0.5-0.3-0.2-0.0-0.0

0.50.0

24

Page 29: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table4.Concluded

(c)Target,63Cu

Energy,MeV

5080

100130160220300600800

1 1001 3001 8003 0006000

10 000

Stopping power, MeV-cm2/g

LaRC code

5207.404355.953916.053393.412996.722441.401973.321187.38956.19752.65664.60523.89367.44241.42190.00

Hube_ code

5283.004398.003937.003401.002998.002434.001962.001179.00950.00749.00662.40523.00366.30241.90189.70

Difference,

percent

1.41.00.50.20.0

-0.3-0.6-0.7-0.7-0.5-0.3-0.2-0.3

0.2-0.2

(d) Target, 197Au

Energy,MeV

5080

100130160220300600800

1 10013001 80030006000

10 000

Stopping power, MeV-cm2/g

LaRC code

3003.942649.852437.392170.931955.901636.701351.52847.22692.20552.81491.63392.83280.76187.45148.72

Hube_ code

2964.02632.02421.02153.01937.01619.01337.0841.068S.1550.9490.5392.2279.4185.6146.8

Difference,

percent

-1.3-0.7-0.7-0.8-1.0-1.1-1.1-0.7-0.6-0.3-0.2-0.1-0.5-I.0-1.3

25

Page 30: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table5.StoppingPowerCalculatedbyLaRCandHubertCodesfor56FeIonsonVariousTargets(a)Target,197Au

Energy,MeV

14016819622425228030833636439244850456O616672840

112014001680196022402520280030803360364039204480504056008400

1120014000168001960022400

Stoppingpower,MeV-cm2/g

LaRCcode

0.12 x 1050.12 x 1050.12 x 1050.11 x 1050.11 x 1050.11 x 1050.11 x 1050.11 × 1050.11 x 1050.10 x 1050.10 x 1050.97 x 104

0.94 x 1040.91 x 1040.88 x 1040.80 x 1040.69 x 1040.61 x 1040.55 x 1040.50 x 1040.46 x 1040.42 x 1040.39 x 1040.37 x 104

0.35 x 1040.33 x 1040.32 x 1040.29 x 1040.27 x 1040.25 x 1040.19 x 1040.16 x 1040.14 x 1040.13 x 1040.12 x 1040.11 x 104

Hubert code

0.10x 1050.11 x 1050.11 x 1050.11 x 1050.11 x 1050.11 x 1050.10 x 1050.10 x 1050.10 x 1050.99 x 1040.96 x 1040.92 x 104

0.89 x 1040.86 x 1040.83 x 1040.76 x 1040.66 x 1040.58 x 1040.52 x 1040.48 x 1040.44x 1040.41 x 1040.38 x 1040.36 X 104

0.34 x 1040.32 x 1040.31 x 1040.28 x 1040.26 x 1040.24 x 1040.19 x 1040.16 x lO 40.14 x 1040.13 x lO 40.12 x 1040.11 x 104

Difference,

percent

-10.4-7.9-6.6-5.8-5.2-4.9-4.8-4.7-4.7-4.7-4.9-4.9

-5.2-5.3-5.4-5.4-4.7-4.3-4.0-3.7-3.4-3.1-2.9-2.6

-2.4-2.2-2.0-1.8-1.6-1.5-1.4-1.7-1.7-1.5-1.4-1.5

26

Page 31: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table5.Concluded

(b)Target,238U

Energy,MeV

140168196224252280308336364392448504

560616672840

1 120i 400168019602240252028003080

3 36036403 920448050405 6008 400

1120014000168001960022400

Stopping power, MeV-cm2/g

LaRC code

0.11 x 1050.11 x 1050.11 x 1050.11 x 1050.11 x 1050.11 x 1050.10x 1050.10x 1050.99 x 1040.97 x 1040.94 x 1040.90 x 104

0.87 x 1040.84 x 1040.81 x 1040.74 x 1040.64 x 1040.57 x 1040.51 x 1040.46 x 1040.43 x 1040.39 x 1040.37 x 1040.35 x 104

0.33 x 1040.31 x 1040.29 x 1040.27 x 1040.25 x 1040.23 x 1040.18 x 1040.15 x 1040.13 x 1040.12 x 1040.11 x 1040.10 X 104

Hubert code

0.97 x 1041.00 x 1040.10 x 1050.10 x 1050.10 x 1050.99 x 1040.98 x 1040.96 x 1040.95 x 1040.93 x 1040.90 x 1040.87 x 104

0.84 x 1040.81 x 1040.78 x 1040.71 X 1040.62 X 1040.55 X 1040.49 X 1040.45 X 1040.41 X 1040.38 x 1040.36 x 1040.34 x 104

0.32 x 1040.30 x 1040.29 x 1040.27 x 1040.25 x 1040.23 x 1040.18 X 1040.15 x 1040.13 x 1040.12x 1040.11 x 1040.10x 104

Difference,

percent

-11.4-8.7-7.3-6.5-6.0-5.4-5.1-4.8-4.5-4.4-4.2-3.9

-3.9-3.8-3.8-3.8-3.8-3.5-3.3-3.0-2.8-2.5-2.3-2.0

-1.9-1.7-1.6-1.3-1.2-1.1-1.1-1.3-0.8-0.6-0.6-0.6

27

Page 32: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table6.StoppingPowerandEnergyRangeCalculatedbyLaRCandBichselCodesforProtonson Various Targets

(a) Target, 12C; density, 1.80 g/cm3; mean ionization potential, 78.00 eV; RSTAN code

Energy,MeV

0.50.6

0.70.8

0.91.01.2

1.41.6

1.82.0

2.2

2.42.6

2.8

3.03.54.0

4.55.05.5

6.06.5

7.0

7.5

10.015.020.0

25.030.0

50.070.0

90.0125.0

175.0225.0

275.0

350.0450.0

550.0650.0

750.0850.0

950.0

Stopping power

LaRCcode

0.35 x 103

0.32 x 1030.29 x 1030.27 x 103

0.25 x 1030.23 x 103

0.20 x 1030.18 x 103

0.17 x 1030.15 x 103

0.14 x 1030.13 x 103

0.12 x 103

0.12 x 103

0.11 x 1030.10 x 1030.93 x 102

0.84 x 1020.77 x 1020.71 x 102

0.66 x 1020.61 x 102

0.58 x 1020.54 x 102

0.51 x 1020.41 x 1020.30 x 102

0.23 x 1020.20 x 102

0.17 x 1020.11 x 102

0.86 x 1010.71 x 101

0.56 x 1010.44 x 1010.37 x 101

0.33 x 10 l0.29 x 101

0.26 x 101

RSTAN

code

0.37 x 103

0.33 x 1030.30 x 1030.27 x 103

0.25 x 1030.23 x 103

0.20 x 1030.18 x 103

0.17 x 1030.15 x 103

0.14 x 1030.13 x 103

0.12 x 103

0.12 x 103

0.11 x 1030.11 x 1030.93 x 102

0.84 x 1020.77 x 1020.71 x 102

0.66 x 1020.61 x 102

0.58 × 1020.54 X 102

0.51 x 1020.41 x 1020.30 x 102

0.23 x 1020.20 x 102

0.17 x lO2O.l 1 x lO2

0.86 × 1010.71 X 101

0.56 x 10 l0.44 x 101

0.37 x 101

0.33 x 1010.29 x 101

0.26 x 101

Difference,

percent

5.33.6

2.61.9

1.31.2

1.21.1

0.90.7

0.60.6

0.6

0.50.5

0.50.50.4

0.40.4

0.30.3

0.30.2

0.20.1

-0.1

-0.1-0.1--0.2

--0.2-0.2

-0.1

-0.1-0.1-0.1

-0.I-0.1-0.1

Energy range

LaRC

code

0.10 x 10 -2

0.13 x 10 -2

0.17 x 10 -20.20 x 10 -20.24 x 10 -2

0.28 x 10 -20.38 x 10 -2

0.48 x 10 -20.59 x 10 -2

0.72 x 10 -20.86 x 10 -2

0.10 x 10 -1

0.12 x 10 -10.13 x 10 -1

0.15 x 10 -10.17 x 10 -1

0.22 x 10 -10.28 x 10 -10.34 x lO-I

0.41 x 10 -!0.48 x 10 -l

0.56 x 10 -10.65 X 10 -1

0.73 X 10 -1

0.83 x 10 -l0.14 x 10 °

0.28 x 10 °0.48 x 10 °

0.71 x 10°0.99 x 10o

0.25 x 1010.46 x 101

0.71 x 1010.13 x 102

0.23 x 1020.35 x 102

0.50 x 102

0.74 x 1020.11 x 103

RSTAN

code

0.81 x 10 -3

0.11 x 10 -2

0.14 x 10 -20.18 x 10 -2

0.22 x 10 -20.26 x 10 -2

0.35 x 10 -20.45 x 10 -20.57 x 10 -2

0.69 x 10 -20.83 x 10 -2

0.98 x 10 -2

0.11 x 10 -10.13 x 10 -i

0.15 x 10 -1

0.17 x 10 -10.22 x 10 -10.27 x 10 -1

0.34 x 10 -10.40 x 10 -10.48 x 10 -1

0.56 x 10 -10.64 × 10-1

0.73 x 10 -1

0.82 x 10 -1

0.14 x 10°0.28 x 10°0.48 x 10°

0.71 x 10°0.99 x lO°

0.25 x 1010.46 x 101

0.72 x 1010.13 x 102

0.23 x lO20.35 x 102

0.50 x 102

0.74 x 1020.11 x 103

0.24 x0.22 x

0.21 x0.21 x

0.20 x

101

10110 i

101101

0.24 x0.22 x

0.21 x

0.21 x0.20 x

101

101101

101101

-0.1

-0.1-0.1

-0.2-0.3

O.15x

0.20 x0.24 x

0.29 x0.34 x

103103

103103

103

0.15 x 1030.20 x 103

0.24 x 103

0.29 x 1030.34 x 103

Difference,

percent

-21.0

-17.2

-14.3-12.1-10.4

-9.0-6.9

-5.5-4.6

-4.1-3.5

-3.1

-2.7-2.5

-2.2

-2.0-1.7-1.4

-1.2-1.1-1.0

-0.9-0.8

-0.7

-0.7

-0.5-0.2-0.1

0.00.00.1

0.1

0.10.1

0.10.1

0.1

0.10.10.1

0.1

0.1

0.10.1

28

Page 33: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table6.Continued

(b)Target,27A1;density,2.70g/cm3;meanionizationpotential,166.00eV;RSTANcode

Energy,MeV

0.50.60.70.80.91.01.21.41.61.82.02.22.42.62.83.03.54.04.55.05.56.06.57.07.5

10.015.020.025.030.050.070.090.0

125.0175.0225.0275.0350.0450.0550.0650.O750.0850.0950.0

StoppingpowerLaRCcode

0.26× 1030.23x 1030.22x 1030.20× 1030.19x 1030.17x 1030.15x 1030.14x 1030.13x 1030.12x 1030.11× 1030.10× 1030.97× 1020.92× 1020.87× 1020.83× 1020.74× 1020.67× 1020.62x 1020.57× 1020.53× 1020.50× 1020.47x 1020.45× 1020.42x 1020.34× 1020.25x 1020.20x 1020.17x 1020.14x 1020.96× 10l0.74x 10l0.62x 10l0.49× 10l0.39x 10l0.33x 1010.29x 10l0.26x 10l0.23x 10l0.21× 1010.20× 10l0.19 × 101

0.18 x 10 l0.18 x 101

RSTAN

code

0.26 x 1030.23 × 1030.21 x 1030.20 × 103

0.18x 1030.17 x 103

0.15 x 1030.14 x 103

0.13 x 1030.12 x 103

0.11 × 1030.10 × 103

0.97 x 1020.92 x 102

0.87 x 1020.83 x 102

0.74 x 1020.67 x 1020.62 × 102

0.57 x 1020.53 × 102

0.50 x 1020.47 x 102

0.44 x lO 2

0.42 x 102

0.34 x 1020.25 x 1020.20 x 102

0.17 x 1020.14 x 102

0.96 x 1010.74 × 101

0.61 × 1010.48 x 1010.39 x 101

0.33 x 101

0.29 x 1010.26 x 101

0.23 x 1010.21 x 101

0.20 x 1010.20 x 101

0.18 x 1010.18 x 101

Difference,

percent

0.4-0.3

-0.8-1.1

-1.40.2

1.82.3

2.00.0

-0.1-0.1

-0.2

-0.2-0.2

-0.3-0.3

-0.3-0.3

-0.3-0.3-0.3

-0.3

-0.3

-0.2-0.2

-0.3-0.2-0.1

-0.2-0.3

-0.3-0.3

-0.2-0.2-0.2

-0.2-0.2-0.2

-0.1

-0.1-0.1

-0.2-0.3

Energy range

LaRC

code

0.15 x 10 -20.19× 10-20.24 x 10 -20.28 x 10 -2

0.34 x 10 -2

0.39 x 10 -20.51 × 10-20.65 × 10-2

0.80 × 10-20.97 x 10 -2

0.11 x 10 -10.13 × 10-1

0.15 x 10 -10.17 x 10 -1

0.20 x 10 -10.22 x 10 -l

0.28 x 10 -10.36 x lO-10.43 x lO-1

0.52 x 10 -10.61 x 10 -j

0.70 x 10 -j0.81 x 10 -1

0.92 x lO-I

O.lOx 10 °

0.17 × 10°0.34 x 10°0.57 x 10°

0.85 x 1000.12 x lO !

0.29 x lO I0.53 × 10 I

0.83 x 10 !0.15 x 1020.26 x 102

0.41 x lO2

0.57 x 1020.84 x 102

0.13 x 1030.17 x 10 3

0.22 x 103

0.27 x 1030.33 x lO30.38 x lO3

RSTAN

code

0.13 x 10 -20.17 x 10-20.21 x 10 -20.26 × 10-2

0.31 x 10 -2

0.37 x 10-20.49 x 10-20.63 x 10 -2

0.78 x 10-20.94 x 10-2

0.11 x 10 -10.13 x 10-1

0.15 x 10-10.17 x 10-1

0.19 x 10-10.22 x 10-10.28 x 10-1

0.35 x 10-10.43 × 10-1

0.52 × 10-10.61 x 10-1

0.70 × 10-10.81 x 10-1

0.92 x 10-1

0.10× 10°

0.17×10 o0.35 × 10°0.57 x 10°0.85 x 100

0.12 x 10 I0.29 x 10 l

0.53 x 10 I

0.83 x 10 l0.15 x 1020.27 X lO2

0.41 X lO2

0.57 × 1020.84 × 102

0.13 x 1030.17 x 103

0.22 x 1030.27 x 103

0.33 x 1030.38 x 103

Difference,

percent

-16.6-13.0

-10.5-8.5

-7.0-5.8-4.2

-3.1-2.5

-2.4-2.0

-1.6

-1.4

-1.2-1.0

-0.9-0.7-0.6

-0.4-0.3

-0.10.0

0.00.0

0.00.20.4

0.20.10.2

0.20.1

0.30.2

0.20.2

0.30.20.3

0.20.1

0.20.1

0.1

29

Page 34: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table6.Continued

(c) Target, 63Cu; density, 8.96 glcm3; mean ionization potential, 322.00 eV; RSTAN code

Energy,MeV

0.5

0.60.7

0.80.9

1.01.2

1.41.6

1.82.02.2

2.4 0.72 x2.6 0.69 x

2.8 0.66 x3.0 0.63 x3.5 0.57 x

4.0 0.52 x

4.5 0.48 x5.0 0.45 x5.5 0.42 x

6.0 0.39 x6.5 0.37 x7.0 0.35 x

7.5 0.34 x10.0 0.27 x

15.0 0.20 x

20.0 0.16 x25.0 0.14 x30.0 0.12 x

50.0 0.82 x70.0 0.64 x90.0 0.53 x

125.0 0.42 x175.0 0.34 x

225.0 0.29 x

275.0 0.26 x

350.0 0.23 x450.0 0.20 x550.0 0.19 x

650.0 0.18 x750.0 0.17 x

850.0 0.16 x950.0 0.16 x

Stopping power

LaRC

code

0.17 x 1030.16 x 103

0.15 x 1030.14 x 103

0.13 x 1030.12 x 103

0.11 x 1030.99 x 102

0.92 x 1020.86 x 1020.81 x 102

0.76 x 102

102

102102102

102

1021o2102

102102

102102

102102102

102102102

101101

101101

101101

RSTAN

code

0.16 x 1030.15 x 103

0.14 x 1030.13 x 103

0.12 x 1030.12 x 103

0.11 x 1030.98 × 102

0.90 x 1020.85 x 102

0.80 × 1020.75 × 102

0.71 x 102

0.68 x 1020.65 x 102

0.62 x 1020.56 x 102

0.51 x 1020.47 x 1020.44 × 102

0.41 × 1020.39 × 102

0.37 × 1020.35 × 102

0.33 x 1020.27 × l02

0.20 × 1020.16 x 1020.14 x l02

0.12 × l020.81 × 101

0.63 × 1010.52 × 101

0.42 × 1010.33 x 101

0.28 x 101

10 ! 0.25 x101 0.22 ×

101 0.20 x101 0.18 x

101 0.17 ×101 0.17x101 0.16x

101 0.16x

101101

101101

101101

101101

Difference,

percent

-6.3-6.2

-5.9-5.4

-4.8-3.6

-1.8-1.0

-1.4-2.1

-2.0-1.9

-1.8

-1.7-1.6

-1.6-1.4

-1.2-1.1-1.0

-1.0-0.9

-0.9-0.8

--0.8-0.7

-0.7-0.7-0.7

-0.7-0.8

-0.8-0.9-1.0

-1.0

-1.0

-1.0-0.9

-0.9-0.9

-0.9-0.9-0.9

-1.1

Energy range

LaRC

code

0.26 x 10 -2

0.32 x 10 -20.39 x 10 -2

0.46 x 10 -20.54 x 10 .2

0.62 x 10 -20.79 × 10-2

0.98 x 10 -20.12 x 10 -l

0.14 x 10 -10.17 x 10 -1

0.19 × 10-l

0.22 × 10-!0.25 × 10-1

0.28 × 10-10.31 x 10 -1

0.39 x 10 -10.48 x l0 -1

0.58 × 10-10.69 x 10 -10.81 × 10 -I

0.93 x 10 -10.11 x 10 °

0.12 × 10 °

0.13 x 10 o

0.22 x 10 o0.43 x 10 o

0.71 x 10o0.10 x l0 l0.14 x 10 l

0.35 x 1020.63 x 101

0.98 x 1020.17 x 102

0.31 x 1020.47 x 102

0.66 x 1020.97 x 1020.14 x 103

0.20 x 1030.25 × 103

0.31 × 1030.37 x 103

0.43 × 103

RSTAN

code

0.22 x 10 -20.29 x 10 -2

0.36 x 10 -20.44 x 10 -2

0.52 x 10 -20.60 × 10 -2

0.78 × 10 -20.98 X 10 -2

0.12 X 10 .20.14 X l0 -I

0.17 × 10-10.19 X 10 -1

0.22 x 10 -l

0.25 x 10 -10.28 x 10 -1

0.31 x 10 -10.40 x 10 -1

0.49 × 10-10.59 x 10 -10.70 x 10 -i

0.82 × 10 -I0.94 x 10 -1

0.11 x 10 °0.12 x 10 °

0.14 x 10 °0.22 x 10 °

0.44 x 10 °0.72 x 10 °0.11 x 10 l

0.15 × 1010.35 x 101

0.64 x 1010.99 × 1010.17 x 102

0.31 x 102

0.47 x 102

0.66 × 102

0.98 × 1020.15 x 1030.20 × 103

0.26 × 1030.31 × 103

0.38 x 1030.44 x 103

Difference,

percent

-14.6-10.6

-7.7-5.6

--4.0-2.9

-1.3-0.4

0.20.2

0.50.7

0.9

1.01.11.1

1.2

1.21.21.2

1.21.1

1.11.1

1.1

0.9

0.90.80.7

0.70.8

0.80.8

0.90.9

1.0

1.0

1.01.01.0

0.90.9

0.90.9

3O

Page 35: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Energy,MeV

0.40.50.60.70.80.91.01.21.41.61.82.02.22.42.62.83.03.54.04.55.05.56.06.57.09.5

14.019.024.029.048.068.088.0

120.0170.0220.0270.0340.0440.0540.0640.0740.0840.0

Table6.Continued

(d)Target,197Au;density,19.32g/cm3;meanionizationpotential,790.00eV;RSHEVcode

StoppingpowerLaRC

code

0.10 x 103

0.91 x 1020.83 x 102

0.77 x 1020.72 x 102

0.69 x 1020.65 x 102

0.60 x 1020.53 × 102

0.52 × 1020.49 × 102

0.47 x 102

0.45 × 1020.43 × 102

0.41 x 1020.39 x 102

0.38 x 1020.35 x 102

0.32 × 1020.30 x 102

0.28 x 1020.27 × 102

0.25 x 1020.24 x 102

0.23 x 1020.19 x 1020.15 x 102

0.12 x 1020.10 x 1020.88 x l0 t

0.61 × 10 l0.48 x 10 l

0.40 x 1010.33 x 10 l

0.26 x 10 l0.22 x 101

0.20 x 101

0.18 x 1010.16 x 10 l

0.15 x 1010.14 x 101

0.13 x 10 l0.13 X 101

RSHEV

code

0.92 x 102

0.84 x 102

0.78 x 1020.73 x 1020.69 x 102

0.66 x 1020.63 x 102

0.58 x 1020.54 X 102

0.51 x 1020.48 x 102

0.46 x 102

0.43 x 1020.42 x 102

0.40 x 1020.38 x 102

0.37 x 1020.34 x 102

0.32 x 1020.29 x 102

0.28 x 1020.26 x t02

0.25 x 1020.24 x 102

0.23 x 1020.19 x 1020.14 x 102

0.12 x 1020.99 x I0 ]0.87 x 101

0.61 x I010.48 x I0 ]

0.40 x 1010.32 x 101

0.26 x 1010.22 x 101

0.20 x I0 ]

0.17 x 1010.15 x 101

0.14 x I0 ]0.13 x I0 ]

0.13 x I010.13 x I01

Difference,

percent

-9.2

-7.6-6.2

-5.1-4.4

-3.8-3.2

-2.5-2.1-2.1

-2.7

-2.6

-2.5-2.4

-2.4-2.3

-2.3-2.2

-2.1-2.0-1.9

-1.8-1.7

-1.7

-1.6

-1.4-1.1-1.0

-0.9-0.9

-0.9-1.1

-1.3-1.7

-1.9-2.0

-2.0

-2.0-2.0-2.0

-2.1-2.2

-2.3

Energy range

LaRC

code

0.38 x 10-2

0.49 x 10-2

0.60 x 10-20.73 x 10-20.86 x 10-2

0.10 x 10 -l0.12 x 10 -1

0.15 x 10 -10.18 x 10 -1

0.22 × 10-10.26 × 10-1

0.30 x 10 -1

0.34 x 10 -1

0.39 x 10 -10.44 x 10 -1

0.49 x 10 -10.54 x 10 -10.68 x l0 -1

0.83 X 10 -10.99 x 10 -1

0.12 × 10 °0.13 X lO °

0.15 × 10 °0.17 x 10 °

0.20 x 10 °0.32 x 10 °0.59 x 10 °

0.98 x 10 °0.14 x 10 l0.20 x 101

0.46 x 10 l0.83 x 101

0.13 x 1020.22 x 102

0.39 x 1020.60 x 102

0.84 x 102

0.12 x 1030.18 x 103

0.25 x 1030.32 x 103

0.39 x 1030.47 x 103

RSHEV

code

0.31 x 10 -2

0.42 x 10 -2

0.55 x 10 -20.68 x 10 -20.82 x 10 -2

0.97 x 10 -20.11 x 10 -1

0.15 x 10 -10.18 x 10-I

0.22 x 10-I0.26 x 10-I

0.30 x 10 -1

0.35 x 10 -10.40 x 10 -1

0.44 x 10 -]

0.50 x 10 -10.55 x 10 -]0.69 x 10 -1

0.84 x I0 -]0.10 x 10°

0.12 x 10 °0.14 x 100

0.16 x 10 °0.18 x 10 °

0.20 x 10 °0.32 x 10 °0.60 x 10 °

0.99 x 10 °0.15 x 10 I0.20 x 101

0.47 x 1010.84 x 10 l

0.13 X 1020.22 X 102

0.40 × 1020.61 × 102

0.85 x 102

0.12 x 1030.19 x 103

0.25 x 10 3

0.33 x 103

0.40 x 1030.48 x 103

Difference,

percent

-19.4

-13.3-9.3

-6.7-4.9

-3.6-2.6

-1.3-0.4

0.2

0.40.8

1.01.2

1.31.4

1.51.71.8

1.81.8

1.91.8

1.8

1.8

1.71.51.3

1.21.11.0

1.01.1

1.31.5

1.7

1.81.8

1.92.0

2.02.0

2.1

31

Page 36: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 6. Continued

(e) Target, 238U; density, 19.07 g/cm3; mean ionization potential, 841.00 eV; RSHEV code

Energy,MeV

0.4

0.50.6

0.70.8

0.91.0

1.21.4

1.61.82.0

2.22.4

2.62.83.0

3.54.0

4.55.0

5.56.0

6.5

7.09.5

14.019.0

24.029.0

48.068.088.0

120.0170.0

220.0

270.0

340.0440.0540.0

640.0740.0

840.0

Stopping power

LaRC

code

0.10 x 1030.89 x 102

0.80 x 1020.73 x 102

0.68 x 1020.64 x 102

0.61 x 1020.56 × 1020.52 × 102

0.48 × 102

0.46 x 1020.43 × 102

0.41 × 102

0.39 × 1020.38 x 102

0.36 × 1020.35 × 1020.32 x 102

0.30 × 1020.28 x 102

0.26 × 1020.25 x 102

0.23 x 1020.22 x 102

0.21 × 102

0.17 × 1020.14 x 102

0.11 × 1020.93 × 10 l

0.82 × 1010.57 x 1010.45 × 101

0.38 x lO l0.31 × 101

0.25 x 1010.21 x 101

0.19 x 1010.17 x 101

0.15 x 1010.14 x 1010.13 × 10 l

0.12 x 1010.12 x 101

RSHEV

code

0.82 x 1020.76 x 102

0.71 x 1020.67 × 102

0.64 x 1020.61 x 102

0.58 x 1020.54 × 102

0.50 × 1020.47 × 102

0.45 × 1020.43 × 102

0.41 × 102

0.39 x 1020.37 x 102

0.36 × 1020.35 x 1020.32 x 102

0.29 x 1020.28 × 102

0.26 x 1020.25 × 102

0.23 x 1020.22 x 102

0.21 x 1020.17 x 1020.14 x 102

0.11 x lO20.94 x 101

0.82 × 1010.58 × 101

0.45 × 1010.38 x 101

0.31 x 1010.24 x 1010.21 x 101

0.19 x 101

0.17 x 1010.15 x 1010.14 x 101

0.13 x 1010.12 x lO 1

0.12 x lO 1

Difference,

percent

-19.7-14.5

-10.6-7.8

-5.7-4.2

-3.8-3.1

-2.5-2.0

-1.4-1.2

-1.0

-0.9-0.8

-0.7-0.6

-0.5-0.4-0.4

-0.3-0.3

-0.2-0.2

-0.10.00.2

0.4

0.50.50.5

0.40.2

-0.2

-0.6-0.7

-0.7

-0.7-0.8-0.9

-0.9-1.0-1.1

Energy range

LaRC

code

0.35 x 10 -20.46 x 10 -20.58 × 10 -2

0.71 × 10-20.85 x 10 -2

O.lO x 10 -1

0.12 × 10 -10.15 x 10 -i0.19 × 10-1

0.23 x 10 -10.27 x 10 -1

0.32 x 10 -1

0.36 x 10 -t0.41 x 10 -1

0.47 × 10-10.52 x 10 -1

0.58 × 10-10.73 × 10 -1

0.89 x 10 -10.11 x 10 °

0.13 × 10 °0.15 × 10 °0.17 x lO°

0.19 x I0 °

0.21 x 10°0.34 x 10 °

0.64 x 10°

0.11 × 1010.16 × 1010.21 x 101

0.50 x 1010.89 x 101

0.14 × 1020.23 X 102

0.42 x 10 20.64 x 102

0.89 x 1020.13 x 1030.19 x 103

0.26 × 1030.34 × 103

0.42 x 1030.50 x 103

RSHEV

code

0.37 x 10 -20.50 × 10-2

0.63 x 10 -20.78 x 10 -2

0.93 x 10 -20.11 × 10-l

0.13 x 10 -I0.16 x 10 -1

0.20 x 10 -10.24 x 10 -1

0.28 x 10 -10.33 × 10-1

0.38 x 10 -1

0.43 x 10 -l0.48 x 10 -l

0.54 x 10 -i0.59 x 10 -I

0.74 x 10 -j0.91 x lO-l0.11 x 10°

0.13 x 10o0.15 x 100

0.17 x lO°0.19 x lO°

0.21 × 10°0.34 x 10°

0.64× 10 °0.11 x 101

0.16 x 1010.21 x 1010.49 x 10 1

0.89 x 1010.14 × 1020.23 x 102

0.42 x 1020.64 x 102

0.90 × 102

0.13 × 1030.19 × 1030.27 × 103

0.34 x 1030.42 x 103

0.50 x 103

Difference,

percent

5.08.5

9.79.8

9.38.7

8.06.9

6.05.3

4.74.2

3.8

3.53.2

2.92.72.3

1.91.7

1.51.3

1.21.1

1.0

0.60.3

0.0-0.1

-0.2-0.4

-0.4-0.4-0.2

0.10.3

0.4

0.50.60.7

0.70.8

0.8

32

Page 37: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table6.Concluded

(f) Target,H20;density,1.00g/cm3;meanionizationpotential,69.04eV;RSTANcode

Energy,MeV

0.50.60.70.80.91.01.21.41.61.82.02.22.42.62.83.03.54.04.55.05.56.06.57.07.5

10.015.020.025.030.050.070.090.0

125.0175.0225.0275.0350.0450.0550.0650.0750.0850.0

StoppingpowerLaRCcode

0.43 x 103

0.38 x 1030.34 x 103

0.31 x 1030.29 x 103

0.26 x 1030.23 x 1030.21 x 103

0.19 x 1030.17 x 103

0.16 x 1030.15 x 103

0.14 x 1030.13 x 103

0.13 x 1030.12 x 103

0.11 x 1030.95 x 102

0.87 x 1020.80 X 1020.74 x 102

0.69 X 102

0.65 x 1020.61 X 102

0.58 x 102

0.46 x 1020.33 x 1020.26 x 102

0.22 x 1020.19 x 102

0.13 x 1020.96 x 101

0.80 × 10 l0.62 X 10 l0.49 X 10 l

0.42 x 101

0.37 x 10 x

0.33 x 10 l0.29 x 10 I

0.27 x 10 l0.25 x 10 l0.24 x 101

0.23 x 101

RSTAN

code

0.44 x 103

0.39 x 1030.35 x 103

0.32 x 1030.29 x 103

0.27 x 1030.24 x 103

0.21 x 1030.19 x 103

0.18 x 1030.16 x 1030.15 x 103

0.14 x 103

0.13 x 1030.13 x 1030.12 x 103

0.11 x 1030.96 x 102

0.88 x 1020.81 x 1020.75 x 102

0.70 x 102

0.66 × 1020.62 × 102

0.58 x 102

0.46 x 1020.33 x 102

0.26 x 1020.22 x 1020.19 x 102

0.13 x 1020.97 x 101

0.80 x 1010.63 x 101

0.50 x 1010.42 x 101

0.37 x 101

0.33 x 1010.29 x 101

0.27 x 1010.25 x 1010.24 x 101

0.23 x 101

Difference,

percent

2.8

2.82.6

2.22.0

2.42.7

2.72.31.4

1.31.2

1.1

1.01.01.0

1.00.9

0.90.80.7

0.70.7

0.6

0.6

0.50.30.2

0.20.2

0.20.3

0.30.30.4

0.3

0.4

0.40.40.4

0.30.3

0.2

Energy range

LaRC

code

0.81 x 10 -3

0.11 x 10 -2

0.13 x 10 -20.16 x 10 .2

0.20 x 10 .20.23 x 10 -20.32 x 10 .2

0.41 X 10 -20.51 X 10 -2

0.62 X 10 -20.74 X 10 -2

0.87 X 10 -2

0.10 x 10 -1

0.12 x 10 -10.13 x 10 -1

0.15 x 10 -10.19 x 10 -1

0.24 x 10 -I0.30 x 10 -j0.36 x 10 -j

0.42 x lO -I0.49 x 10 -1

0.57 × 10 -10.65 x 10 -I

0.73 x 10 -10.12 x 10 °0.25 x 10°

0.42 x 10 °0.63 x 10°0.88 × 10 °

0.22 x 10 !

0.41 x 10 !0.63 × 10 l0.11 × 102

0.21 x 1020.32 x lO2

0.44 x 1020.66 × 1020.99 x 102

0.14 × 1030.17 × 103

0.22 × 1030.26 × 103

RSTAN

code

0.69 x 10 -30.93 x 10 -3

0.12 × 10 -20.15 × 10-2

0.18 × 10-20.22 x 10 -2

0.30 × 10-20.39 x 10 -20.49 × 10-2

0.60 × 10-20.71 × 10-2

0.84 × 10-2

0.98 x 10 -20.I 1 x 10 -10.13 x 10 -1

0.14 x 10 -10.19 x 10 -1

0.24 x 10 -I0.29 x 10 -10.35 x 10 -1

0.42 × 10 -10.49 × 10 -1

0.56 x 10 -10.64 × 10 -1

0.72 X 10 -10.12 X 10 °

0.25 X 10 °0.42 × 10°0.63 × 10°

0.87 X lO°0.22 × 101

0.40 x 1010.63 x 1010.11 × 102

0.20 x 1020.31 × 102

0.44 x 1020.66 x 1020.98 x 102

0.13 x 1030.17 x 103

0.21 × lO30.26 × 103

Difference,

percent

-14.9-12.0-10.0

-8.6

-7.5-6.6-5.2

-4.4-3.8

-3.6-3.2

-2.9

-2.7

-2.4-2.3-2.1

-1.9-1.7

-1.5-1.4

-1.3-1.2

-1.1-1.0

-1.1

-0.7-0.3

-0.4-0.5-0.4

-0.3-0.4

-0.2-0.4

-0.4--0.4

-0.4

-0.4-0.3

-0.3-0.3-0.3

-0.4

33

Page 38: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table7.StoppingPowerandEnergyRangeCalculatedbyLaRCandBichselCodesforctParticlesonVariousTargets(a)Target,12C;density,1.80g/cm3;meanionizationpotential,78.00eV;RSTANcode

Energy,MeV

2.02.42.83.23.64.04.85.66.47.28.08.89.6

10.411.212.014.016.018.020.022.024.026.028.030.040.060.080.0

100.0120.0200.0280.0360.0500.0700.0

900.0

1100.01400.0

1800.02200.0

2600.03000.0

3400.0

Stopping power

La_RC

code

0.15 × 104

0.13 x 104o.12x lO40.11 × 10 40.99 × 103

0.92 x 1030.81 x 103

0.73 x 1030.66 x 103

0.61 x 1030.56 x 103

0.53 x 103

0.49 x 103

0.47 x 1030.44 x 1030.42 x 103

0.37 x 1030.34 x 1030.31 x 103

0.28 x 1030.26 x 103

0.25 x 1030.23 x 103

0.22 x 103

0.21 x 103

0.16x 1030.12 x 1030.93 x 102

0.78 x 1020.67 x 102

0.45 x 1020.34 x 102

0.28 x 1020.22 x 102

0.18 x lO 20.15 x 102

0.13 x 102

0.12 x 1020.10 x 102

0.95 x 1010.89 x 101

0.85 x 10 l0.83 x 101

RSTAN

code

0.14 x 1040.13 x 104

0.12 x 1040.11 x 104

0.98 x 1030.91 × 103

0.81 × 1030.73 × 1030.66 x lO3

0.61 x 1030.56 × 103

0.52 × 103

0.49 × 103

0.46 x 1030.44 x 103

0.42 x 1030.37 × 1030.34 x 103

0.31 × 1030.28 x 103

0.26 x lO 30.24 × lO 3

0.23 x 1030.22 x 103

0.21 × 103

0.16 × 1030.12 × 1030.93 × 102

0.77 x 102

0.67 x 1020.44 x 1020.34 x 102

0.28 x 1020.22 × 102

0.18 x 1020.15 x 102

0.13 x 102

0.12 x 102

0.10 x 1020.95 x 1010.89 x 10 l

0.85 x 10 l

0.82 x 101

Difference,

percent

-1.3

-1.4-1.0

-0.7-0.4

-0.3

-0.10.00.0

0.10.0

-0.1

-0.3-0.4

-0.4-0.5

-0.6-0.7

-0.8-0.8

-0.7-0.7-0.6

-0.6

-0.6

-0.4-0.5-0.6

-0.7

-0.7-0.7-0.6

-0.6-0.6

-0.5-0.5

-0.4

-0.4-0.3

-0.3-0.3

-0.2-0.3

Energy range

LaRC

code

0.12 x 10 -2

0.14 x 10 -20.18 x 10 -20.21 x 10 -2

0.25 x lO-20.29 x 10 -2

0.39 x 10 -2

0.49 x 10 -20.61 x lO -20.74 x lO -2

0.87 x 10 -2O.lOx 10 -1

0.12 × 10-10.13 × 10-!

0.15 x 10 -10.17 x 10 -10.22 x 10 -I

0.28 × 10-!0.34 x 10 -10.41 x 10 -1

0.48 x 10 -1

0.56 × 10-10.64 x 10 -l0.73 x 10 -1

0.83 x 10 -10.14 x 10 °

0.28 x 10 °0.48 x 10 °0.71 x 10 °

0.99 × 10 °0.25 x 10 l

0.46 × 1010.71 × 101

0.13 × 1020.23 x 102

0.35 × 102

0.50 x 102

0.74 x 1020.11 x 1030.15 x 103

0.20 x 1030.24 × 103

0.29 × 103

RSTAN

code

0.85 x 10 -3

0.12 x 10 -20.15 x 10 -2

0.18 x 10 -20.22 x 10 -2

0.27 x 10 -20.36 x 10 -2

0.46 x 10 -20.58 × 10-20.71 x 10-2

0.84 x 10-20.99 × 10 -2

0.12 x 10 -1

0.13 x 10 -1

0.15 x 10 -l0.17 x 10 -1

0.22 x 10 -10.28 x 10 -1

0.34 × 10-l

0.41 × 10-10.48 x 10 -1

0.56 x 10 -10.65 x 10 -1

0.74 × 10-1

0.83 × 10-1

0.14 × 10°0.29 × 10°0.48 × 10°

0.72 × 10°1.00 x 10 °

0.25 x 1010.46 x 1010.72 x 101

0.13 × lO 2

0.23 x 1020.36 x 102

0.50 x 102

0.74 x 1020.11 x 103

0.15 x 1030.20 × 1030.24 × 103

0.29 x 103

Difference,

percent

-25.6

-20.1-16.2

-13.3-11.2

-9.5

-7.1

-5.4-4.3-3.9

-3.2-2.7

-2.4-2.0-1.8

-1.5

-1.0-0.7-0.4

-0.2-0.1

0.00.10.2

0.20.3

0.50.5

0.50.6

0.70.70.6

0.60.5

0.6

0.5

0.50.4

0.40.4

0.30.3

34

Page 39: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table7.Continued

(b)Target,27A1;density,2.70g/cm3;meanionizationpotential,166.00eV;RSTANcode

Energy,MeV

2.02.42.83.23.64.04.85.66.47.28.08.89.6

10.411.212.014.016.018.020.022.024.026.028.030.040.060.080.0

100.0120.0200.0280.0360.0500.0700.0900.0

1100.01400.01800.02200.02600.03000.03400.0

StoppingpowerLaRCcode

0.99x 1030.91x 1030.84× 1030.79x 1030.74x 1030.69× 1030.62x 1030.56x 1030.52x 1030.48x 1030.44× 1030.42× 1030.39x 1030.37× 1030.35x 1030.33× 1030.30× 1030.27× 1030.25x 1030.23× 1030.21x 1030.20x 1030.19x 1030.18× 1030.17x 1030.14x 1030.99x 1020.79x 1020.66× 1020.57× 1020.39x 1020.30× 1020.25x 1020.19x 1020.15× 1020.13x 1020.12x 1020.10x 1020.91x 1010.84x 1010.79x 1010.76x 1010.73x 101

RSTANcode

0.10x 1040.92x 1030.85× 1030.78x 1030.73x 1030.69x 1030.61× 1030.56× 1030.51× 1030.47x 1030.44× 1030.41× 1030.39x 1030.37x 1030.35× 1030.33× 1030.30× 1030.27x 1030.25× 1030.23× 1030.21× 1030.20× 1030.19x 1030.18x 1030.17× 1030.14× 1030.98x 1020.78× 1020.66x 1020.57× 1020.38x 1020.30× 1020.24x 1020.19× 1020.15× 1020.13x 1020.12x 1020.10×lO20.91x lO10.84× 1010.79x 1010.76× lO10.73x lO1

Difference,percent

1.81.00.4

-0.1-0.4-0.6-I.0-1.I-1.1-0.9-0.9-0.8-0.7-0.7-0.7-0.8-0.9-1.0-1.1-1.1-1.1-1.0-0.9-0.8-0.8-0.6-0.6-0.6-0.6-0.6-0.7-0.7-0.8-0.6-0.6-0.5-0.5-0.4-0.3-0.3-0.2-0.2-0.2

EnergyrangeLaRCcode

0.19x 10-20.23× 10-20.27× 10-20.32× 10-20.38× 10-20.43x 10-20.55X 10-20.69X 10-20.84x 10 -2

0.10 x 10 -10.12 X 10 -1

0.14 X lO -1

0.16 x 10 -l

0.18 x 10 -10.20 x 10 -10.22 x 10 q

0.29 x 10 -l0.36 x lO-J

0.43 x 10 -I0.52 x 10 -1

0.61 x 10 -10.70 x 10 -1

0.81 x 10 -10.92 x 10 -1

0.10 x 10°0.17 x 10°0.34 x 10°

0.57 x 10°0.85 x 10°0.12 x lO;

0.29 x 1010.53 x 101

0.83 × 1010.15 × 102

0.26 x 1020.41 × 102

0.57 x 102

0.84 x 1020.13 x 103

0.17 x 1030.22 x 103

0.27 x 1030.33 x 103

RSTAN

code

0.13 x 10 -20.18 x 10 -2

0.22 x 10 -20.27 x 10-20.32 x 10 -2

0.38 x 10 -20.50 X 10-2

0.64 X 10-20.79 X 10-2

0.95 x 10-20.11 x 10 -1

0.13 x 10 -1

0.15 x 10 -1

0.17 x 10 -10.20 x 10 -1

0.22 x 10 -10.28 x 10 -10.35 x 10 -1

0.43 x 10 -l0.52 x 10 -1

0.61 x 10 -10.71 x 10 -1

0.81 x 10 -10.92 × 10-1

0.10 x 10°0.17 x 10°0.35 x 10°

0.58 x 10°0.86 x 10°0.12 x lO 1

0.29 × 101

0.54 x I01

0.83 x 1010.15 x 102

0.27 x lO20.41 × lO2

0.57 x 102

0.85 x 1020.13 x 103

0.17 x 1030.22 x 103

0.27 x 1030.33 x 103

Difference,

percent

-27.8

-22.9-19.2

-16.2-14.0

-12.1-9.2

-7.1-5.6

-4.8-3.9

-3.3

-2.8

-2.3-2.0-1.7

-1.2-0.8

-0.5-0.2

0.00.20.3

0.3

0.4

0.60.8

0.60.60.6

0.60.6

0.80.7

0.70.6

0.7

0.50.60.4

0.40.4

0.3

35

Page 40: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table7.Continued

(c)Target,63Cu;density,8.96g/cm3;meanionizationpotential,322.00eV;RSTANcode

Energy,MeV

2.02.42.83.23.64.04.85.66.47.28.08.89.6

10.411.212.014.016.018.020.022.024.026.028.030.040.060.080.0

100.0120.0

StoppingpowerLaRCcode

0.63 x 1030.60 x 103

0.57 x 1030.54 x 103

0.51 x 1030.48 x 103

0.44 X 1030.41 X 1030.38 X 103

0.35 X 103

0.33 x 1030.31 x 103

0.29 x 103

0.28 x 1030.26 x 103

0.25 x 1030.23 x 1030.21 x l03

0.19 x l030.18 x 103

0.17 x 1030.16 x 103

0.15 x 1030.14 x 103

0.14 x 103

0.11 x 1030.81 x 102

0.65 x 1020.55 × 102

0.48 x 102

RSTANcode

0.60 x 1030.57 x 1030.54 x 103

0.51 x 103

0.49 x 1030.46 x 103

0.43 x 1030.39 x 1030.36 x 103

0.34 x 1030.32 x 1030.30 x 103

0.29 x 1030.27 x 103

0.26 x 1030.25 x 103

0.23 x 1030.21 x 103

0.19 x 1030.18 x 1030.17 x 103

0.16 x 1030.15 x 103

0.14 x 103

0.13 x 1030.11 x 103

0.80 x 102

0.65 x 10 20.55 × 1020.48 x 102

Difference,

percent

-5.8-5.5-5.2

-4.8-4.4

-4.5

-3.9-3.5-3.5

-2.7-2.5

-2.2

-1.9-1.7

-1.6-1.5

-1.5-1.5

-1.5-1.4

-1.4-1.3-1.2

-1.1

-1.0

-0.9-0.9

-1.0-1.1-1.1

Energy range

LaRC

code

0.35 x 10 -20.42 x 10-20.48 x 10-2

0.56 x 10 -20.63 x 10 -2

0.71 x 10 -2

0.89 x 10 -20.11 x 10 -1

0.13 x 10 -1

0.15 x 10 -10.17 x 10 -10.20 x 10 -1

0.23 x 10 -10.25 x 10 -1

0.28 x 10 -10.32 x 10 -1

0.40 x 10 -l0.49 x 10 -1

0.59 x 10 -10.70 x 10 -10.81 x l0 -l

0.94 x 10 -10.11 x 10°

0.12 x 10°

0.14x 10°0.22 x 10°

0.43 x 10°

0.71 x 10°0.11 x 1010.14 x 101

RSTAN

code

0.26 x 10 -2

0.33 x 10 -20.40 x 10 -20.48 x 10 -2

0.56 x 10 -20.64 × 10 -2

0.82 x 10 -2O.lOx 10 -I

0.12 x 10 -10.15 x 10 -1

0.17 x 10 -l0.20 x 10 -1

0.22 x 10 -l

0.25 x 10 -10.28 x 10 -1

0.31 x 10 -10.40 x 10 -1

0.49 x 10 -10.59 x 10 -l

0.70 x 10 -10.82 x 10 -10.94 x 10 -1

0.11 x 10 °0.12 x 10 °

0.14 x 10 °0.22 x 10 °

0.44 x 10 °0.72 x 10°

0.11 x 1010.15 x 101

200.0 0.33 x

280.0 0.25 x360.0 0.21 x

500.0 0.17 x700.0900.0

1100.01400.0

1800.02200.0

2600.03000.0

3400.0

0.13x

0.12x

0.10x

0.90 x0.80 x

0.74 x0.70 x

0.67 x0.65 x

102 0.32 x 102102 0.25 x 102

102 0.21 x 102102 0.17 x 102102 0.13 x 102

l02 0.11 × 102

102 0.10 x 102

101 0.89 x 101101 0.79 x 10 l101 0.73 x 101

101 0.69 x 101

101 0.66 x 101101 0.64 x 101

-1.2-1.3

-1.3-1.4

-1.3-1.3

-1.2-1.2

-1.1-1.0-1.0

-1.0-1.0

0.35 x 1010.63 x 10 i

0.98 x 1010.17 x 102

0.31 x 1020.47 x l02

0.66 x 1020.97 x 1020.14 x 103

0.20 x 1030.25 x 103

0.31 x 1030.37 x 103

0.35 x 101

0.64 x 1010.99 x 101

0.18 x 1020.31 x 1020.48 x 102

0.66 x 102

0.98 x 1020.15 x 1030.20 X 103

0.26 X 1030.31 X 103

0.38 X 103

Difference,

percent

-26.2

-21.1-17.3

-14.4-12.0

-10.1-7.3-5.3

-3.9

-2.9-2.1-1.6

-1.2-0.9

-0.6-0.4

0.0

0.3

0.50.70.8

0.90.9

0.9

0.90.9

1.0

1.01.01.0

1.11.2

1.21.31.3

1.4

1.31.31.2

1.21.2

1.11.1

36

Page 41: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table7.Continued

(d)Target,197Au;density,19.32g/cm3;meanionizationpotential,790.00eV;RSHEVcode

Energy,MeV

1.62.02.42.83.23.64.04.85.66.47.28.08.89.6

10.411.212.014.016.018.020.022.024.026.028.038.056.076.096.0

116.0192.0272.0352.0480.0680.0880.0

1080.01360.01760.02160.02560.02960.0

StoppingpowerLaRCcode

0.36x 1030.33x 1030.31x 1030.30x 1030.28x 1030.27x 1030.26x 1030.24x 1030.22x 1030.21x 1030.19x 1030.18x 1030.18× 1030.17× 1030.16x 1030.15x 1030.15x 1030.14x 1030.13x 1030.12× 1030.11× 1030.11x 1031.00× 1020.95x 1020.91x 1020.75x 1020.59x 1020.47x 1020.40x 1020.35x 1020.25x 1020.19x 1020.16× 1020.13x 1020.10× 1020.90X1010.80X1010.71× 1010.63× 1010.58× 1010.55× 1010.53x 101

RSHEVcode

0.32x 1030.31x 1030.29x 1030.28× 1030.27× 1030.26× 1030.25x 1030.24× 1030.22× 1030.21× 1030.20× 1030.19x 1030.18x 1030.17× 1030.16× 1030.16x 1030.15x 1030.14x 1030.13x 1030.12× 1030.11× 1030.11× 1031.00x 1020.95× 1020.91 x 102

0.75 x 1020.58 × 102

0.47 x 1020.40 x 1020.35 × 102

0.24 x 1020.19 x 102

0.16 x 1020.13 x 102

0.10 x 1020.88 × 101

0.78 × 10 l

0.69 x 10 l0.62 × 10 l

0.57 x 10 l0.54 × 10 l0.52 × 101

Difference,

percent

-11.3-8.2

-5.8

-3.9-2.6-1.7

-1.0-0.2

0.20.5

0.60.8

1.11.3

1.41.41.4

1.00.7

0.60.4

0.20.0

-0.2

-0.3-1.0

-1.5-1.0-1.0

-1.0-1.2

-1.3-1.6

-1.9-2.2

-2.2

-2.2-2.1

-2.1-2.1

-2.1-2.2

Energy range

LaRC

code

0.60 x 10 -2

0.71 x 10 -20.84 x 10 -2

0.97 × 10-20.11 × 10 -10.13 × 10-1

0.14 x 10 -10.17 x 10 -1

0.21 x 10 -10.25 x 10 -1

0.29 X 10 -10.33 x 10 -1

0.37 x 10 -10.42 x 10 -1

0.47 x 10 -10.52 x 10 -1

0.57 x 10 -10.72 x 10 -1

0.87 x 10 -1O.lOx 1000.12x 10 °

0.14 x 10 °

0.16x 10 °0.18 x 10 °

0.20 x 10 °0.32 x 10 °

0.60 x 10 °0.98 x 10 °0.14 x 10 I

0.20 x 10 l

0.46 x 1010.83 x 1010.13 x 102

0.22 x 1020.39 x 102

0.60 x 102

0.84 x 1020.12 x 103

0.18 x 1030.25 × 103

0.32 x 1030.39 x 103

RSHEV

code

0.44 x 10 -2

0.57 x 10 -20.70 x 10 -2

0.84 x 10 -20.99 × 10-20.11 x 10 -l

0.13 x 10 -10.16 x 10 -I

0.20 x 10 -10.24 x 10 -1

0.27 x 10 -10.32 x 10 -1

0.36 x 10 -10.41 x 10 -1

0.46 x 10 -10.51 x 10 -I0.56 x 10 -l

0.70 x 10 -I0.85 x 10 -l

0.10 x 10 °0.12 × 10 °

0.14 x 1000.16 × 10 °

0.18 x 10 °

0.20 x 10°0.32 × 10°

0.60 × 10°0.99 × 10°0.15 × 101

0.20 x 10 l

0.47 x lO l0.84 x 10 l0.13 × 102

0.22 x 1020.40 × 1020.61 × 102

0.85 x 1020.12 × 103

0.19 × 1030.25 × 103

0.33 X 1030.40 x 103

Difference,

percent

-26.2-20.2

-16.1-13.2

-11.1-9.6-8.4

-6.6-5.4

-4.6-4.2

-3.7

-3.5-3.2-3.0

-2.8-2.7

-2.4-2.1-1.9

-1.7-1.5

-1.3-1.1

-1.0-0.4

0.3

0.60.70.8

1.0

1.11.21.5

1.71.9

2.02.12.1

2.12.1

2.1

37

Page 42: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table7.Continued

(e)Target,238U;density, 19.07 g/cm3; mean ionization potential, 841.00 eV; RSHEV code

Energy,MeV

1.62.0

2.42.8

3.23.6

4.04.8

5.66.47.2

8.0

8.8

9.610.4

11.212.014.0

16.018.0

20.022.0

24.026.0

28.038.056.0

76.096.0

116.0192.0

272.0352.0

480.0680.0880.0

1080.01360.0

1760.02160.0

2560.02960.0

Stopping power

LaRC

code

0.39 x 103

0.36 x 1030.33 x 103

0.30 × 1030.29 x 103

0.27 × 1030.26 × 103

0.23 x 1030.21 x 1030.20 x 103

0.19 × 1030.18 x 103

0.17 x 1030.16 × 103

0.15 x 1030.15 × 103

0.14 x 1030.13 × 1030.12 x 103

0.I 1 × 1030.11 x 103

0.99 x 1020.94 × 102

0.89 x 102

0.85 x 1020.70 × 102

0.54 × 1020.44 X 1020.37 X 102

0.33 × 102

0.23 X 1020.18 × 102

0.15 x 1020.12 × 1020.98 x 101

0.84 x 101

0.75 x 101

RSHEV

code

0.28 x 103

0.28 x 1030.27 x 103

0.26 x 103

0.25 x 1030.24 x 1030.24 x 103

0.22 x 1030.21 x 103

0.19 × 1030.18 x 1030.17 x 103

0.17 x 1030.16 × 103

0.15 x 1030.15 x 103

0.14 x 1030.13 x 1030.12 x 103

0.11 x 1030.10 x 103

0.98 x 1020.93 x 102

0.89 x 102

0.85 x 102

0.70 x 1020.54 x 1020.44x 102

0.38 x 1020.33 × 102

0.23 x 1020.18 x 102

0.15 x 1020.12 x lO2

0.97 x lO 10.83 x 101

0.74 x 101

Difference,

percent

-28.0

-22.0-17.4

-14.0-11.4

-9.4-7.9

-5.6-4.1-3.0

-2.1-1.6

-0.9-0.5

-0.2--0.1

0.0-0.2-0.3

-0.4-0.4

-0.3-0.3-0.2

-0.1

0.30.40.4

0.40.4

0.30.2

-0.1

-0.5

-0.8-0.9

-0.9

Energy range

LaRC

code

0.49 x 10 -20.60 x 10 -20.72 x 10 -2

0.84 x 10 -2

0.98 x 10 -20.11 x lO-1

0.13 x 10 -1O.16x 10 -1

0.20 × 10-10.24 x 10 -10.28 x 10 -1

0.32 x 10 -1

0.37x10 -1

0.42 x 10 -10.47 x 10 -1

0.52 x 10 -10.58 x 10 -10.73 x 10 -1

0.89 x 10 -10.11 × 10°

0.13 x 10°0.15 x 10 °0.17 x 10 °

0.19 x 10 °

0.21 x 10 °

0.34 x 10 °0.64 x 10 °0.11 x 101

0.16 x 10 l

0.21 x lO l0.50 x 1010.89 x 101

0.14 X 102

0.23 X 1020.42 X 1020.64 x 102

0.89 x 102

RSHEV

code

0.53 x 10 -20.68 x 10 -2

0.82 × 10-20.97 x 10 -2

0.11 × 10-10.13 x 10 -1

0.15 x 10 -10.18 x 10 -1

0.22 x 10 -10.26 × 10-10.30 x 10 -1

0.35 x lO-l

0.39 x 10 -I

0.44x 10 -10.50 x 10 -l

0.55 x 10 -10.61 x 10 -10.76 x 10 -l

0.92 × 10 -10.11 x 10 °

0.13 x 10 °0.15 x 10 o

0.17 × 10 °0.19 x 10 o

0.21 × 10 °0.34 x 10 °0.64 x 10 °

0.11 x 1010.16 × 101

0.21 x 10 j0.49 x 101

0.89 x 1010.14 x 102

0.23 x 1020.42 x 1020.64 x 102

0.90 x 1020.67 x

0.59 ×0.55 x

0.52 x0.50 ×

101

101101

101

101

0.66 x

0.59 x0.54 x

0.51 x0.49 x

101101

101101

101

-0.9-0.9

-0.9-1.0-1.0

0.13x0.19x

0.26 x0.34 x

0.42 x

10 3

10 310 310 3

10 3

0.13 x 103

0.19 x 1030.27 x 103

0.34 x 1030.42 x 103

Difference,

percent

8.412.8

14.815.3

15.214.7

14.112.8

11.510.3

8.9

8.0

7.0

6.25.6

5.04.63.7

3.02.6

2.32.0

1.81.6

1.50.90.3

0.0-0.1

-0.2-0.3

-0.3-0.2

0.0

0.30.5

0.60.7

0.80.8

0.80.9

38

Page 43: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table7.Concluded

(f)Target,H20;density,1.00g/cm3;meanionizationpotential,69.04eV;RSTANcode

Energy,MeV

2.02.42.83.23.64.04.85.66.47.28.08.89.6

10.411.212.014.016.018.020.022.024.026.028.030.040.060.080.0

100.0120.0200.0280.0360.0500.0700.0900.0

1100.01400.01800.02200.02600.03000.03400.0

StoppingpowerLaRCcode

0.15x 1040.14x 1040.12x 1040.11x 1040.11x 1040.99× 1030.88x 1030.80x 1030.74x 1030.68x 1030.64x 1030.60x 1030.56x 1030.53x 1030.50x 1030.48x 1030.42x 1030.38x 1030.35x 1030.32x 1030.30x 1030.28x 1030.26x 1030.25x 1030.23x 1030.18x 1030.13x 1030.11x 1030.88x 1020.76x 1020.50x 1020.39x 1020.32x 1020.25x 1020.20x 1020.17x 1020.15x 1020.13x 1020.12x 1020.11× 1020.10x 1020.96× 1010.92× 101

RSTANcode

0.17x 1040.15× 1040.14x 1040.12x 1040.11x 1040.11x 1040.93× 1030.84× 1030.76x 1030.70x 1030.64x 1030.60x 1030.56x 1030.53× 1030.50x 1030.48x 1030.42x 1030.38x 1030.35x 1030.32x 1030.30× 1030.28x 1030.26x 1030.25x 1030.23x 1030.18x 1030.13x 1030.11x 1030.88× 1020.76x 1020.50x 1020.39x 1020.32× 1020.25x 1020.20x 1020.17x 1020.15x 1020.13 x 1020.12 x 102

0.11 x 1020.10 x 102

0.96 x 10 l0.93 x 101

Difference,

percent

12.110.89.8

8.88.0

7.25.84.5

3.32.0

1.40.9

0.50.2

0.0-0.2

-0.3-0.4-0.4

-0.3-0.3

-0.2-0.2

-0.1

-0.1-0.1-0.2-0.3

-0.3-0.3

-0.3-0.2-0.2

-0.10.00.0

0.00.20.20.2

0.20.2

0.1

Energy range

LaRC

code

0.12 x 10 -20.15 x 10 -20.18 x 10 -2

0.22 x 10 -20.25 x 10 -2

0.29 x 10 -20.38 x 10 -2

0.47 x 10 -20.58 x 10 -20.69 x 10 -2

0.81 × 10 -2

0.94 × 10 -2

0.11 x 10 -10.12 x 10 -10.14 x 10 -10.15 x 10 -I

0.20 x 10 -I0.25 × 10 -1

0.30 x 10 -I

0.36 x I0 -I0.43 x 10 -l0.50 X 10 -1

0.57 x 10 -I0.65 x 10 -I

0.74 x 10 -10.12 x 10 °0.25 x 10 °

0.42 x 10 °0.63 x 10 °0.88 x 10 °

0.22 x 1010.41 x 101

0.63 X 1010.11 X 1020.21 X 102

0.32 X 102

0.44 x 1020.66 x 1020.99 x 102

0.14 x 1030.17 x 103

0.22 x 1030.26 x 103

RSTAN

code

0.73 x 10 -30.99 × 10-3

0.13 x 10 -20.16x 10 -20.19 x 10 -2

0.23 × 10 -20.31 x 10 -2

0,40 x 10 -20.50 × 10-2

0.61 x 10 -20.73 x 10 -2

0.86 x 10 -2

1.00 x 10 -2

0.11 x 10 -10.13 x 10 -t0.15 x 10 -!

0.19 x 10 -!0.24 x 10 -!

0.30 x 10 -I

0.36 x 10 -l0.42 x 10 q0.49 x 10 -!

0.57 x 10 -l0.64 x 10 -I

0.73 x 10 -!0.12 x 10 °0.25 x 10 °

0.42 x 1000.63 x 10 °0.88 x 10 °

0.22 x 10 !0.41 x 101

0.64 x 1010.11 x 1020.21 x 102

0.32 x 102

0.44 x 1020.66 x 1020.99 x 1020.14 x 103

0.17 x 103

0.21 x 1030.26 x 103

Difference,

percent

-39.8-34.3-30.0

-26.6-23.8

-21.6-18.0-15.2

-13.1-11.6

-10.1-8.7

-7.6-6.7

-5.9-5.3--4.1

-3.3-2.7

-2.2-1.7

-1.4-1.2

-1.0

-1.0-0.4

0.20.0

0.00.1

0.20.10.3

0.10.10.1

0.0-0.1

0.00.0

-0.1-0.1-0.2

39

Page 44: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table8.StoppingPowerandEnergyRangeCalculatedbyLaRCandBichselCodesfor 12C Ions on Various Targets

(a) Target, 12C; density, 1.80 g/cm3; mean ionization potential, 78.00 eV; RSTAN code

Energy,MeV

6.0

7.28.4

9.610.8

12.014.4

16.819.2

21.624.026.4

28.831.2

33.636.042.0

48.054.0

60.066.072.0

78.084.0

90.0120.0

180.0240.0300.0

360.0600.0

840.01080.0

1500.02100.0

2700.0

3 300.04200.0

5400.06600.0

7 800.09000.0

10200.0

11400.0

Stopping power

LaRC

code

0.77 x 1040.72 x 104

0.68 x 1040.65 x 104

0.62 x 1040.59 x 104

0.55 x 1040.51 x 104

0.48 x 1040.45 x 104

0.43 x 1040.41 X 104

0.39 x 104

0.37 x 1040.36 x 104

0.34 x 1040.31 x 104

0.29 x 1040.26 x 1040.25 x 1040.23 x 104

0.22 x 1040.20 x 104

0.19 x 104

0.18 x 1040.15 x 1040.11 x 10 4

0.84 x 1030.70 x 1030.61 x 103

0.40 x 1030.31 x 103

0.26 x 103

0.20 x 1030.16 x 1030.14 x 103

0.12 x 1030.11 x 1030.93 x 102

0.85 x 1020.80 x 102

0.77 x 102

0.74 x 1020.72 x 102

RSTAN

code

0.71 x 104

0.68 x 1040.65 x 1040.62 x 104

0.60 x l0 4

0.58 X 1040.54 x 1040.51 × 104

0.48 × 1040.46 X 104

0.43 X 1040.41 X 104

0.39 x 104

0.38 x 104

0.36 x 1040.35 x 1040.32 x 104

0.29 x lO 40.27 x 1040.25 x 104

0.23 X 1040.22 X 104

0.20 x 1040.19 x 104

0.18 x 1040.15 x 104

0.11 x 1040.83 x 1030.70 × 103

0.60 x 1030.40 x 103

0.31 X 1030.25 x 103

0.20 x 1030.16 × 103

0.13 x 103

0.12 x 1030.11 x 103

0.93 x 1020.85 x 102

0.80 × 1020.77 × 102

0.74 x 1020.72 x 102

Difference,

percent

-7.3-6.7

-5.2-4.0

-3.1-2.4

-1.3-0.4

0.20.6

0.91.0

1.1

1.11.2

1.21.1

1.00.80.7

0.50.4

0.30.1

0.0--0.4

-0.8-0.9-0.9

-0.9-0.7

-0.6-0.5

-0.4-0.3

-0.3

-0.1-0.1

0.00.1

0.10.2

0.10.0

Energy range

LaRC

code

0.86 x 10 -3

0.10x 10 -20.12 x 10 -2

0.14 x 10 -20.16x 10 -2

0.18 x 10 -20.22 × 10 -2

0.26 × 10 -20.31 × 10 -2

0.36 x 10 -20.42 x 10 -20.48 x 10 -2

0.54 x 10 -20.60 x 10 -2

0.66 x 10 -20.73 x 10 -2

0.92 x 10-20.11 x 10 -1

0.13 x l0 -10.16x l0 -10.18x 10 -1

0.21 x 10 -!0.24 x 10 -l

0.27 × 10 -l

0.30 x 10 -i

0.49 x 10 -l0.98 x 10 -10.16 x 10 °

0.24 x 10 °0.33 x 10 °

0.83 x 10°0.15 x 10 l

0.24 x 1010.43 x 101

0.77 x 1010.12 x 102

0.17 x 1020.25 x 1020.37 x 102

0.50 X 1020.65 x 102

0.80 x 1020.96 x 102

0.11 x 103

RSTAN

code

0.65 x 10 -30.82 x 10 -3

0.10 x 10 -20.12 x 10 -20.14 x 10 -2

0.16 x 10 -2

0.20 x 10 -20.25 x 10 -20.30 x 10 -2

0.35 x 10 -20.40 x 10-2

0.46 x 10-2

0.52 × 10 -2

0.58 x 10 -20.65 × 10-2

0.71 x 10 -20.90 x 10 -20.11 x 10 -1

0.13 x 10 -10.16 × 10-10.18 x 10 -1

0.21 x 10 -10.24 x 10 -1

0.27 x 10 -1

0.30 x 10 -l0.48 x 10 -l0.98 x 10 -l

0.16 x 10°0.24 x I0 °0.34 × 10°

0.84 x l0 °

0.15 x 1010.24 x 101

0.43 × 10 l0.77 × 10 l0.12 x 102

0.17x 1020.25 x 1020.37 × 102

0.50 X 102

0.65 x 1020.80 x 102

0.96 x 1020.11 x 103

Difference,

percent

-25.2-20.0-16.2

-13.5-11.4

-9.8

-7.5-6.0

-5.0-4.4

-3.9-3.5

-3.3

-3.0-2.9-2.7

-2.4

-2.1-1.9-1.7-1.6

-1.4

-1.3-1.2

-1.1

-0.60.2

0.40.50.6

0.7

0.70.70.6

0.40.4

0.30.30.2

0.1

0.10.0

0.00.0

4O

Page 45: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table8.Continued

(b)Target,27A1;density,2.70g/cm3;meanionizationpotential,166.00eV;RSTANcode

Energy,MeV

6.07.28.49.6

10.812.014.416.819.221.624.026.428.831.233.636.042.048.054.060.066.072.078.084.090.0

120.0180.0240.0300.0360.0600.0840.0

1080.01500.02100.02700.03300.04200.05400.06600.07800.09000.0

10200.011400.0

StoppingpowerLaRCcode

0.52x 1040.51x 1040.49x 1040.48x 1040.46x 1040.45x 1040.42x 1040.40x 1040.38x 1040.37x 1040.34x 1040.32x 1040.31x 1040.30x 1040.28x 1040.27x 1040.25x 1040.23x 1040.21x 1040.20x 1040.19x 1040.18x 1040.17x 1040.16x 1040.15x 1040.12x 1040.89x 1030.71x 1030.60x 1030.52x 1030.35x 1030.27x 1030.22x 1030.18x 1030.14x 1030.12x 1030.11x 1030.92x 1020.82x 1020.76x 1020.71x 1020.68x 1020.66x 1020.64x 102

RSTAN

code

0.51 x 104

0.50 x 1040.49 x 104

0.48 x 1040.46 x 104

0.45 x 1040.42 x 104

0.40 x 1040.38 x 104

0.36 x 1040.35 x 104

0.33 x 104

0.32 x 104

0.30 x 1040.29 x 1040.28 x 104

0.26 x 104

0.23 X 1040.22 X 1040.20 X 104

0.19 X 1040.18 X 104

0.17 X 1040.16 X 104

0.15 X 1040.12 X 1040.88 X 103

0.71 X 1030.59 x 103

0.51 X 1030.34 X 103

0.27 X 1030.22 X 1030.17 X 103

0.14 X 1030.12 X 103

0.11 x 1030.92 x 1020.82 x 102

0.76 x 1020.71 x 102

0.68 x 1020.66 x 102

0.64 x 102

Difference,

percent

-3.3

-1.8-1.0

-0.5-0.1

0.10.5

0.91.52.0

2.32.6

2.7

2.82.82.7

2.42.0

1.71.4

1.10.9

0.70.5

0.4

-0.1-0.7

-0.7-0.7-0.7

-0.7-0.6

-0.7-0.5

-0.3-0.3

-0.2

-0.10.0

0.10.20.2

0.20.0

Energy range

LaRC

code

0.14 x 10-20.16 x 10-2

0.19 x 10-20.21 x 10-2

0.24 x 10-20.26 x 10-20.32 x 10-2

0.38 x 10 -20.44 x 10 -2

0.51 x 10 -20.57 x 10 -2

0.65 x 10 -2

0.72 x 10 -20.80 x 10 -20.89 x 10 -2

0.97 x 10 -20.12 x 10 -I

0.15 x 10 -10.17 x 10 -10.20 x 10 -1

0.23 × lO-10.27 × lO-1

0.30 x 10 -10.34 x 10 -1

0.38 × 10-10.60 × 10-1

0.12 x 10 °0.20 x 10°0.29 x 10°

0.40 x 10°0.98 x 10°

0.18 x 10 ]0.28 x 10 l0.49 X 101

0.88 x I0 ]0.14 x 102

0.19 x 1020.28 x 1020.42 x 102

0.57 × 1020.74 × 102

0.91 x 1020.11 x 103

0.13 x 103

RSTAN

code

0.I 1 x 10 -20.14 x 10 -2

0.16 x 10 -20.18 x 10 -2

0.21 x 10 -20.24 x 10-2

0.29 x 10-20.35 x 10 -20.41 x 10-2

0.48 x 10-20.54 x 10 -2

0.61 x 10 -2

0.69 x 10 -20.77 x 10 -20.85 x 10 -2

0.93 x 10 -20.12 x 10 -!

0.14 x 10 -I0.17 X 10 -10.20 x I0 -l

0.23 × 10 -10.26 x 10 -1

0.29 × 10 -1

0.33 x 10 -1

0.37 x 10 -10.59 x 10 -1

0.12 x 10 °0.20 x 10 °0.29 x 10 °

0.40 x 10 °0.98 x 10 °

0.18 x 1010.28 x 1010.50 X 10 l

0.89 x 10 j0.14 x 102

0.19 x 1020.28 x 1020.42 x 102

0.57 x 1020.74 x 102

0.91 x 1020.11 x 103

0.13 x 103

Difference,

percent

-20.3

-17.0-14.6

-12.7-11.4

-10.2-8.5

-7.2-6.4

-5.8-5.3

-4.9

-4.7

-4.5-4.3-4.1

-3.9-3.6

-3.3-3.1

-2.8-2.5

-2.3-2.1

-2.0

-1.2-0.2

0.00.20.3

0.60.5

0.70.5

0.50.4

0.4

0.20.20.1

0.10.1

-0.1-0.1

41

Page 46: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 8. Continued

(c) Target, 63Cu; density, 8.96 g/cm3; mean ionization potential, 322.00 eV; RSTAN code

Energy,MeV

6.07.2

8.49.6

10.8

12.014.4

16.819.221.6

24.026.4

28.831.233.6

36.042.0

48.054.060.0

66.072.0

78.0

Stopping

LaRC

code

0.34 x 1040.34 x 104

0.33 x 1040.33 x 104

0.32 x 1040.31 × 104

0.30 × 1040.29 x 1040.27 × 104

0.26 × 1040.25 × 104

0.24 x 104

0.23 x 104

0.22 x 1040.21 x 1040.21 x 104

0.19 x 1040.18 x 104

0.17 x 104O.16x 104

0.15 x 1040.14 x 1040.13 x 104

power

RSTAN

code

0.25 x 1040.27 x 104

0.28 x 1040.29 x 104

0.29 x 1040.29 x 104

0.29 x 104

0.28 x 1040.27 x 1040.26 x 104

0.25 x 1040.24 x 104

0.24 x 104

0.23 x 1040.22 x 104

0.21 x 1040.20 x 104

0.18 × 1040.17 x 1040.16 × 104

0.15 x 1040.14 × 104

0.13 × 104

Difference,

percent

-25.1-19.4

-15.0-11.5

-8.6-7.5

-4.2-2.0

-1.10.3

1.01.7

2.1

2.52.52.6

2.72.5

2.22.0

1.71.5

1.3

Energy range

LaRC

code

0.27 x 10 -2

0.31 x 10-20.34 × 10-2

0.38 × 10-20.42 × 10-2

0.46 x lO-2

0.53 x 10 -20.62 × 10-20.70 × 10-2

0.79 x lO-20.88 × 10-2

0.98 x 10 -2

0.11 × 10-10.12 × 10-1

0.13 × 10-10.14 × 10-1

0.17× 10-10.20 x 10-10.24 X 10-!

0.28 X 10-l0.32 × 10-l

0.36 X 10-10.40 X 10-1

RSTAN

code

0.39 x 10 -20.43 x 10 -2

0.47 x 10 -20.52 x 10 -2

0.56 x 10 -20.60 x 10 -2

0.68 × 10-20.77 x 10 -2

0.85 x 10 -20.94 x 10 -2

0.10 x 10 -1O.ll × lO-1

O.12x 10 -1

0.13 x 10 -10.15 x 10 -1

0.16 x 10 -l

Difference,

percent

41.640.2

38.236.0

33.831.7

27.924.6

21.819.5

17.415.4

13.8

12.311.1

10.00.19 x 10 -I

0.22 x 10 -l0.25 x 10 -10.29 x 10 -I

0.33 x 10 -10.37 x 10 -1

0.41 X lO -1

7.86.2

4.9

4.03.32.7

2.284.0

90.0120.0180.0

240.0300.0

360.0600.0

840.01080.0

1500.02100.02700.0

3300.04200.0

5400.06600.0

7 800.09000.0

10200.011400.0

0.13×

O.12x0.98 x

0.73 x0.59 x

0.50 ×0.43 x

0.29 x0.23 xO.19x

0.15 x0.12×

O.lOx

0.92 x

0.81 x0.72 x

0.67 x0.63 ×

0.60 ×0.58 ×0.57 ×

104

104

103103103

103

103103102

103103

103103

102102

102102102

102102

102

0.13 x

O.12x

0.98 x0.72 x0.58 ×

0.49 x

0.43 x0.29 x0.23 x

0.19xO.15x

O.12x0.10x

0.91 x

0.80 ×

0.72 x0.66 ×0.63 x

0.60 x0.58 ×

0.57 ×

104

lO4103103

103103

103103

103103

103103103

102

102102102

102102

102102

1.1

0.90.2

-0.6

-0.8-0.9

-1.0-1.1

-1.1-1.1-1.1

-1.0-1.0

-0.9-0.8

-0.7-0.6

-0.6-0.5

-0.5-0.7

0.45 x

0.50 x

0.78 x

0.15×

0.24 x0.35 ×

0.48 ×

0.12×0.21 ×0.33 x

0.58 xO.lOx

O.16x

0.22 x0.32 x

0.48 x

0.66 x0.84 x

O.lOxO.12x

O.15x

10 -1

10 -110-1

10o10o

lOo100101101

101101

102102

102

102

102102102

103103

103

0.46 x 10 -1

0.51 x 10 -10.79 x 10 -i0.15 × 10 °

0.24 × 10 °0.36 x 10°

0.49 x lO°0.12 × 101

0.21 x 1010.33 x 101

0.58 X 101O.lOx 1020.16 x 102

0.22 × 1020.33 X 102

0.49 × 1020.66 x 102

0.85 x 1020.10 x 103

0.13 x 1030.15 × 103

1.9

1.60.80.7

0.60.7

0.8

0.91.01.0

1.11.11.1

1.01.0

0.90.8

0.8

0.70.7

0.7

42

Page 47: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table8.Continued

(d)Target,197Au;density,19.32g/cm3;meanionizationpotential,790.00eV;RSHEVcode

Energy,MeV

4.86.07.28.49.6

10.812.014.416.819.221.624.026.428.831.233.636.042.048.054.060.066.072.078.084.0

114.0168.0228.0288.0348.0576.0816.0

1056.01440.02040.02640.03240.04080.05280.06480.07680.08880.0

StoppingpowerLaRCcode

0.18x 104

0.18 x 1040.18 x 104

0.17 x 1040.17 x 104

0.17 x 1040.17x 1040.16x 104

0.16x 104

0.15x 1040.15x 104

0.14 x 104

0.14 x 104

0.13 x 1040.13 x 1040.12 x 104

0.12 x 1040.11 x 104

0.11 x 1040.10 x 104

0.96 x 1030.91 x 103

0.87 x 1030.84 x 103

0.80 × 103

0.67 × 1030.53 × 103

0.43 × 1030.36 × 103

0.32 x 1030.22 x 1030.17 x 103

0.15 x 1030.12 x 1030.94 x 102

0.81 x 102

0.72 × 1020.64 x 1020.57 x 102

0.52 × 1020.49 x 102

0.47 x 102

RSHEV

code

0.16 x 1040.15 x 1040.15 x 104

0.15 x 1040.15 x 104

0.15 X 1040.15 x 104

0.15 x 1040.15 x 104

0.15 x 1040.14 x 104

0.14 x 104

0.14 x 104

0.14 x 1040.13 x 104

0.13 x 1040.13 x 1040.12 x 104

0.11 x 104

0.11 x 1040.99 x 1030.94 x 103

0.90 x 1030.86 x 103

0.82 x 1030.68 x 1030.52 x 103

0.43 x 1030.36 x 103

0.32 x 1030.22 x 1030.17 x 103

0.14 x 1030.12 x 103

0.93 x 1020.79 x 102

0.71 x 1020.63 x 102

0.56 x 1020.52 x 1020.49 x 102

0.47 x 102

Difference,

percent

-12.3

-14.1-13.5

-12.2-10.7

-9.2-7.9

-5.4-3.4

-1.7-0.5

0.6

1.7

2.63.23.6

3.94.0

3.93.8

3.63.2

2.92.5

2.20.9

-0.3

0.10.0

-0.2-0.4-0.6

-0.9-1.2-1.5

-1.6

-1.5

-1.5-1.4

-1.4-1.5

-1.5

Energy range

LaRC

code

0.50 × 10 -20.56 × 10 -2

0.63 x 10 -20.70 x 10 -2

0.77 x 10 -20.84 × 10 -2

0.91 × 10 -20.11 x 10 -i0.12× 10 -l

0.14× 10 -l

0.15 x 10 -10.17 x 10 -I

0.19 x 10 -1

0.21 x 10 -10.22 x 10 -1

0.24 x 10 -10.26 x 10 -l

0.31 x 10 -10.37 x 10 -1

0.43 x 10 -10.49x 10 -l0.55 x 10 -1

0.62 x 10 -1

0.69 x 10 -1

0.76 x 10 -10.12 x 10°0.21 x 10°

0.34 x 10°

0.49 x 10°0.67 x 10°0.16 x 10 l

0.28 x 1010.43 × 1010.73 x 101

0.13 x 1020.20 × 102

0.28 x 1020.40 x 102

0.61 x 1020.83 x 1020.11 x 103

0.13 x 103

RSHEV

code

0.28 x 10 -20.36 x 10 -2

0.44 x 10 -20.52 x 10 -2

0.60 x 10 -20.68 x 10 -2

0.75 x 10 -20.91 x 10 -20.11 x 10 -1

0.12 x 10 -I

0.14 x 10 -l0.16 x 10 -1

0.17 x 10 -1

0.19 x 10 -10.21 x 10 -l

0.23 x 10 -10.25 x 10 -10.30 x 10 -1

0.35 x 10 -1

0.40 x 10 -10.46 x 10-10.53 x 10 -1

0.59 × 10-10.66 x 10 -1

0.73 × 10-10.11 x 10°0.21 x 10°

0.33 × 10°

0.49 × 10°0.67 × 10°0.16× 10 I

0.28 x 1010.43 X lO I0.73 x 101

0.13 x lO 20.20 x 102

0.28 x 1020.41 x 102

0.61 x 1020.84 x 1020.11 x 103

0.13 x lO 3

Difference,

percent

-43.5-36.4

-30.8-26.3-22.7

-19.9-17.5

-14.1-11.8

-10.1-8.8

-8.0

-7.4

-6.9-6.6-6.3

-6.1-5.7

-5.4-5.2

-5.0-4.8

-4.6-4.4

-4.2-3.2

-1.9

-1.3--0.9

--0.6--0.1

0.2

0.40.71.0

1.2

1.3

1.41.4

1.41.41.4

43

Page 48: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table8. Continued

(e) Target, 238U; density, 19.07 g/cm3; mean ionization potential, 841.00 eV; RSHEV code

Energy,MeV

4.8

6.07.2

8.49.6

10.8

12.014.4

16.819.2

21.624.0

26.4

28.831.2

33.636.0

42.048.054.0

60.066.0

72.078.0

84.0

114.0168.0

228.0288.0

348.0576.0

816.01056.0

1440.02040.02640.0

3240.04080.0

5280.06480.0

7680.08880.0

Stopping power

LaRC

code

0.20 x 1040.19 x 1040.18 × 104

0.18x 1040.17 x 104

0.17 x 1040.17 x 104

0.16 x 1040.15 × 104

0.15 x 1040.14x 1040.13 x 104

0.13 x 104

0.13 x 1040.12 x 1040.12 x 104

0.11 x 1040.11 x 1040.10 x 104

0.96 x 1030.91 x 103

0.86 x 1030.82 x 103

0.78 x 103

0.75 x 1030.62 x 103

0.48 x 1030.39 x 103

0.34 x 1030.29 x 103

0.21 x 1030.16 x 103

0.14 x 1030.11 x 1030.88 x 102

0.76 x 102

0.68 x 102

0.60 x 1020.53 x 102

0.49 x 1020.47 x 102

0.45 x 102

RSHEV

code

0.14 x 1040.14 x 104

0.14 x 1040.14 x 10 4

0.14 x 1040.14 x 104

0.14 x 1040.14 x 104

0.14 x 1040.14 × 1040.14 x 104

0.13 x 104

0.13 x 104

0.13 x 1040.12 x 1040.12 x 104

0.12 x 1040.11 x 104

0.10 x 1040.98 x 103

0.93 x 1030.88 x 103

0.84 × 1030.80 × 103

0.77 x 103

0.64 x 1030.49 x 103

0.40 × 1030.34 × 103

0.30 x 1030.21 × 103

0.16 × 1030.14 × 1030.11 × 103

0.88 x 1020.76 x 102

0.67 × 102

0.60 × 1020.53 × 102

0.49 x 102

0.47 x 1020.45 x 102

Difference,

percent

-28.8-27.2

-24.5-21.7

-19.0-16.6

-14.5-10.7

-7.7-5.3

-3.3-1.8

--0.4

0.71.52.1

2.52.8

2.82.82.7

2.7

2.62.6

2.5

2.21.7

1.51.41.3

1.1

0.90.60.2

-0.1-0.3

--0.2

--0.2-0.2

-0.2

-0.3-0.3

Energy range

LaRC

code

0.41 x 10 -2

0.48 x 10 -20.54 x 10 -2

0.61 x 10 -20.68 x 10 -2

0.75 x 10 -20.82 x 10 -2

0.97 × 10-20.11 x 10 -1

0.13 x 10 -10.15 x 10 -10.16x 10 -1

0.18 x 10 -1

0.20 x 10 -10.22 x 10 -10.24 x 10 -1

0.26 x 10 -10.31 x l0 -10.37 x l0 -1

0.43 x l0 -l0.50 x 10 -1

0.57 x 10 -10.64 x 10 -l

0.71 × 10 -1

0.79 x 10 -10.12 x 10 o

0.22 x 10 o0.36 x 10 o

0.53 × l0 °0.72 × 10 o

0.17 x l010.30 × 101

0.46 x 101

0.78 x 101

0.14 x 1020.21 x 102

0.30 x 102

0.43 x 1020.64 x 102

0.88 x 1020.11 x 103

0.14 x 103

RSHEV

code

0.34 x 10 -20.42 x 10 -2

0.51 x 10 -20.60 × 10-2

0.68 × 10-20.77 x 10 -2

0.85 x 10 -20.10 × 10 -1

0.12 x 10 -10.14 x 10 -1

0.16 × 10 -10.17 x 10 -l

0.19 x 10 -10.21 x 10 -10.23 x 10 -1

0.25 x 10 -10.27 x 10 -1

0.32 x 10 -j0.38 x 10 -I0.44 × 10 -1

0.50 x I0-l

0.57 x 10 -1

0.64 × 10 -10.71 × I0 -1

0.79 x 10 -10.12 × 10 °0.22 × l00

0.36 × 10 °0.52 × l00

0.71 × 10 °0.16 × 101

0.30 × 1010.46 x 101

0.77 × 1010.14 x 102

0.21 × l02

0.30 x 1020.43 x 102

0.64 × 1020.88 × 102

0.11 × 1030.14 × 103

Difference,

percent

-18.6-11.0

-5.6-1.7

1.13.1

4.46.0

6.66.7

6.46.1

5.5

4.94.4

3.93.4

2.41.61.0

0.50.1

-0.2-0.4

-0.6-1.2-1.4

-1.5-1.5

-1.4-1.3

-1.2-1.0

-0.8-0.4

-0.2

-0.10.0

0.10.1

0.10.2

44

Page 49: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 8. Concluded

(f) Target, H20; density, 1.00 g/cm3; mean ionization potential, 69.04 eV; RSTAN code

Energy,MeV

6.07.2

8.49.6

10.812.0

14.416.819.2

21.6

24.026.4

28.831.233.6

36.042.0

48.054.0

60.066.0

72.078.0

84.0

90.0120.0180.0

240.0

300.0360.0600.0

840.01080.0

1500.02100.02 700.0

3300.04200.0

5 400.06600.07 800.0

9000.010200.0

Stopping power

LaRC

code

0.79 x 104

0.75 x 1040.72 x 104

0.69 x 1040.66 x 104

0.64 x 1040.60 x 104

0.57 x 1040.54 X 104

0.51 X 1040.49 X 104

0.46 X 104

0.44 x 1040.42 x 104

0.41 x 1040.39 x 104

0.35 x 1040.32 x 104

0.30 x 1040.28 x 104

0.26 x 1040.24 x 1040.23 x 104

0.22 x 104

0.21 x 104

0.17 x 1040.12 x 1040.95 x 103

0.79 x 103

0.68 x 1030.45 x 1030.35 x 103

0.29 x 1030.23 x 103

0.18 x 1030.15 x 103

0.13 x 103

0.12 x 1030.I0 x 103

0.96 x 1020.90 x 1020.86 x 102

0.83 x 102

RSTAN

code

0.81 x 104

0.78 x 104

0.74 x 1040.71 x 1040.69 x 104

0.66 X 1040.62 X 104

0.58 x 1040.55 X 104

0.52 x 1040.50 X 104

0.47 x 104

0.45 X 104

0.43 X 1040.41 X 1040.40 X 104

0.36 X 1040.33 X 104

0.30 X 1040.28 x 104

0.26 x 1040.25 x 104

0.23 x 1040.22 x 104

0.21 x 1040.17 x 1040.12 x 104

0.94 x 1030.79 x 103

0.68 x 1030.45 x 1030.35 x 103

0.29 x 1030.23 x 103

0.18 x 1030.15 x 103

0.13 x 103

0.12 x 1030.I0 x 103

0.96 x 1020.91 x 102

0.87 x 1020.84 x 102

Difference,

percent

2.5

2.9

3.13.23.6

3.63.5

3.32.92.1

1.9

1.7

1.6

1.51.41.3

1.41.3

1.21.0

0.90.8

0.70.6

0.50.0

-0.6--0.5

-0.5

-0.5-0.4-0.2

-0.10.0

0.20.2

0.3

0.40.5

0.50.6

0.60.5

Energy range

LaRCcode

0.93 x 10-30.II x 10-2

0.13 x 10-20.14 x 10-2

0.16 x 10-20.18 x 10 -2

0.22 x 10 -20.26 x 10 -2

0.30 x 10 -20.35 x 10 -2

0.40 x 10-20.45 x 10 -2

0.50 x 10-20.55 x 10 -20.61 x 10-2

0.67 X 10-20.84 x 10-2

O.lOx 10 -10.12x 10 -l

0.14x 10 -10.16 x 10 -I

0.19 x 10 -I0.21 x 10 -I0.24 x 10 -l

0.27 x 10 -l0.43 x 10 -10.87 x 10 -l

0.14 x 10°0.21 x 10°

0.30 x 10°0.74 x 10°

0.]4 x 10 ]0.21 x I0 ]0.38 x 101

0.68 x 10 !0.11 x 102

0.15 x 1020.22 x 102

0.33 x 1020.45 x 1020.58 x 102

0.72 x 1020.86 x 10 2

RSTANcode

0.59 x I0 -3

0.74 x I0 -30.90 x 10-30.I I x 10-2

0.12 x 10-20.14 x 10 -2

0.18 x 10 -20.22 x 10 -2

0.26 x lO-20.31 x 10 -2

0.35 x 10 -20.40 x 10 -2

0.46 x 10 -20.51 x 10 -2

0.57 x 10 -20.63 x 10 -20.79 x 10 -2

0.96 x 10 -20.12 x 10 -1

0.14 x 10 -I0.16 x 10 -I

0.18 x 10 -10.21 × 10 -l

0.23 x 10 -l

0.26 x 10-l0.43 x 10-l0.86 x 10-I

0.14 x 10°

0.21 x 10°0.30 x 10°0.74 x I0 °

0.14 x 1010.21 x 101

0.38 x 101

0.68 x I0 ]0.11 x 102

0.15 x 1020.22 x 102

0.33 x 1020.45 x 1020.58 x 102

0.71 x 1020.85 X 102

Difference,

percent

-36.3-31.5

-27.7-24.8

-22.4-20.4

-17.3-15.0-13.3

-11.9-10.7

-9.6

-8.7

-7.9-7.3

-6.7-5.8

-5.0-4.4-3.9

-3.4-3.1

-2.8-2.5

-2.4-1.5-0.4

--0.10.0

0.10.3

0.20.30.0

-0.1-0.2

-0.1

-0.3

-0.2-0.3-0.4

-0.4-0.5

45

Page 50: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table9.StoppingPowerandEnergyRangeCalculated by LaRC and Bichsel Codes for 40Ca Ions on Various Targets

(a) Target, 12C; density, 1.80 g/cm3; mean ionization potential, 78.00 eV; RSTAN code

Energy,MeV

20.024.0

28.032.0

36.040.0

48.056.0

64.072.0

80.088.0

96.0

104.0112.0

120.0140.0160.0

180.0200.0220.0

240.0260.0

280.0

300.0400.0600.0

800.01000.01200.0

2000.02800.0

3 600.05000.0

7000.09000.0

11000.014000.018000.0

22000.026000.0

30000.0

34000.0

Stopping power

LaRCcode

0.31 x 105

0.30 x 1050.30 x 105

0.29 x 1050.29 x 105

0.29 x 1050.28 x 105

0.27 x 1050.27 x 105

0.26 x 1050.26 x 1050.25 x 105

0.25 x 1050.24 x 105

0.24 x 1050.23 x 105

0.22 x 1050.21 x 1050.20 x 105

0.19 x 1050.19 x 1050.18 x 105

0.17 x 105

0.17 x 105

0.16 x 1050.14 x 105

0.11 x 1050.88 x 104

0.75 x 1040.65 x 1040.44 x 104

0.34 x 104

0.28 x 1040.22 X 104

0.18 X 1040.15 x 104

0.13 x 104

0.12 x 1040.10 x 1040.95 x 103

0.89 x 103

0.85 x 1030.83 x 103

RSTAN

code

0.28 x 1050.28 x 105

0.28 x 1050.28 x 105

0.28 x 1050.27 x 105

0.26 x 1050.25 x 1050.24 x 105

0.23 x 105

0.23 x 1050.22 x 105

0.22 x 105

0.21 x 1050.21 x 105

0.20 x 1050.19 x 1050.19 x 105

0.18 × 1050.17 x 105

0.17 x 1050.16 x 1050.16 x 105

0.15 x 105

0.15 x 1050.13 x 1050.10x 105

0.86 x 1040.73 x 1040.64x 104

0.44 x 1040.34 x 104

0.28 x 104

0.22 x 1040.18 x 1040.15 x 104

0.13 x 1040.12 x 1040.10 x 104

0.96 x 1030.91 x 103

0.87 x 103

0.84 x 103

Difference,

percent

-8.3-7.5

-5.5-5.0-5.2

-5.8

-7.1-8.3

-9.3-10.2

-10.8-11.3

-11.7

-11.9-12.0

-12.1-11.9-11.4

-10.9-10.4

-9.8-9.2-8.7

-8.1

-7.6-5.5-3.2

-2.1-1.6

-1.5-1.2-0.9

-0.6-0.1

0.30.6

0.81.01.2

1.41.5

1.5

1.5

Energy range

LaRC

code

0.87 x 10 -30.10 x 10 -20.11 x 10 -2

0.13 x 10 -20.14 x 10 -2

0.16 x lO-2

0.18 x 10 -20.21 x 10 -20.24 x lO-2

0.27 x 10 -20.30 x 10 -2

0.34 x 10 -2

0.37 x 10 -20.40 x 10 -2

0.43 x 10 -2

0.47 x 10 -20.56 x 10 -20.65 x 10 -2

0.75 x 10 -20.85 × 10-2

0.95 X 10-20.11 × 10-!0.12 x 10 -I

0.13 × 10-1

0.14 × 10-!0.21 x 10 -10.38 x 10 -1

0.59 x 10 -10.84 x 10 -10.11 × 10°

0.26 x 10o0.47 x lO°

0.73 × 10°0.13 x 101

0.23 x 1010.36 x 101

0.50 x 1010.74 x 1010.11 × 102

0.15 × 1020.20 × 102

0.24 × 102

0.29 × 102

RSTAN

code

0.67 × 10-3

0.82 x 10 -30.96 x 10 -30.11 x 10 -2

0.13 x 10 -20.14 x lO-2

0.17 x 10 -2

0.20 × 10-20.23 × lO-20.27 x lO-2

0.30 x 10 -20.34 x 10 -2

0.37 x 10 -2

0.41 x 10 -20.45 x 10 -2

0.49 × 10 -20.59 × 10 -2

0.70 × 10 -20.80 × 10 -2

0.92 × 10-20.10 x 10 -10.12 × 10-1

0.13 x lO -10.14 x lO-1

0.16 × 10 -10.23 × 10 -I

0.40 × 10-I0.62 x 10 -1

0.87 x 10 -10.12 × 1000.27 x 10 o

0.48 x 10 °0.74 × 10 °

0.13 X lO l0.23 × lO 1

0.36 x 101

0.50 × 101

0.74 × 1010.11 × 1020.15 × 102

O.19x 1020.24 x lO 2

0.29 × 102

Difference,

percent

-22.8

-18.8-15.8-13.5

-11.7-10.1

-7.4-5.2

-3.4

-1.8-0.4

0.8

1.9

2.83.6

4.35.8

6.97.6

8.18.58.7

8.88.8

8.88.2

6.55.1

4.13.52.3

1.71.4

1.00.4

0.2

-0.1

-0.4-0.6-0.8

-0.9

-1.0-1.1

46

Page 51: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table9.Continued

(b)Target,27A!;density,2.70g/cm3;meanionizationpotential,166.00eV;RSTANcode

Energy,MeV

20.024.028.032.036.040.048.056.064.072.080.0

StoppingpowerLaRCcode

0.21x 1050.21x 1050.22x 1050.22x 1050.22x 1050.22 x 1050.21 × 1050.21 x l05

0.21 x 1050.21 x 105

0.20 x 105

RSTAN

code

0.20 x 105

0.22 x 1050.23 x 105

0.24 x 1050.23 x 105

0.23 x 1050.22 x 105

0.21 x 1050.21 x 105

0.20 x 1050.20 x 105

Difference,

percent

-5.3

4.9

Energy range

LaRC

code

0.14 x 10 -20.16 x 10 -2

RSTAN

code

0.29 x 10 -2

0.31 x 10 -28.5 0.18 x

9.0 0.20 ×

8.2 0.21 x6.9 0.23 x

3.9 0.27 x1.5 0.31 x0.3 0.35 x

-1.0 0.38 x-2.0 0.42 x

10 -2 0.32 X 10 -210 -2 0.34 × 10 -2

10 -2 0.36 x 10 -2

10 -2 0.38 × 10 -210 -2 0.41 X 10 -210 -2 0.45 X 10 -2

10 -2 0.49 X 10 -210 -2 0.52 X 10 -2

10 -2 0.56 × 10 -2

Difference,

percent

106.3

93.683.174.4

67.3

61.352.145.4

40.236.3

33.088.0 0.20 x

96.0 0.19 ×

104.0 0.19 ×112.0 0.19 x

120.0140.0160.0

180.0200.0

220.0240.0

260.0

280.0

300.0400.0600.0

800.01000.0

1200.02000.0

2 800.03 600.05000.0

7000.09000.0

11000.014000.018000.0

22000.026000.0

30000.034000.0

0.18x0.18x

0.17x0.16x

0.16x0.15x0.15x

0.14x

O.14x

O.13xO.11x

0.89 x0.74 x

0.63 x0.56 x0.38 x

0.30 x0.25 x

0.19x0.15x0.13x

O.12xO.lOx

0.91 x0.84 x

0.79 x0.76 x0.73 x

105 0.19 x

105 0.19 x

105 0.18 x105 0.t8 x105 0.17 x

105 0.17 x105 0.16 x

105 0.15 x105 0.15 x 105

105 0.14 x 105105 0.14 x 105

105 0.13 x 105105 0.13 × 105

105 0.12 × 105105 0.11 x 105104 0.87 x 104

104 0.73 x 104104 0.63 x 104104 0.55 x 104

104 0.38 x 104104 0.29 x 104

104 0.24 x 104104 0.19 x 104

104 0.16 x 104104 0.13 x 104

104 0.12 x 104

104 0.10 X 104103 0.93 X 103

103 0.85 x 103103 0.81 x 103

103 0.77 x 103103 0.75 x 103

105

105

105105

105105105

105

-2.9

-3.7

-4.4-5.0

-5.5-6.5-7.1

-7.4-7.4

-7.3-7.1

-6.8-6.5

-6.1-4.5-2.7

-1.8-1.3-1.2

-1.1-0.8

-0.6-0.1

0.40.6

0.91.21.4

1.51.6

1.71.7

0.46 x

0.51 x

0.55 x0.59 x

0.63 x0.74 x0.86 x

0.98 ×0.11x

0.12xO.14x

0.15x0.17x

10-2

10 -210-2

10 -210-210-2

10 -210 -2

10 -!10 -llO-I

lO-I

10-1

0.18 x 10 -_0.26 x 10 -1

0.46 x 10 -10.71 x 10 -1

0.10 x 10°0.13 x 10°0.31 x 10°

0.55 x 10°0.85 x 10°

0.15 x 1010.27 x 10 l

0.41 x 101

0.57 x 10 l0.85 x 101

0.13 x 1020.17 x 102

0.22 x 1020.27 x 102

0.33 x 102

0.61 x 10 -2

0.65 x 10 -20.69 x 10 -2

0.74 x 10 -20.78 x 10 -2

0.90 x 10 -20.10x 10 -I0.12x 10 -l

0.13 x 10 -!0.14 x 10 -l

0.16x 10 -10.17 x 10 -1

0.19 x 10 -1

0.20 x 10 -10.29 x 10 -1

0.50 X 10-10.75 x 10 -1

0.11 x 10°0.14 x 10°0.32 x 10°

0.56 x 10 °

0.86 x 10 °0.15 x 1010.27 x 1010.41 x I0 ]

0.57 x I010.84x I01

0.13 x 1020.17 x 102

0.22 x 1020.27 x 102

0.32 x 102

30.4

28.2

26.4

24.823.521.0

19.117.7

16.615.7

14.914.2

13.6

12.910.7

7.75.7

4.43.62.3

1.61.4

0.90.40.1

-0.1-0.4

-0.6-0.8-1.0

-1.1-1.2

47

Page 52: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table9.Continued

(c) Target, 63Cu; density, 8.96 g/cm3; mean ionization potential, 322.00 eV; RSTAN code

Energy,MeV

20.024.028.0

32.0

36.040.0

48.056.0

64.072.080.0

88.0

96.0

104.0112.0

120.0140.0160.0

180.0200.0220.0

240.0

260.0280.0

300.0400.0600.0

800.01000.01200.0

2000.02800.0

3 600.05000.0

7000.09000.0

11000.014000.018000.0

22000.026000.0

30000.034000.0

Stopping power

LaRC

code

0.14 x 1050.14 x 105

0.15 x 1050.15 x 105

0.15 x 1050.15 x 105

0.15 x 1050.15 x 105

0.15 x 1050.15 x 105

0.15 x 1050.15 x 105

0.15 x 105

0.14 x 1050.14 x 105

0.14 x 1050.14 x 105

0.13 x 1050.13 x 1050.12 x 105

0.12 x 1050.12 x 105

0.11 x 1050.11 x 105

0.11 x 1050.91 x lO4

0.73 x 1040.61 x 1040.53 x 1040.47 x 104

0.32 x lO4

0.25 x 1040.21 x 104

0.17 × 1040.13 x 1040.12 × 104

0.10 x 1040.90 x 1030.80 x 103

0.74 x 103

0.70 x 1030.67 x 103

0.65 x 103

RSTAN

code

O.17x 1040.62 x 104

0.91 x 1040.11 x 105

0.13 x 1050.13 x lO5

0.14 x 1050.15 x 105

0.15 x 1050.15 x 105

0.15 x 1050.14 x 105

0.14 x 105

0.14 x 1050.14 x 105

0.13 x 1050.13 x 105

0.13 x 1050.12 x 1050.12 x 105

0.11 x 1050.11 x 105

0.11 x 1050.10 x 105

0.10 x 1050.88 x 104

0.72 x 1040.60 x 1040.52 x 1040.46 x 104

0.32 x 104

0.25 x 1040.21 x lO4

0.17 x 1040.13 x 1040.12 x 104

0.10 x 1040.91 x 1030.81 x 103

0.75 x 103

0.71 x 1030.68 x 103

0.66 x 103

Difference,

percent

-87.7-56.3-37.2

-24.5-15.7

-13.4

-6.6-3.6-3.0

-2.5-2.6

-2.9

-3.2

-3.6-4.5

-4.4-4.5-4.7

-4.8-4.9-4.8

-4.6

-4.5-4.3

-4.1

-3.2-2.1

-1.4-1.2-1.2

-1.3-1.1

--0.9-0.6

-0.20.0

0.30.60.8

0.91.1

1.11.1

Energy range

LaRC

code

0.27 x 10 -20.30 x 10 -2

0.33 x 10 -20.35 x 10 -2

0.38 x 10 -2

0.41 x lO -20.46 x lO -20.51 x 10 -2

0.57 x 10 -20.62 x 10 -2

0.67 x 10 -20.73 x 10 -2

0.78 x 10 -20.84 x 10 -2

0.89 x 10 -20.95 x 10 -20.11 x 10 -1

0.13 x 10 -10.14 x 10 -10.16 X 10 -1

0.17 X 10 -10.19 X 10 -1

0.21 × 10 -10.23 X 10 -1

0.25 x 10 -10.35 x 10 -1

0.59 x 10 -10.90 x 10 -j0.13 x 10 °

0.17 x 10 °0.38 x 10 °

0.66 x 10 oO.lOx 101

0.18 x 1010.31 x 101

0.48 x 101

0.66 x 1010.97 x 101

0.15 x 1020.20 x 102

0.25 x 1020.31 x 102

0.37 x lO2

RSTAN

code

-0.20 x 10-2

-0.63 x 10-3-0.98 x 10-4

0.30 x 10.3

0.64 x 10 .3

0.95 x 10-30.15 x 10-20.21 x 10 -2

0.26 x 10 -20.32 x 10 -2

0.37 x lO-20.43 x 10 -2

0.49 x 10 .20.54 x 10 .2

0.60 x 10 -20.66 x 10 -20.81 x 10 -2

0.97 x 10 -20.11 x 10 -I

0.13 x lO -10.15 x 10 -I0.17 x 10 -z

0.18 x 10 -10.20 x 10 -I

0.22 x 10 -10.33 x 10 -l

0.58 x 10 -I0.89 x 10 -10.13 x 10°

0.17 x 1000.38 x 10°

0.66 x lO°0.10 x 101

0.18 x 1010.31 x 101

0.48 x 101

0.66 x 1010.97 x 101

0.14 x 1020.20 x 102

0.25 x 1020.31 x 102

0.37 x 102

Difference,

percent

-172.4-121.3

-103.0-91.5

-83.3-76.7

-66.7-59.3

-53.5-48.6

-44.5-41.0

-37.9

-35.1-32.7

-30.4-25.7

-22.0-19.0-16.6

-14.5-12.7

-11.2-10.0

-8.9-5.1

-1.9-0.7-0.2

0.2

0.8

1.01.00.9

0.7

0.5

0.30.0

-0.2

-0.4

-0.5-0.6

-0.7

48

Page 53: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table9.Continued

(d)Target,197Au;density,19.32g/cm3;meanionizationpotential,790.00eV;RSHEVcode

Energy,MeV

5.0

15.025.0

35.045.0

55.065.0

75.085.0

95.0105.0115.0

125.0

135.0145.0

155.0165.0

175.0185.0195.0

205.0215.0

225.0235.0

245.0295.0345.0

395.0445.0495.0

595.0695.0

795.0895.0

995.01095.0

1195.0

1295.01395.0

1495.01595.0

1695.01795.0

Stopping power

LaRC

code

0.39 x 1040.67 x 104

0.74 x 1040.78 x 104

0.81 x 1040.82 x 104

0.83 x 1040.84 x 104

0.83 x 1040.83 x 1040.82 x 104

0.82 x 104

0.81 x 1040.81 x 1040.80 × 104

0.79 x 1040.79 x 104

0.78 x 1040.77 x 1040.76 x 104

0.75 x 1040.74 x 104

0.74 x 104

0.73 x 104

0.72 x 1040.68 x 104

0.65 x 1040.61 x 1040.58 x 104

0.56 x 1040.51 x 104

0.46 x 1040.43 x 104

0.40 x 1040.37 x 1040.35 X 104

0.33 x 1040.32 x 1040.30 x 104

0.29 x 104

0.28 x 1040.27 x 104

0.25 x 104

RSHEV

code

0.20 x 10 4

0.20 x 104

0.20 x 1040.20 x 10 4

0.20 x 10 4

0.66 x 104

0.68 x 1040.70 x 104

0.71 x 1040.72 x 1040.72 x 104

0.72 x 104

0.72 x 1040.72 x 1040.72 x 104

0.72 x 1040.72 x 104

0.71 x 1040.71 x 1040.70 x 104

0.70 x 1040.69 x 104

0.69 x 104

0.68 x 104

0.68 x 1040.65 x 104

0.62 x 1040.60 x 1040.57 x 104

0.55 × 1040.50 × 104

0.47 x 1040.43 x 104

0.40 x 1040.38 x 1040.36 x 104

0.34 x 1040.32 x 1040.31 × 104

0.29 × 104

0.28 x 1040.27 x 104

0.26 x 104

Difference,

percent

-49.2

-70.5-73.3

-74.6-75.3

-19.7-17.7

-16.3-14.8

-13.5-12.5-11.6

-10.9

-10.4-9.9-9.4

-8.9-8.4

-7.9-7.5

-7.1-6.8

-6.5-6.2

-5.9-4.6-3.5-2.7

-2.1-1.5

-0.60.6

1.01.2

1.31.4

1.3

1.31.3

1.21.1

1.01.0

Energy range

LaRC

code

0.30 x 10 -20.48 x 10 -2

0.62 x 10 -20.75 x 10 -2

0.88 × 10 -20.10 x 10 -10.11 × 10-1

0.12 x 10 -10.14 × 10-l

0.15 × 10 -l0.16 x 10 -l

0.17 x 10 -I

0.19 x 10 -l

0.20 x 10 -I0.21 x 10 -l

0.22 x 10 -10.24 x 10 -1

0.25 × 10-10.26 x 10 -t0.27 x 10 -1

0.29 x 10 -l0.30 x 10 -I

0.31 × 10-j0.33 x 10 -l

0.34 x 10 -j0.41 x 10 -10.49 x 10 -j

0.57 x 10 -j0.65 x 10 -j0.74 × 10-j

0.93 × 10-I

0.11 x 10°0.14 x 10°0.16 x 10°

0.19 x 10°0.21 x 10°

0.24 × 10°

0.27 × 10°0.31 × 10°

0.34 x 10°0.38 × 10°

0.41 × 10°0.45 × 10°

RSHEV

code

0.50 x 10 -3

0.15 x 10 -20.32 x 10 -2

0.53 × 10-20.70 × 10-2

0.86 × 10-20.10 × 10 -l

0.12 x 10 -l0.13 × 10-1

0.14 × 10-l0.16x 10 -l0.17 x 10 -l

0.19 x 10 -1

0.20 x 10 -l0.21 x 10 -l0.23 x 10 -1

0.24 x 10 -l0.25 x 10 -1

0.27 X 10-10.28 × 10-10.30 x 10 -l

0.31 × 10-!

0.33 x 10 -i0.34 × 10-i

0.36 x 10 -1

0.43 x 10 -10.51 x 10 -1

0.59 × 10-I0.68 × 10-10.77 × 10-I

0.96 × 10 -1

0.12 × lO °

0.14× lO °0.16× lO °

0.19× lO °0.22 × 100

0.24 × 10 °

0.28 × 10 °0.31 × 10 o

0.34 x 10 °0.38 × 10 °

0.41 × 10 °0.45 x 10 °

Difference,

percent

-83.2

-68.7-48.5

-29.5-20.2-14.4

-10.4

-7.3-5.1-3.3

-2.0-0.9

0.00.8

1.41.9

2.42.7

3.03.33.5

3.73.8

3.9

4.0

4.34.34.13.9

3.63.0

2.31.9

1.41.0

0.7

0.50.3

0.10.0

-0.1-0.2

-0.3

49

Page 54: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table9.Continued

(e)Target,238U; density, 19.07 g/cm3; mean ionization potential, 841.00 eV; RSHEV code

Energy,MeV

5.015.025.0

35.045.0

55.065.0

75.085.0

95.0105.0

115.0

125.0135.0

145.0155.0

165.0175.0

185.0195.0205.0

215.0225.0235.0

245.0

295.0345.0

395.0445.0495.0

595.0695.0795.0

895.0

995.01095.0

1195.0

1295.01395.0

1495.01595.01695.0

1795.0

Stopping power

LaRC

code

0.48 x 1040.74 x 104

0.77 x 1040.79 x 104

0.80 x 1040.80 x 104

0.80 x 1040.80 x 1040.80 × 104

0.79 x 1040.78 × 104

0.78 × 104

0.77 × 1040.76 × 104

0.76 x 104

0.75 x 1040.74 x 1040.73 × 104

0.73 × 1040.72 × 104

0.71 x 1040.70 × 1040.69 × 104

0.68 × 104

0.68 x 1040.64x 1040.60 x 104

0.57 x 1040.54 x 104

0.51 x 1040.47 x 1040.43 × 104

0.40 x 104

0.37 x 1040.35 X 104

0.33 X IO4

0.31 × 1040.30 x 1040.28 x 104

0.27 × 1040.26 × 104

0.25 x 104

0.24× 104

RSHEV

code

0.20 × 1040.20 x 104

0.20 x 1040.20 × 104

0.20 x 1040.61 X 104

0.63 X 1040.65 X 1040.66 x 104

0.67 X 1040.67 X 104

0.67 x 104

0.67 x 1040.67 x 104

0.67 x 104

0.67 × 1040.67 x 1040.66 x 104

0.66 x 1040.66 x 104

0.65 × 1040.65 x 1040.64 x 104

0.64 x 104

0.63 x 1040.61 x 1040.58 x 104

0.56 x 1040.53 x 104

0.51 x 1040.47 x 1040.44 × 104

0.41 × 104

0.38 x 1040.36 x 1040.34 × 104

0.32 x 1040.30 x 104

0.29 x 1040.28 X 1040.26 X 104

0.25 X 104

0.24 X 104

Difference,

percent

-58.9-73.3-74.4

-74.8-75.0

-24.0-21.1

-18.9-17.1

-15.6-14.3

-13.3

-12.4-11.9

-11.3-10.7

-10.2-9.7

-9.1-8.6-8.1

-7.6-7.2

-6.7

-6.3

-4.3-2.8

-1.5-0.6

0.2

1.22.02.3

2.6

2.82.8

2.82.82.8

2.72.6

2.62.6

Energy range

LaRC

code

0.25 x 10 -20.41 x 10 -2

0.54 x 10 -20.67 x 10 -2

0.79 × 10-20.92 x 10 -2

0.10 x 10 -10.12 × 10-1

0.13 × 10-10.14 x 10 -1

0.16 x 10 -10.17 x 10 -1

0.18 x 10 -1

O.19X 10-10.21 x 10 -1

0.22 x 10 -10.23 x 10 -1

0.25 x 10 -10.26 x 10 -j0.27 x 10 -1

0.29 x 10 -l0.30 x 10 -l

0.32 x 10 -l0.33 × 10 -1

0.35 x 10 -10.42 x 10 -l

0.50 x 10 -10.59 x 10 -10.68 × 10-1

0.78 X 10 -10.98 x 10 -10.12 x 10°

0.15 x 10°

0.17 x 10°0.20 x 10°

0.21 × 10°

0.26 x 10 °0.29 x 10°

0.33 x 10°0.36 x 10 °0.40 × 10 °

0.44 x 10 o

0.48 x 100

RSHEV

code

0.50 X 10 -3

0.15 x 10 -20.33 x 10 -20.57 x 10 -2

0.75 x 10 -20.92 X 10-2

O.11 X 10-l0.12 X 10 -1

0.14 X 10-l0.15 X 10-1

0.17 X 10-]0.18 x 10 -1

0.20 x 10 -j

0.21 x 10 -I0.23 x 10 -1

0.24 x 10 -!0.26 x 10 -l

0.27 x 10 -10.29 x 10 -10.30 x 10 -1

0.32 x 10 -l0.34 x 10 -1

0.35 x 10 -10.37 x 10 -1

0.38 x 10 -10.46 x 10 -1

0.55 x 10 -10.63 × 10 -10.73 × 10-1

0.82 x 10 -10.10 x 10 °0.12 × 10 °

0.15 x 10 °

0.17 x lO00.20 x 10°

0.23 x 10°

0.26 x 10°0.29 × 10°

0.33 × 10°0.36 × 10°0.40 x 10°

0.44 x 10°

0.48 x 10°

Difference,

percent

-80.1-63.1

-38.3-15.0

-5.1

0.4

3.86.17.6

8.69.4

9.9

10.210.5

10.6

10.710.8

10.810.810.7

10.610.510.4

10.3

10.19.38.4

7.56.6

5.84.53.3

2.41.6

1.00.6

0.2-0.2

-0.4-0.6-0.8

-1.0

-1.1

5O

Page 55: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 9. Concluded

(f) Target, H20; density, 1.00 g/cm3; mean ionization potential, 70.00 eV; RSTAN code

Energy,MeV

20.0

24.0

28.032.036.0

40.0

48.056.064.0

72.080.0

88.0

96.0104.0112.0

120.0140.0

160.0180.0200.0

220.0240.0

260.0280.0

300.0400.0600.0

800.01000.0

1200.02000.0

2800.03600.0

5 000.07000.09000.0

11000.014000.018 000.0

22000.026000.0

30000.0

34000.0

Stopping power

LaRC

code

0.32 x 105

0.32 x 1050.31 x 105

0.31 x 1050.31 x 1050.31 x 105

0.30 x 1050.30 x 105

0.30 x 1050.29 x 105

0.29 x 1050.28 x 105

0.28 x 1050.27 x 105

0.27 x 1050.26 x 105

0.25 x 1050.24 x 1050.23 x 105

0.22 x 1050.21 x 105

0.20 x 1050.19 x l05

0.19 x 105

0.18 x 105

0.15 x 1050.12 x 1050.99 x 104

0.84 x 1040.74 x 10 4

0.50 X 1040.38 x 1040.32 x 104

0.25 x 1040.20 x 104

0.17 x l04

0.15 x 1040.13 x 104

0.12 x 1040.11 x 104

O.lOx 1040.96 x 103

0.92 × 103

RSTAN

code

0.29 x 105

0.30 x 1050.30 x 105

0.30 x 1050.30 x 1050.29 x 105

0.29 x 1050.28 x 105

0.27 x 1050.26 x 105

0.26 × 1050.25 x 105

0.24 x 1050.24 x 105

0.23 x 1050.23 x 105

0.22 x 1050.21 x 1050.20 x 105

0.20 x 1050.19 x 105

0.18 x 1050.18 x 105

0.17 x 105

0.17 x 105

0.15 x 1050.12 x 1050.97 x 104

0.83 × 1040.73 x 104

0.49 x 1040.38 x 1040.32 x 104

0.25 x 1040.20 x 104

0.17 x 104

0.15x 1040.13x 104

0.12 x 1040.11 × 10 4

0.10 x 1040.97 x 103

0.94 x 103

Difference,

percent

-8.5-5.1

-4.4-5.1

-4.9-5.1

-6.3-7.6

-9.0-10.7-11.3

-11.9

-12.3-12.5-12.5

-12.5-12.2

-11.7-11.1

-10.4-9.8

-9.1-8.5

-8.0

-7.4-5.3

-3.0-1.9-1.4

-1.2-1.0

-0.6-0.3

0.10.70.9

1.11.41.6

1.71.8

1.8

1.7

Energy range

LaRCcode

0.94 x 10 -3

0.11 x 10 -20.12 x 10 -2

0.13 x 10 -20.15 x 10 -2

0.16 x 10 -20.18 × 10-2

0.21 x 10 -20.24 x 10 -20.26 x 10 -2

0.29 x 10 -20.32 x 10 -2

0.35 x 10 -20.38 x 10 -2

0.41 x 10 -20.44 x 10 -2

0.52 x 10 -20.60 x 10 -2

0.68 x 10 -20.77 x 10 -20.87 X 10 -2

0.96 X 10-20.11 x 10 -l

0.12 x 10 -1

0.13 x 10 -l

0.19 x 10 -l0.34 x 10 -10.52 x 10 -1

0.74 x 10 -l1.00 x 10 -1

0.24 x l0 °0.42 x l0 °0.65 x 10°

0.12 x 10 l0.21 x 10 I

0.32 x 101

0.44 x 10 I

0.66 x 10 _0.99 x 10 l0.14 x 102

0.17 x 1020.22 x 102

0.26 × 102

RSTAN

code

0.83 x 10 -3

0.96 x 10 -3

0.11 x 10 -20.12 x 10 -20.14 x 10 -2

0.15 X 10-20.18 x 10 -2

0.21 x 10 -20.24 x 10 -20.27 x 10 -2

0.30 x 10 -20.33 x 10 -2

0.36 x 10 -20.39 x 10 -2

0.43 x 10 -20.46 x 10 -2

0.55 x 10 -20.64 x 10 -2

0.74 x 10 -20.84 x 10-2

0.95 x 10 -20.11 x 10 -I0.12 x 10 -I

0.13 x 10 -l

0.14 x 10 -l

0.20 x 10 -l0.36 x 10 -l0.55 x 10 -l

0.77 x 10 -l0.10 x l0 °

0.24 x l0 °0.43 x l0 °0.66 x l0 °

0.12 x 101

0.21 x l010.32 x 101

0.44 x 101

0.66 x 1010.98 x 1010.13 x 102

0.17 x 1020.21 x l02

0.25 x 102

Difference,

percent

-11.9

-9.6-8.1

-6.8-5.8

-4.8-3.2

-1.8-0.6

0.6

1.72.7

3.74.5

5.25.8

7.18.08.5

8.99.2

9.39.4

9.4

9.2

8.56.85.1

4.03.32.1

1.41.2

0.70.1

-0.2

-0.4-0.7

-0.9-1.1-1.2

-1.3

-1.4

51

Page 56: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 10. Stopping Power and Energy Range Calculated by LaRC and Bichsel Codes for 4°Ar Ions on Various Targets

(a) Target, 12C; density, 1.80 g/cm3; mean ionization potential, 78.00 eV; RSTAN code

Energy,MeV

20.0

24.028.0

32.036.0

40.048.0

56.064.0

72.080.0

88.0

96.0104.0

112.0120.0140.0

160.0180.0

200.0220.0

240.0260.0280.0

300.0400.0

600.0800.0

1000.01200.0

2000.02800.03 600.0

5000.07000.0

9000.0

11000.0

14000.018000.0

22000.026000.030000.0

34000.038000.0

Stopping power

LaRC

code

0.28 x 1050.27 x 105

0.27 x 1050.26 x 105

0.26 x 1050.25 x 105

0.25 x 1050.24 x 105

0.23 x 1050.23 x 105

0.22 x 1050.22 x 105

0.21 × 105

0.21 x 1050.20 x 105

0.20 x 1050.19 x 1050.18 x 105

0.17 x 1050.17 x 105

0.16 x 1050.15 x 105

0.15 x 1050.14 x 105

0.14 x 105

0.11 x 1050.88 × 104

0.72 x 1040.61 x 104

0.53 × 1040.36 x 1040.28 x 104

0.23 x 1040.18×10 4

0.14 x 1040.12 x 104

0.11 x 1040.94 × 103

0.84 x 103

RSTAN

code

0.29 x 1050.28 x 105

0.27 x 1050.26 x 105

0.26 x 1050.25 x 105

0.24 x 1050.23 x 105

0.22 x 1050.21 x 105

0.20 x 1050.20 x 105

0.19 x 105

0.19 x 1050.18 x 105

0.18 x 1050.17 x 1050.16 x 105

0.16 x 105

0.15 x 1050.15 x 1050.14 x 105

0.14 x 1050.13 x 105

0.13 x 1050.11 x 1050.86 x 104

0.71 x 104

0.60 x 1040.53 x 1040.36 X 104

0.27 X 1040.23 X 104O.18X 104

0.14 x 1040.12 x l04

0.11 x 1040.95 x 103

0.84 x 103

Difference,

percent

5.02.2

1.90.8

-0.4

-1.7

-3.9-5.5

-6.8-7.9

-8.6-9.3

-9.7

-10.0-10.1-10.2

-10.1-9.7

-9.3-8.8

-8.3-7.7

-7.2-6.7

-6.3

-4.4-2.6

-1.8-1.5

-1.5-1.3-1.0

-0.6-0.3

0.20.4

0.60.8

1.0

Energy range

LaRCcode

0.97 x 10 -3

0.11 x 10 .20.13 x 10 .2

O.14x 10 -20.16 x 10-2

0.17 x 10-20.21 x 10-2

0.24 x 10-20.27 x 10-2

0.31 x 10 -20.34 x 10 -20.38 x 10 -2

0.42 x 10-20.45 x 10-20.49 x 10-2

0.53 x 10-20.64 x 10-2

0.74 x 10 -20.86 X 10-2

0.98 x 10 -20.11 x 10 -10.12 x 10 -1

0.14 x 10 -10.15 x 10 -I

0.17 x 10 -10.25 x 10 -i

0.45 x 10 -I0.70 x 10 -1

0.10 x 1000.14 x 100

0.32 x 10°0.58 x 1000.90 x 10°

0.16 x 1010.29 x 104

0.44 x 101

0.62 x 10 l

0.91 x 10 l0.14 x 102

RSTAN

code

0.55 x 10 -3

0.69 x 10 -30.84 x 10 -3

0.99 x 10 -30.12 x 10 -2

0.13 x 10 -20.16 x 10 -2

0.20 x 10 -20.24 x 10 -2

0.27 x l0 -20.31 x 10 -2

0.35 x 10-2

0.39 x 10-20.43 x 10-2

0.48 x 10-20.52 x 10-2

0.64 x 10-20.76 x 10 -20.88 x 10 -2

0.10 x 10 -l0.12 x 10 -1

0.13 x 10 -10.14 x 10 -1

0.16 x 10 -1

0.17 x 10 -10.26 x 10 -1

0.47 x 10 -10.73 x 10 -1

0.10 x 10°0.14 x 10°

0.33 x 10°0.59 x 10°

0.91 x 10°0.16 x 1010.29 x 10 l

0.44 x 101

0.62 x 101

0.91 x 101

0.14 x 1020.77 x0.72 x

0.69 x0.67 x0.65 x

103103

103103103

0.78 x0.73 x

0.70 x0.68 x0.66 x

103

103103103

103

1.11.2

1.31.3

1.2

0.19x

0.24 x

0.30 x

0.36 x0.42 x

102102

102lO2102

0.19 x 1020.24 x 102

0.30 x 1020.35 x 1020.41 x 102

Difference,

percent

-43.3

-38.0-33.8

-30.3-27.3

-24.8-20.4

-16.8-13.9

-11.4-9.3

-7.4

-5.8-4.4

-3.2-2.1

0.1

1.7

2.93.74.4

4.95.2

5.4

5.65.6

4.73.8

3.1

2.72.01.6

1.31.00.5

0.3

0.0

-0.2

-0.4-0.6-0.7

-0.8-0.9

-0.9

52

Page 57: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 10. Continued

(b) Target, 27A1; density, 2.70 g/cm3; mean ionization potential, 166.00 eV; RSTAN code

Energy,MeV

20.0

24.028.0

32.036.0

40.048.0

56.064.0

72.080.0

88.0

96.0104.0

112.0

120.0140.0160.0

180.0200.0

220.0240.0

260.0280.0

300.0400.0600.0

800.01000.0

1200.02000.02800.0

3 600.05000.0

7000.09000.0

11000.0

14000.018 000.0

22000.026000.0

30000.034000.0

38000.0

Stopping power

LaRC

code

0.19 x 1050.19 x 105

0.19 x 1050.19 x 105

0.19 x 1050.19 x 105

0.19 x 1050.19 x 1050.18 x 105

0.18 x 1050.18 x 105

0.17 x 105

0.17 x 105

0.17 x 105

0.16 x 1050.16 x 1050.15 x 105

0.15 x 1050.14 x 105

0.13 x 1050.13 x 1050.12 x 105

0.12 x 1050.12 x 105

0.11 x 1050.95 x 1040.74 x 104

0.61 x 1040.52 x 104

0.46 x 1040.31 x 1040.24 x 104

0.20 x 104

0.16 x 1040.13 x 1040.11 x 104

0.95 x 1030.83 x 103

0.74 x 1030.68 x 1030.64 x 103

0.61 x 103

0.59 x 1030.58 x 103

RSTAN

code

0.21 x 1050.22 x 105

0.22 x 1050.22 x 105

0.22 x 1050.21 x 105

0.20 x 1050.19 x 1050.19 x 105

0.18 x 1050.17 x 105

0.17 x 105

0.16 x 105

0.16 x 105

0.16 x 1050.15 x 1050.14 x 105

0.14 x 1050.13 x 105

0.13 x 1050.12 x 1050.12 x 105

o.11 x 105o.11 x 105

0.11 x 1050.91 x 1040.72 x 104

0.60 x 1040.51 x 104

0.45 x 1040.31 x 104

0.24 x 1040.20 x 104

0.16 x 1040.13 x 1040.11 x 104

0.95 x 1030.84 x 103

0.75 x 1030.69 x 1030.65 x 103

0.62 x 103

0.60 x 1030.59 x 103

Difference,

percent

13.5

17.016.8

15.012.8

10.6

6.63.62.0

0.5--0.7

-1.7

-2.6

-3.3-3.8

-4.3-5.3-5.8

-6.1-6.2

-6.1-5.9

-5.5-5.2

--4.9-3.6-2.3

-1.5-1.3

-1.3-1.2-0.9

-0.7-0.3

0.20.5

0.6

0.91.1

1.31.4

1.51.5

1.3

Energy range

LaRC

code

0.16 x 10 -20.18 x 10 -2

0.20 x 10 -20.22 x 10 -2

0.24 x 10 -20.26 x 10 -2

0.30 x 10 -20.35 x 10-2

0.39 x 10 -20.43 x 10-2

0.48 x 10-2

0.52 x 10 -2

0.57 x 10-2

0.62 x 10-2

0.67 x 10-20.72 x 10-20.85 x 10-2

0.98 x 10 -20.11 × 10-1

0.13 × 10-10.14 × 10-10.16 × 10-1

0.17 x 10 -10.19 x 10 -1

0.21 x 10 -10.31 x 10 -1

0.55 x 10 -10.85 x 10 -1

0.12 x 10°0.16 x 10°0.38 x 10°

0.68 × 10°0.10 x 10 I

0.18 x 10 I0.33 x 10 I0.50 x 102

0.70 x 1010.10 x 102

0.16 x 1020.21 x 1020.27 x 102

0.34 x 102

0.40 x 1020.47 x 102

RSTAN

code

0.13 x 10 -20.14 x 10 -2

0.16 x 10 -20.18 x 10 -2

0.20 x 10-20.22 x 10-2

0.26 x 10-20.30 x 10-2

0.34 x 10-20.38 x 10-2

0.43 x 10-20.48 x 10-2

0.52 x 10-20.57 x 10-2

0.62 x 10-20.68 x 10-20.81 x 10-2

0.95 x 10-20.11 x 10 -!

0.13 × 10-10.14 × 10-1

0.16 x 10 -I0.18 x 10-I

0.20 x 10 -1

0.21 x 10-I

0.32 x 10-10.56 x 10 -I0.87 x 10 -1

0.12 x 10°0.17 x 10°0.39 x 100

0.69 x lO°0.11 x 101

0.19 x 1010.33 x 1010.50 x 101

0.70 x 10 l0.10 x 102

0.16 x 1020.21 x 102

0.27 x 1020.33 x 102

0.40 x 1020.47 x 102

Difference,

percent

-19.7-19.0

-18.5-18.0-17.5

-16.9

-15.6-14.3-13.0

-11.7-10.6

-9.5

-8.5

-7.6-6.8

-6.0-4.3

-2.9-1.8

-0.80.00.7

1.21.6

1.82.83.0

2.42.0

1.81.51.3

1.10.8

0.50.2

0.0-0.3

-0.5-0.7-0.8

-0.8-1.0

-1.1

53

Page 58: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 10. Continued

(c) Target, 63Cu; density, 8.96 g/cm3; mean ionization potential, 322.00 eV; RSTAN code

Energy,MeV

20.024.028.0

32.036.0

40.048.0

56.064.0

72.080.0

88.0

96.0

104.0112.0120.0

140.0160.0

0.12 x 105

0.13 x 1050.13 x 1050.13 x 105

0.13 × 1050.13 x 105

0.13 x 105

0.13 x 1050.13 x 105

0.13 x 1050.13 x 1050.13 x 105

0.13 x 105

0.12 × 1050.12 x 105

0.12 × 1050.12 x 105

O.11 x 105180.0 0.11 x 105200.0 0.10 x 105

220.0 0.10 x 105240.0 0.97 x 104

260.0

280.0

300.0400.0

600.0800.0

1000.01200.0

2000.02800.0

3 600.05000.0

7000.09000.0

11 000.0

14000.018000.0

22000.026000.0

30000.034000.0

38000.0

0.94 x 1040.91 x 104

0.88 x 1040.76 x 104

0.61 x 1040.50 × 1040.43 x 104

0.38 x 1040.26 X 104

0.21 x 1040.17 x lO4

0.14 x 1040.11 x 104

0.93 x 103

0.83 x 1030.73 x 103

0.65 x 1030.60 x 103

0.57 x 103

0.54 x 1030.53 x 1030.51 x 103

Stopping power

LaRC RSTANcode code

0.58 x0.84 x

0.10x0.11x

0.12x0.13x

0.13x0.13 x

0.13x0.13x

0.13x0.13x

0.12x

0.12x0.12x

0.12x0.11 x0.11 x

O.lOxO.lOx

0.97 x0.94x

0.91 x0.88 x

0.86 x0.75 x

0.60 x0.50 x0.43 x

0.38 x0.26 x

0.20 x0.17 x 1040.14 x 1040.11 x 104

0.93 x 103

0.83 x lO 3

104

104105

105105

lOS105105105105105105

105105105105lOSlOs105

105104104104lO4

104104

104104104lO4104104

0.73 x 103

0.65 x 103

0.60 x 1030.57 x 103

0.55 x 1030.53 x 103

0.52 x 103

Difference,

percent

-52.2

-32.7-20.7-12.6

-6.8-6.4

-2.2-0.7

-0.8

-0.8-1.2-1.6

-2.1

-2.5-3.4

-3.3-3.5

-3.7-3.8

-3.8-3.8-3.6

-3.5-3.3

-3.1-2.3

-1.6-1.2-1.1

-1.2-1.4

-1.2

-1.0-0.8-0.4

-0.2

0.10.3

0.50.7

0.8

0.90.90.8

Energy range

LaRC

code

0.30 x 10 -20.33 x 10 -2

0.37 x 10 -20.40 x 10 -20.43 x 10 -2

0.46 x 10 -20.52 x 10 -2

0.58 x 10 -2

0.64 x 10 -20.70 x 10 -2

0.76 x 10 -20.82 x 10 -2

0.88 × 10-2

0.95 x 10 -20.10 x 10 -10.11 x 10 -1

0.13 x 10 -10.14 x 10 -1

0.16 x lO -!0.18 x 10 -I0.20 x 10 -!

0.22 x 10 -I

0.24 x 10 -10.26 x 10 -1

0.28 x 10 -1

0.41 x 10 -10.70 x 10 -1

0.11 x 10°0.15 x 10°0.20 x 10°

0.46 x lO°

0.81 x 10°0.12 x 101

0.26 x 1010.38 x 1010.58 x 101

0.81 x 1010.12 x 1020.18 x 102

0.24 x 102

0.31 x 1020.38 x 102

0.46 x 1020.54 x 102

RSTAN

code

-0.32 x 10 -2-0.26 x 10 -2

-0.22 x 10 -2-0.18 x 10 -2

-0.15 x 10 -2-0.12 x lO-2

--0.54 x 10 -30.68 x 10 -4

0.67 x 10 -30.13 x 10 -2

0.19 x 10 -20.25 x 10 -2

0.32 x 10 -2

0.38 x 10 -20.45 x 10 -2

0.52 x 10 -20.69 x 10 -20.88 x 10 -2

0.11 x 10 -10.13 x 10 -l

0.15 x 10 -10.17 x 10 -l

0.19 x 10 -10.21 x 10 -1

0.23 x 10 -10.36 x 10 -1

0.66 x 10 -10.10 x 10°0.15 x 10°

0.20 x lO°0.46 x lO°

0.81 x lO°0.13 x 101

0.22 x 1010.39 x 101

0.59 x 101

0.82 X 1010.12 x 102

0.18 X 1020.24 X 102

0.31 X 102

0.38 x 1020.46 X 1020.53 x 102

Difference,

percent

-206.3-178.7

-160.1-146.0

-134.8-125.5

-110.4-98.8

-89.4-81.5

-74.9-69.1

-64.0

-59.5-55.5

-51.9-44.3-38.4

-33.6-29.6

-26.3-23.5

-21.1-19.1

-17.3-11.3

-5.6-3.3-2.1-1.2

0.3

0.70.9

0.90.7

0.6

0.40.2

0.0-0.1

-0.3---0.4

-0.5

-0.5

54

Page 59: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table10.Continued

(d)Target,197Au;density,19.32g/cm3;meanionizationpotential,790.00eV;RSHEVcode

Energy,MeV

2.012.022.032.042.052.062.072.082.092.0

102.0112.0122.0132.0t42.0152.0162.0172.0182.0192.0202.0212.0222.0232.0242.0292.0342.0392.0442.0492.0592.0692.0792.0892.0992.0

StoppingpowerLaRCcode

0.18x1040.56x 1040.64x1040.68x 1040.71x 1040.72x 1040.73x 1040.73x 1040.73x 1040.72x 1040.72x 1040.71x 1040.71x 1040.70x 1040.69x 1040.68x 1040.68x 1040.67x 1040.66x 1040.65x 1040.64X1040.64X1040.63X1040.62X1040.61X1040.58X1040.54X1040.51X1040.49X1040.46X1040.42X1040.38X1040.35X1040.33X1040.31X104

RSHEVcode

0.10x 1050.28x 1040.55x 1040.60x 1040.61x 1040.63x 1040.63x 1040.64 X 1040.64 x 104

0.64 X 1040.64 X 104

0.64 X 104

0.64 X lO4

0.64 X 1040.64X 1040.63 X 104

0.63 X 1040.62 X 104

0.62 X 1040.61 X 104

0.61 X 1040.60 x 1040.60 x 104

0.59 x 104

0.59 x 104

0.56 x 1040.53 x 1040.51 x 104

0.48 x 1040.46 x 104

0.42 x 1040.39 x 1040.36 x 104

0.33 x 1040.31 x 104

Difference,

percent

470.0

-50.4-14.5

-12.8-13.1

-13.0-12.7-12.4

-11.6-10.7

-10.0-9.3

-8.7-8.4

-8.0-7.6

-7.1-6.7

-6.3-5.9-5.6

-5.3-5.0-4.7

-4.5-3.3

-2.4-1.7-1.2

-0.8

-0.11.01.1

1.31.3

Energy range

LaRC

code

0.22 x 10 -20.49 x 10 -2

0.65 x 10 -20.80 x 10 -2

0.94 x 10 -20.11 x 10 -10.12 x 10 -l

0.14 x 10 -I0.15 x 10 -I

0.16 x 10 -I0.18 x 10 -1

0.19 X 10-l

0.21 x 10 -I

0.22 x 10 -I0.23 x 10 -I0.25 x 10 -I

0.26 x 10 -10.28 x 10 -I

0.29 X 10-l0.31 X 10 -1

0.32 X 10-10.34 X 10 -1

0.36 X 10 -10.37 X 10 -1

0.39 x 10 -1

0.47 x 10 -10.56 x 10 -10.66 x 10 -1

0.76 x 10 -!0.86 x 10 -j

0.11 x 10 °0.13 x 10 °

0.16 x 10 °0.19 x 10 °0.22 x 10 °

RSHEV

code

0.12 x 10-30.25 x 10-2

0.51 x 10-20.68 x 10.2

0.85 x 10 -20.10 x 10 -I

0.12 x 10 -j0.13 x 10 -I

0.15 x 10 -I0.16 x 10 -I0.18 x 10 -I

0.20 x 10 -I

0.21 x 10 -I

0.23 x 10 -I0.24 x 10 -1

0.26 x 10 -I0.27 x 10 -10.29 x 10 -I

0.31 x 10 -10.32 x 10 -1

0.34 x 10 -I0.36 x t0 -1

0.37 x 10 -10.39 x 10 -1

0.41 x 10 -1

0.49 x 10 -10.59 x 10 -10.68 x 10 -1

0.78 x 10 -10.89 x 10 -1

0.11 x 10 °0.14 × 10 °

0.16 x 10 °0.19 × 10 °0.22 × 10 °

Difference,

percent

-94.6

-47.9-22.2

-15.0-10.4

-7.1-4.6

-2.6-1.1

0.00.9i.7

2.2

2.73.13.4

3.73.9

4.14.24.3

4.44.4

4.5

4.54.4

4.23.93.6

3.2

2.61.9

1.51.00.7

55

Page 60: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table10. Continued

(e) Target, 238U; density, 19.07 g/cm3; mean ionization potential, 841.00 eV; RSHEV code

Energy,MeV

2.0

22.042.062.0

82.0102.0

122.0142.0

162.0182.0202.0

222.0

242.0

262.0282.0

302.0322.0342.0

362.0382.0402.0

422.0

442.0462.0

482.0582.0682.0

782.0882.0982.0

Stopping power

LaRC

code

0.22 x 1040.68 x 1040.70 x 104

0.70 × 1040.69 × 104

0.68 x 1040.67 x 104

0.65 × 1040.64 × 1040.62 X 104

0.61 x 1040.59 X 104

0.58 x 1040.56 x 104

0.55 X 1040.53 x 1040.52 x 104

0.51 X 1040.49 x 104

0.48 × 1040.47 X 1040.46 × 104

0.45 X 104

0.44X 104

0.43 X 1040.39 X 104

0.36 X 1040.33 x 104

0.31 x 1040.29 x 104

RSHEV

code

0.10 x 1050.50 x 1040.57 x 104

0.59 x 104

0.60x 1040.60x 1040.60 x 104

0.59 x 1040.59 x l04

0.58 X 1040.57 X 1040.56 X 104

0.55 x 1040.54 x 104

0.53 x 1040.52 x 104

0.51 x 1040.50 x 1040.49 × 104

0.48 x 1040.47 x 104

0.46 x l04

0.45 x 104

0.44X 104

0.44X lO4

0.40 X 1040.37 X 1040.34 X 104

0.32 X 1040.30 X 104

Difference,

percent

351.0-26.4-19.2

-16.3-14.0

-11.8-10.3

-9.4-8.4-7.5

-6.6-5.7

-4.9

-4.1

-3.4-2.7-2.2

-1.6-1.2

-0.7-0.3

0.0

0.3

0.6

0.81.7

2.42.5

2.72.8

Energy range

LaRC

code

0.19 x 10 -20.56 x 10 -2

0.85 x 10 -20.11 x 10 -1

0.14 x 10 -10.17 x 10 -1

0.20 x 10 -10.23 x 10 -10.26 x 10 -1

0.29 x 10 -10.33 x 10 -10.36 x 10 -1

0.39 x 10 -1

0.43 x 10 -i0.47 x 10 -l

0.50 x 10 -10.54 x 10 -10.58 x 10 -1

0.62 × 10 -10.66 × 10 -10.70 x 10 -1

0.75 x 10 -1

0.79 x 10 -10.83 x 10 -1

0.88 x 10 -10.11 x 10°0.14×10 o

0.17 × 1000.20 x 10°0.23 x 10°

RSHEV

code

0.16 x 10 -3

0.34 x 10 -20.71 x 10 -20.11 x 10 -1

0.14 x 10 -1

0.17 x 10 -10.21 x 10 -I0.24 x 10 -1

0.27 x 10 -10.31 x 10 -10.34 × 10-1

0.38 x 10 -i

0.42 x 10 -1

0.45 x 10 -10.49 x 10 -1

0.53 x 10 -10.57 X 10-1

0.61 X 10 -10.65 x 10 -10.69 x 10 -1

0.73 x 10 -10.76 x 10 -1

0.82 x 10 -l0.86 x 10 -1

0.91 x 10 -l0.12 × 10°

0.14 x 10°0.17 x 10°0.20 × 10°

0.23 x 10o

Difference,

percent

-91.7

-39.0-15.7

-6.3

-1.31.4

3.04.1

4.85.25.5

5.6

5.6

5.55.4

5.35.1

4.94.74.4

4.24.0

3.83.5

3.32.3

1.50.8

0.3-0.1

56

Page 61: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 10. Concluded

(f) Target, H20; density, 1.00 g/cm3; mean ionization potential, 69.04 eV; RSTAN code

Energy,MeV

20.0

24.028.0

32.036.0

40.048.0

56.064.0

72.080.0

88.0

96.0

104.0112.0

120.0140.0

160.0180.0200.0

220.0240.0

260.0280.0

300.0400.0600.0

800.01000.0

1200.02000.02800.0

3 600.05000.0

7000.09000.0

11000.014000.018000.0

22000.026000.0

30000.034000.0

Stopping power

LaRC

code

0.28 × 1050.28 × 105

0.28 × 1050.28 × 105

0.27 × 105

0.27 × 1050.27 × 1050.26 × 105

0.26 × 1050.26 × 105

0.25 × 1050.25 × 105

0.24 × 1050.24 × 105

0.23 × 1050.23 × 105

0.22 × 1050.21 × 1050.20 × 105

0.19 × 1050.18 × 105

0.17 × 1050.16 × 105

0.16 × 105

0.15 x 1050.13 x 105

1.00x 1040.81 x 1040.69 x 1040.60 x 1040.40 x 104

0.31 x 1040.26 x 104

0.20 x 1040.16×104

0.14x 104

0.12 x 104O.ll x lo 40.94 x 1030.86 x 103

0.81 × 1030.77 x 1030.75 x 103

RSTAN

code

0.31 × 1050.30 x 105

0.29 x 1050.28 x 105

0.28 x 105

0.27 × 1050.26 x 1050.25 x 105

0.24 × 1050.24 x 105

0.23 x 1050.22 x 105

0.22 x 1050.21 x 105

0.21 x 1050.20 x 105

0.19 x 1050.19 x 1050.18 x 105

0.17 x 1050.16 x 105

0.16 x 1050.15 x 105

0.15 x 105

0.14 x 1050.12 x 105

0.97 x 1040.80 x 104

0.68 x 1040.59 x 1040.40 x 104

0.31 x 1040.26 x 104

0.20 × 10 4

0.16 x 10 4

0.14 × 104

0.12 x 104O.ll x lO 4

0.95 × 1030.87 x 103

0.82 × 1030.79 x 1030.76 x 103

Difference,

percent

7.86.7

4.92.4

1.40.2

-2.1--4.1

-5.9-7.8

-8.7-9.4

-9.8-10.1

-10.3-10.3-10.1

-9.7-9.2

-8.6-8.0

-7.4-6.8

-6.3

-5.8-4.1

-2.3-1.4

-1.1-1.1-0.8

-0.5-0.3

0.2

0.6

0.8

1.01.3

1.51.6

1.71.71.6

Energy range

LaRC

code

0.11 x 10 -2

0.12 x 10 -20.13 x 10 -2

0.15 x 10 -20.16 x 10 -2

0.18 x lO-20.21 x lO-2

0.24 x 10 -20.27 x 10 -2

0.30 x lO-20.33 x lO-2

0.36 x 10 -2

0.39 x 10 -2

0.43 x 10 -20.46 x lO -2

0.50 x 10 -20.59 x 10 -20.68 x 10 -2

0.78 x 10 -20.89 x 10 -2

1.00 x 10 -20.11 × 10 -1

0.12 x 10- I0.14 x 10-1

0.15 x 10-10.22 x 10 -I0.40 x 10-1

0.62 x 10 -10.89 x 10-10.12 x 10°

0.29 x lO°0.52 x lO°

0.80 × lO°0.14 × 101

0.25 x 101

0.39 × 101

0.55 X 101

0.82 X 1010.12 X 102

0.17 X 1020.22 × 1020.27 X lO2

0.32 X lO2

RSTAN

code

0.60 x lO -30.73 x 10 -30.87 x lO -3

0.10 x lO -2

0.12 × 10 -20.13 x lO -20.16 x lO -2

0.19 x lO -20.22 x lO-2

0.26 x 10 -20.29 x lO-2

0.33 x lO-2

0.36 x 10 -2

0.40 x 10 -20.44 x 10 -2

0.48 x 10 -20.58 x 10 -2

0.68 x 10 -20.79 x 10 -20.91 x 10 -2

O. lOx 10 -10.12 x lO-1

0.13 x lO-10.14 x lO-1

0.16 x 10 -10.23 x 10 -10.41 x 10 -l

0.64 x 10 -10.91 x 10 -j

0.12 x lO °0.29 x lO °0.52 x lO °

0.81 x lO °0.14 x lO 1

0.26 x 1010.39 x 101

0.55 x 10 l0.81 x 1010.12 x 102

0.17 x 1020.21 × 1020.26 x lO 2

0.31 x 102

Difference,

percent

-42.8

-38.5-35.0

-31.9-29.2

-26.8-22.8

-19.4-16.6

-14.0-11.8

-9.8

-8.1

-6.6-5.2-4.1

-1.70.1

1.42.3

3.13.7

4.24.5

4.6

4.84.2

3.22.52.2

1.51.00.9

0.50.0

-0.2

-0.4

-0.7-0.9-1.0

-1.2-1.3-1.4

57

Page 62: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 11. Stopping Power and Energy Range Calculated by LaRc and Bichsel RSTAN Codes for 56Fe Ions

on Various Targets

(a) Target, 12C; density, 1.80 g/cm3; mean ionization potential, 78.00 eV

Energy,MeV

28.033.6

39.244.8

50.456.0

67.278.4

89.6100.8

112.0123.2

134.4

145.6156.8

168.0196.0

224.0252.0280.0

308.0336.0

364.0392.0

420.0560.0840.0

1120.01400.0

1680.02800.0

3920.05040.07000.0

9800.0

12600.0

15400.019600.025200.0

30800.0

36400.042000.047600.0

53200.0

Stopping power

LaRC

code

0.40 × 1050.39 × 1050.39 x 105

0.39 × 1050.38 × 105

0.38 × 1050.37 × 105

0.37 × 105

0.36 × 1050.36 × 1050.35 × 1050.35 × 105

0.34 × 1050.34 × 105

0.33 × 1050.33 × 105

0.32 × lO s0.30 x 1050.29 x 105

0.28 x 1050.27 x 105

0.27 x 1050.26 x 105

0.25 × 105

0.24 × 105

0.21 × 1050.17 x 1050.14 × 105

0.12 × 1050.11 × 105

0.74 x 1040.57 × 104

0.48 × 1040.38 X 104

0.30 X 1040.25 X 104

0.22 x 104

0.20 x 1040.17 x 104

0.16 x lO40.15 x 104

0.14 x 1040.14 x 104

0.14 x 104

RSTAN

code

0.10 x 1050.44 x 104

0.13 x 1050.18 x 105

0.21 x 1050.23 x 105

0.25 x 1050.26 x 105

0.27 x 1050.27 x 1050.27 x 105

0.27 x 105

0.27 x 105

0.26 x 1050.26 x 105

0.26 x 1050.25 x 1050.25 x 105

0.24 x 1050.24 x 1050.23 x 105

0.23 x 105

0.22 x 1050.22 x 105

0.21 x 105

0.19 x 1050.16 x 105

0.13 x 1050.12 x 105

0.10 x 1050.73 x 1040.57 x 104

0.47 x 1040.37 x 104

0.30 x 1040.25 x 104

0.23 x 1040.20 x 1040.18 x 104

0.16 x 104

0.15 x 1040.15 x 1040.14 x 10 4

0.14 x 104

Difference,

percent

-74.8-88.7

-67.7-54.6-46.0

-40.1-33.0

-28.9

-26.5-25.0-23.9-23.1

-22.5

-22.0-21.5-21.0

-19.8-18.8

-17.8-16.9-16.1

-15.3-14.5

-13.8

-13.1

-10.4-6.9-4.8

-3.5-2.8

-1.6-1.2

-0.8-0.3

0.30.6

1.0

1.31.6

1.81.9

2.02.0

1.9

Energy range

LaRC

code

0.98 x 10 -3

0.11 x 10 -20.13 x 10 -2

0.14 x 10 -20.16 x 10-20.17 x lO-2

0.20 x 10 -2

0.23 x 10-20.26 x 10 -2

0.29 x 10 -20.32 x 10 -20.36 x 10 -2

0.39 x 10 -20.42 x 10 -2

0.46 x 10 -20.49 x 10 -2

0.58 × 10-20.67 × 10 -20.76 x 10 -20.86 x 10 -2

0.96 x lO-2

O.1 ! x lO -10.12 x lO-10.13 x lO-I

0.14 x 10-10.20 x 10-!

0.35 x 10-I0.53 x 10-I0.75 x 10-1

0.99 x lO-I

0.23 x lO°0.40 x lO°0.62 x 10°

0.11 x lO I0.19 x lO l

0.30 x 101

0.41 x 1010.62 x 10 l

0.92 X 101

0.13 x 1020.16 x 1020.20 x 102

0.24 x 1020.28 x 102

RSTAN

code

0.51 x 10 -3

0.14 x 10 -2

0.22 x 10 -20.25 x 10 -20.28 x 10 -2

0.31 x lO -20.36 × 10 -2

0.40 x lO -20.44 × 10 -2

0.49 x 10 -20.53 x 10 -20.57 x 10 -2

0.61 x 10 -20.65 x 10 -2

0.70 x 10 -20.74 x 10 -2

0.85 x 10 -20.96 x 10 -2

O.11 × 10-10.12 x lO-l0.13 x 10 -1

0.14 x 10 -l0.16 x 10 -1

0.17 x lO -l

0.18 x 10 -I

0.25 x 10 -10.42 x 10 -10.61 x 10 -1

0.83 x 10 -10.11 x 10°

0.24 x 10°0.42 x 10°

0.63 x 10°0.11 x 101

0.20 x 1010.30 x 101

0.42 x 101

0.61 x 1010.91 x 10 l

0.12 x 1020.16 × 102

0.20 x 1020.24 x 102

0.28 × 102

Difference,

percent

-47.623.7

70.980.282.2

81.678.1

73.869.7

65.962.6

59.8

57.3

55.053.051.2

47.344.2

41.539.237.2

35.333.7

32.2

30.9

25.418.614.3

11.4

9.45.33.6

2.71.8

0.90.5

0.1-0.3

-0.7-0.9-1.1

-1.3-1.4

-1.5

$8

Page 63: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 11. Continued

(b) Target, 27A1; density, 2.70 g/cm3; mean ionization potential, 166.00 eV

Energy,MeV

28.0

33.6

39.244.850.4

56.0

Stopping power

LaRC

code

RSTAN

code

0.27 x

0.28 x

0.28 x0.28 x

0.29 x0.29 x

105 0.10×

105 O.lOx105 0.83 x

105 0.14 x105 O.17x

105 0.19 x

105

105

104105lO5105

Difference,

percent

-62.9

-63.8-70.5

-51.4-39.7

-32.2

Energy range

LaRC

code

0.16 x 10 -20.18 x 10 -2

0.20 x 10 -20.22 x 10 -2

0.24 x 10 -20.26 x 10 -2

RSTAN

code

0.28 x 10 -2

0.34 x 10 -20.40 x 10-2

0,45 x 10-20.49 x 10-2

0.52 x 10-2

Difference,

percent

80.0

90.9102.9

108.6106.6

102.767.2

78.489.6

100.8

112.0123.2

134.4

145.6156.8

168.0196.0224.0

252.0280.0

308.0336.0

364.0392.0

420.0560.0840.0

1120.01400.0

1680.02800.03920.0

5040.07000.0

9800.012600.0

15400.0

19600.025200.0

30800.036400.0

42000.047600.0

53200.0

0.29 x0.29 x0.28 x

0.28 x0.28 x

0.27 x

0.27 x

0.27 x0.26 x

0.26 x0.25 x

0.25 x0.24 x

0.23 x0.22 x0.22 x

0.21 x0.20 x

0.20 x0.18x0.14 x

0.12x0.10x

0.91 x0.64 x

0.50 x0.41 x

0.33 x0.26 x0.22 x

0.20 x

0.17x

0.15 x0.14x0.13x

0.13 x0.12x

0.12x

105 0.22 x

105 0.23 x105 0.24 x105 0.24 x

105 0.24 x105 0.24 x

105 0.24 x

105 0.23 x105 0.23 x105 0.23 x

105 0.22 x105 0.21 x

105 0.21 x105 0.20 x

105 0.19 x105 0.19 x

105 0.18×105 0.18 x

105 0.18 x

105 0.16 x105 0.13 x105 0.11 x

105 1.00 x104 0.89 X

104 0.63 X104 0.49 X

104 0.41 ×104 0.33 X

104 0.26 X104 0.22 X

104 0.20 X

104 0.18 X104 O.16X

104 0.15 X104 0.14 X

104 0.13 X104 0.13 X104 0.12 X

lOs105105

105105105

105

105105

105lO5105

105105

105105

105105

105105105105

lO4lO4104104

104lO4lO4lO4

104

104104

104104104lO4104

-24.1

-19.8-16.6

-14.8-13.9

-13.4

-13.2

-13.1-13.1

-13.1-13.3-13.4

-13.4-13.2

-12.9-12.6-12.2

-11.8

-11.3-9.2-6.4-4.5

-3.2

-2.6-1.5-1.1

-0.8-0.3

0.40.8

1.1

1.51.7

2.02.1

2.22.3

2.2

0.30 x 10 -20.33 x 10 -2

0.37 x ! 0 -20.41 x 10-2

0.45 x 10-20.49 x 10-2

0.54 x 10 -20.58 x 10 -2

0.62 x 10 -20.66 x 10 -20.77 x 10 -2

0.88 X 10 .20.10 X 10 -1

0.11 X 10 -10.12 X 10 -1

0.14 X 10 -10.15 X 10 -1

0.16 X 10 -j

0.18 X 10 -I0.25 X 10 -I

0.43 x 10 -I0.65 X 10 -I0.90 X 10 -l

0.12 X 10°0.27 X 10°

0.47 X 10°0.72 X 10°

0.13 X 10 l0.22 X 10 I

0.34 X 101

0.47 x 10 l0.70 x 10 I

0.10 x 1020.14 x 102

0.18 x 1020.23 x 102

0.27 x 1020.32 x l02

0.57 x0.62 x

0.67 x0.72 x0.77 x

0.81 x

0.86 x

0.91 x

0.96 xO.lOx0.11 x

O.13xO.14x

O.15xO.17xO.18x

0.20 x0.21 x

0.23 x0.31 x0.51 x

0.74 x1.00 x

O.13x0.28 x

0.49 x0.74 x

O.13x0.22 x0.34 x

0.47 x

0.70 x

O.lOxO.14xO.18x

0.22 x

0.27 x0.31 x

10-210-2

10-210-2

10-210-2

10-210 -2

10 -210-1

10-110 -I10 -1

10 -I10 -I

10-110-1

10 -1

10-1

lO-I10-110-1

lO-I10o10o

10o

10o101101

101

101101

102102

102102

102102

94.2

86.479.674.0

68.864.5

60.757.4

54.552.0

46.842.839.6

37.034.8

33.031.4

29.9

28.5

23.517.313.4

10.68.85.0

3.32.6

1.70.9

0.4

0.1-0.4

-0.8-1.0

-1.3-1.4

-1.6-1.6

59

Page 64: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table 11. Continued

(c) Target, 63Cu; density, 8.96 g/cm3; mean ionization potential, 322.00 eV

Energy,MeV

28.033.6

39.244.8

50.456.0

67.278.4

89.6100.8

112.0

Stopping power

LaRC

code

RSTAN

code

123.2

134.4

145.6156.8

168.0196.0224.0

252.0280.0

308.0336.0364.0

392.0

0.17x

0.18x0.19x0.19x

0.20 x0.20 x

0.20 x0.21 x

0.21 x0.21 x

0.21 x

105 0.10 x105 0.10 x

105 0.10x105 0.10x

105 0.21 x105 0.54 x

105 0.11 x10 5 O.14x105 O.15x

10 5 0.16 x10 5 0.17 x

0.20 x

0.20 x

0.20 x

105105

105105

104lO4105105105105

105

Difference,

percent

-42.4-45.1

-47.0-48.3

-89.6-73.3

-47.0-32.8

-25.3-20.3

-17.3-15.5

Energy range

La_RC RSTAN

code code

0.30 x 10 -20.33 x 10 -2

0.36 x 10 -20.39 x 10 -2

0.42 x 10 -20.45 x 10 -2

0.50 x 10 -20.56 x 10 -2

0.61 x 10 .20.66 x 10 -2

0.72 x 10 -20.77 x 10 .2

0.28 x 10 -2

0.34 x 10 -20.39 x 10-2

0.45 x 10-20.59 x 10 -2

0.76 x 10 -20.91 x 10 -2

0.10 x 10 -1O.ll x 10 -1

0.12 x 10 -I0.12 x 10 -10.13 x 10 -I

0.14 x 10 -1

0.14 x 10 -1

0.15 x 10 -10.15 x 10-1

0.17 x 10-10.19 x 10 -I0.20 x 10 -I

0.22 x 10 -I0.24 x 10 -I0.26 x 10 -1

0.28 x 10 -1

0.29 X 10-1

O.17xO.17x

O.17xO.17x

0.17 xO.16xO.16xO.15x

O.15x

0.15 x

0.20 x 1050.20 x 105

0.19 x 1050.19 x 1050.18 x 105

0.18 x 1050.18 x 1050.17 x 105

0.17x 105

0.16 x 105

10 5 0.17 x 105

105 0.17 x 105

105 0.17 x 105105

10510510510510 5

10 5105105

10 5

-14.2

-13.4-13.6

-12.7-11.5

-10.9-10.5

-10.2-10.0

-9.7

-9.4-9.2

0.83 x 10 -2

0.89 x 10 -20.94 x 10 -2

1.00 x 10 -20.11 x 10 -!

0.13 x 10 -10.14 x 10 -10.16 x 10 -1

0.18 x 10 -j0.19 x 10 -1

0.21 x 10 -I0.23 x 10 -I

Difference,

percent

-6.2

1.98.9

15.140.5

70.781.4

79.976.5

72.969.1

65.5

62.359.4

56.854.549.4

45.2

41.738.836.3

34.232.3

30.6

420.0

560.0840.0

1120.01400.01680.0

2800.03920.0

5040.0

7000.09800.0

12600.0

15400.019600.025200.0

30800.036400.0

42000.0

47600.053200.0

0.16x0.14x0.12x

0.99 x0.86 x

0.77 x0.54 x0.43 x

0.36 x

0.28 x0.23 x

0.19x

0.17x0.15x

0.14x0.13x0.12 x

0.11x

0.11x0.11x

10 5 0.14 x

10 5 0.13 x105 0.11 x

104 0.95 x104 0.83 X104 0.75 X

104 0.53 x10 4 0.42 x

104 0.35 x

104 0.28 x104 0.23 x104 O.19x

lO a 0.17 X104 O.15X104 O.14X

104 0.13 X104 0.12 X

104 O.12x

104 O.11 x104 0.11 x

105105lO5lO4lO4lO4lO4lO4lO4lO4lO4104

104104

104lO4104

lo 4104104

-8.9-7.6-5.7

-4.1-3.1

-2.5-1.7-1.4

-1.1

-0.7-0.2

0.2

0.6

0.91.21.4

1.61.7

1.81.7

0.24 x 10 -10.34 x I0 -10.56 x 10 -1

0.82 x 10 -10.11 x 10°

0.15 x 10 °0.33 x 10 00.56 x 10 °

0.85 x 10 °

0.15 x 1010.26 X 101

0.39 x 101

0.55 x 10 l0.81 x 10 !

0.12 x 1020.16 x 1020.21 x 102

0.26 x 102

0.31 x lO 20.36 x 102

0.31 x 10 -10.42 x 10 -1

0.65 x 10 -I0.93 x lO -1

0.12 x 10 °0.16 x 1000.34 x 10°

0.58 x 10°0.87 x 10 °

0.15 x 1010.26 x 101

0.40 x 101

0.55 x0.81 x

0.12x0.16x0.21 x

0.26 x

0.31 x0.36 x

101

101102102

102

102102

102

29.223.5

17.1

13.210.6

8.85.1

3.6

2.82.0

1.30.9

0.50.1

--0.3

-0.6-0.8

-0.9-1.1

-1.1

6O

Page 65: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table11.Continued

(d)Target,197Au;density,19.32g/cm3;meanionizationpotential,790.00eV

Energy,MeV

28.033.639.244.850.456.067.278.489.6

100.8112.0123.2134.4145.6156.8168.0196.0224.0252.0280.0308.0336.0364.0392.0420.0560.0840.0

1120.01400.01680.02800.03920.05040.07000.09800.0

12600.015400.019600.025200.030800.036400.042000.047600.053200.0

StoppingpowerLaRCcode

0.91x 1040.95× 1040.98x 1040.10× 1050.10× 1050.11x 1050.11× 1050.11x 1050.11x 1050.11x 1050.12x 1050.12x 1050.12x 1050.12x 1050.12x 1050.12x 1050.12x 1050.11x 1050.11x 1050.11x 1050.11x 1050.11× 1050.11× 1050.10×1050.10x 1050.94× 1040.80× 1040.69x 1040.61x 1040.55x 1040.39x 1040.32x 1040.27x 1040.21x 1040.17x 1040.15X 104

0.13 x 1040.12 x 104

0.11 × 1040.98 x 103

0.92 x 1030.89 x 103

0.86 x 1030.84 x 103

RSTAN

code

0.10 x 105

0.10 x 1050.10 x 105

0.10 x 1050.10 x 105

0.10 x 1050.43 x 103

0.28 x 1040.44X 104

0.56 x 1040.64 x 1040.71 x 104

0.76 x 104

0.80 x 1040.83 x 1040.85 x 104

0.90 x 1040.92 x 104

0.94 x 1040.94 x 104

0.95 x 1040.94 x 1040.94 x 104

0.93 x 104

0.93 x 104

0.88 × 1040.77 x 104

0.68 x 1040.61 x 1040.55 x 104

0.40 x 1040.32 × 104

0.27 × 1040.22 x 104

0.18 × 1040.15 X 104

0.14 x 104

0.12×1040.11 x 1041.00 × 1030.95 x 103

0.91 x 1030.88 x 1030.87 x 103

Difference,

percent

9.5

5.11.7

-1.0-3.3

-5.2-96.1

-75.0-61.0

-51.5-44.3-38.8

-34.5-31.0

-28.2-25.9

-22.0-18.9

-16.6-14.8-13.5

-12.2-11.2

-10.4

-9.5

-6.7-3.2

-0.60.61.1

1.61.4

1.31.1

1.31.4

1.7

2.02.22.4

2.62.7

2.82.8

Energy range

LaRC

code

0.61 x 10-20.67 x 10-2

0.72 x 10 -20.78 x 10 -2

0.84 x 10 -20,89 x 10 -2

0.99 x 10 -20.11 × 10-1

0.12 × 10-10.13 x 10 -10.14 x 10 -j

0.15 x 10 -l

0.16 x 10 -_

0.17 x 10 -I0.18 x 10 -1

0.19 x 10 -I0.21 x 10 -l

0.24 x 10 -I0.26 x 10 -I

0.29 x 10 -10.31 x 10 -10.34 x 10 -I

0.36 x 10 -10.39 x 10 -1

0.42 x 10 -10.56 x 10 -1

0.89 × 10-10.13 x 10°0.17 x 10°

0.22 x 10°0.47 x 10°

0.78 x 10°0.12 x 101

0.20 × 1010.35 x 101

0.52 x 101

0.72 x 1010.11 x 1020.16 x 102

0.21 x 1020.27 x 102

0.33 x 1020.40 x 102

0.46 x 102

RSTAN

code

0.28 x 10 -20.34 x 10 -2

0.39 x 10 -20.45 x 10 -2

0.50 x 10 -20.56 × 10 -2

0.14 x 10 -10.25 x 10 -t

0.29 x 10 -l0.31 x 10 -1

0.33 x 10 -10.35 x 10 -I

0.36 x 10 -10.37 x 10 -1

0.39 x 10 -10.40 x 10 -l

0.43 x 10 -10.46 X 10 -j0.49 X 10 -j

0.52 x 10 -10.55 X 10 -I

0.58 x 10 -10.61 x 10 -1

0.64 x 10 -l

0.67 x 10 -10.83 x 10 -1

0.12 x 10 °0.16 x 10 °0.20 x 10 °

0.25 x 10°0.49 x 10°

0.80 x 10°0.12 x 101

0.20 x 10 l0.35 x 101

0.52 x 101

0.72 x 1010.10 x 102

0.15 x 1020.21 x 102

0.27 x 1020.33 × 1020.39 × 102

0.45 x 102

Difference,

percent

-53.8-49.6

-45.9-42.6

-39.7-37.0

39.6132.1

139.6139.1

135.7131.5

127.0122.5118.1

113.9104.5

96.389.3

83.177.772.9

68.6

64.7

61.347.9

32.022.917.0

13.05.4

2.51.30.3

-0.4

-0.6

-0.9-1.2-1.5

-1.7-1.8

-2.0-2.1

-2.2

61

Page 66: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table11.Continued

(e) Target, 238U; density, 19.07 g/cm3; mean ionization potential, 900.00 eV

Energy,MeV

28.033.6

39.244.850.4

56.067.2

78.489.6

100.8112.0

123.2

134.4145.6

156.8168.0

196.0224.0252.0

280.0

308.0336.0364.0392.0

420.0

560.0840.0

1120.0

1400.01680.0

2800.03920.05040.0

7000.0

9800.012600.0

15400.0

19600.025200.0

30800.036400.042000.0

47600.0

Stopping power

LaRC

code

0.98 x 1041.00 x 104

0.10 x 1050.10 x 1050.10 x 105

0.11 x 1050.1 1 x 105

0.11 x 105

0.11 x 105O.11 x lOsO.11 x lO5

0.11 x 105

0.11 x 1050.11 x 105

0.11 x 1050.11 x 105

0.11 x 1050.11 x 105

0.11 x 105O.1 1 × 105

0.10 x 1050.10 x 1050.99 x 104

0.97 x lO4

0.95 × 104

0.87 x 1040.74 x 1040.64x 1040.57 × 1040.51 × 104

0.37 x 1040.29 x 1040.25 x 104

0.20 × 104

0.16 × 1040.14 x 104

0.13 x 104

0.11 x 1040.99 x 103

0.92 x 1030.87 x 1030.84 x 105

0.81 × 103

RSTAN

code

0.10 x 105

O.lOx0.10×

O.lOxO.lOxO.lOx

0.10×0.22 ×

0.38 x0.49 ×

0.57 x0.63 x

0.68 x

0.72 ×0.75 x

0.77 ×0.82 ×

0.84 ×0.86 x

0.86 x0.87 x

0.86 x0.86 x0.86 x

0.85 x0.81 x

0.72 x0.64 x0.57 x

0.51 x0.38 x

0.30 x0.25 x0.20 x

0.17x

0.14x

O.13x0.11 x

O.lOx0.95 x

0.90 x0.86 x

0.84 x

Difference,

percent

2.5105 0.4105 -1.3

105 -2.7105 -4.010 5 -5.0

10 5 -6.6

104 -79.7l04 --65.2

104 -55.4104 -48.3104 -42.5

104 -38.1104 -34.6104 -31.7

104 -29.3

104 -25.1104 -21.9104 -19.5

104 -17.5104 -16.0

104 14.4104 -13.1104 -12.0

104 -11.0104 --7.1

104 -2.9104 -0.7

104 0.6104 1.2

104 1.9104 1.8104 1.7

104 1.5104 1.6

104 1.7

104 2.0

104 2.2104 2.5lO 3 2.7

103 2.8103 2.9

103 3.0

Energy range

LaRC

code

0.52 x 10 -2

0.58 x 10 -20.64 x 10 -2

0.69 x 10 -20.74 x 10 -20.80 × 10 -2

0.90 x 10 -2

0.10 x 10 -I0.11 x 10 -10.12 x 10 -1

0.13 x 10 -10.14 × 10 -1

0.15 x 10 -1

0.16 x 10 -10.17 x 10 -1

0.18 x 10 -10.21 x 10 -1

0.23 x 10 -10.26 × 10 -1

0.29 × 10 -10.31 x 10 -1

0.34 x 10 -10.37 x 10 -10.40 x 10 -1

0.43 x 10 -10.58 x 10 -1

0.93 x 10 -10.13 x 10 °

0.18 x 10 °0.23 x 10 °0.50 x lO °

0.84 x lO °0.13 x 101

0.21 x 1010.37 x 10 l

0.56 x 101

0.77 × 101

0.11 x 1020.17 x 1020.23 x 102

0.29 x 1020.35 x 102

0.42 x 102

RSTAN

code

0.28 x 10 -20.34 x 10 -2

0.39 x 10 -2

0.45 × 10-20.50 × 10-20.56 x 10 -2

0.67 × 10-2

0.94 x 10 -20.13 x 10 -i0.16 x 10 -I

0.18 × 10-!0.20 × 10-1

0.22 x 10 -1

0.23 x 10 -10.25 x 10 -1

0.26 x 10 -10.30 x 10 -1

0.33 x 10 -10.36 x 10 -1

0.40 × 10 -10.43 x 10 -1

0.46 x 10 -10.49 x 10 -10.53 x 10 -1

0.56 × 10 -10.73 × 10-1

0.1 1 x 10°0.15 x 10°0.20 x 10°

0.25 × lO°0.51 x 10°

0.85 x 10°0.13 x lO l

0.21 × lO I0.37 x 10 i0.55 x 101

0.76 x 10 l

0.11 x 1020.16 x 1020.22 × 102

0.28 x 1020.35 x 102

0.41 x 102

Difference,

percent

-46.5

-42.0

-38.3-35.1-32.3

-29.8-25.6

-6.819.7

31.137.1

40.4

42.243.1

43.543.5

42.841.5

39.938.3

36.835.333.832.4

31.1

25.517.712.9

9.5

7.22.50.7

-0.1-0.7

-1.1-1.2

-1.4

-1.6-1.8

-2.0-2.2

-2.3-2.4

62

Page 67: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

Table11.Concluded

(f) Target,H20;density,1.00g/cm3;meanionizationpotential,69.04eV

Energy,MeV

28.033.639.244.850.456.067.278.489.6

100.8112.0123.2134.4145.6156.8168.0196.0224.0252.0280.0308.0336.0364.0392.0420.0560.0840.0

1120.01400.01680.02800.03920.05040.07000.09800.0

12600.0

15400.019600.0

25200.030800.0

36400.042000.0

47600.0

Stopping power

LaRC

code

4.08 × 104

4.10 × 1044.09 x 104

4.09 × 1044.09 × 1044.08 × 104

4.07 x 104

4.05 × 1044.02 x 1044.02 x 104

3.97 x 104

3.93 x 104

3.88 x 1043.83 × 104

3.78 x 1043.72 x 104

3.58 x 1043.45 x 1043.33 × 104

3.21 × 104

3.10 x 1043.00x 1042.90 X 104

2.81 X 104

2.73 X 104

2.38 X 1041.90 X 1041.59 × 104

1.37 × 1041.21 X 104

8.30 X 1036.44 x 103

5.34 X 1034.21 X 1033.33 X 103

2.83 x 103

2.52 X 103

2.20 X 1031.95 X 103

1.80 X 1031.69 X 1031.62 X 103

1.56 X 103

RSTAN

code

1.00 x 104

2.40 x 1031.12 × 104

1.65 × 1042.07 × 1042.36 × 104

2.69 × 104

2.86 × 1042.95 x 1042.99 x 104

3.00 × 104

3.00 x 104

2.99 × 1042.98 × 104

2.96 × 1042.93 × 104

2.87 × 1042.80 x 1042.74 x 104

2.68 x 104

2.61 x 1042.55 x 10 4

2.49 x 104

2.44 x 104

2.38 x 104

2.14 x 1041.78 x 1041.52 × 104

1.33 × 1041.18 x 104

8.21 × 1036.40 x 103

5.32 × 1034.21 x 1033.36 x 103

2.87 x 103

2.55 × 103

2.24 × 1031.99 x 103

1.84 x 1031.73 x 1031.66 x 103

1.60 x 103

Difference,

percent

-7.6-9.4

-7.3-6.0

-4.9-4.2

-3.4-3.0

-2.7-2.6-2.5

-2.4

-2.3-2.2-2.2

-2.1-2.0

-1.9-1.8-1.7

-1.6

-1.5-1.4

-1.3

-1.3-1.0-0.6

-0.4-0.3

-0.2

-0.1-0.1-0.0

0.00.90.1

0.1

0.2

0.20.2

0.20.20.2

Energy range

LaRC

code

1.05 x 10 -31.19x 10 -3

1.33 × 10-31.46 x 10 -3

1.60 x 10 -31.74 × 10-3

2.01 × 10-32.29 x 10 -3

2.56 × 10-32.84 x 10 -3

3.13 x 10 -33.41 × 10-3

3.69 x 10 -33.98 x 10 -3

4.28 x 10 -34.57 × 10-3

5.34 × 10-36.14 x 10 -36.96 × 10-3

7.82 × 10-3

8.71 x 10 -39.62 × 10-31.06 x 10 -2

!.15 × 10-2

1.26 x 10 -2

1.81 x 10 -23.12 x 10 -24.75 x 10 -2

6.66 x 10 -28.84 x 10 -2

2.03 x 10 -13.58 x 10 -l5.49 × 10-l

9.67 x 10 -l1.72 × 10°

2.64 x 10°

3.69 × 10°5.49 x 10°

8.19× 10°

1.12 × 10 l1.44 × 10 l1.78 × 101

2.13 × 101

RSTAN

code

3.18x 10 -41.59 x 10 -3

2.75 x 10 -33.16 x 10 -3

3.46 x 10 -33.72 x 10 -3

4.16 x 10 -34.56 x 10 -3

4.95 x 10 -35.33 x 10 -3

5.70 × 10 -36.08 x 10 .3

6.45 x 10 .36.82 x 10 .3

7.20 × 10 .37.58 x 10 .38.55 x 10 .3

9.54 x 10 -31.06 × 10 -2

1.16 × 10 -21.26 x 10 -2

1.37 x 10 -21.48 × 10 -2

1.60 × 10 -2

1.71 x 10 .2

2.33 x 10 .23.76 x 10 -25.48 x 10 -2

7.46 x 10 -29.70 x 10 -2

2.13 x 10 -I3.69 x 10 -j5.62 x 10 -1

9.80 x 10 -I1.73 x 1002.64 x 10 °

3.68 x 10 °5.44 x 10 °

8.10 x 10 °1.10 x 10 l

1.42 x 10 !1.75 x 10 l2.09 x 101

Difference,

percent

-7.03.3

10.711.6

11.611.4

10.710.0

9.3

8.78.2

7.8

7.5

7.16.8

6.66.0

5.55.14.8

4.54.3

4.03.8

3.62.92.11.6

1.2

1.00.5

0.30.20.1

0.1-0.0

-0.0

-0.1

-0.1---0.1-0.2

-0.2-0.2

63

Page 68: Comparison of Stopping Power and Range Databases for ...Comparison of Stopping Power and Range Databases for Radiation Transport Study H. Tai Langley Research Center • Hampton, Virginia

REPORT DOCUMENTATION PAGE Fo_Approv_OMB No. 0704-0188

Pubtic reporting burden for this collection of information is estlmatad to average 1 hour per response, including the time for reviewing instructions, searching e_isting data sourcesgathering and maintaining the data needed, and competing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of thi=oolleotlon of Informstlon, including suggestions fo_ reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 JoffersorDavis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management end Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1997 Technical Paper4. TITLE AND SUB]likE 5. FUNDING NUMBERS

Comparison of Stopping Power and Range Databases for RadiationTransport Study WU 199-45-16-11

6. AUTHOR(S)

H. Tai, Hans Bichsel, John W. Wilson, Judy L. Shinn, Francis A. Cucinottaand Francis E Badavi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research CenterHampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS{ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17588

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TP-3644

11. SUPPLEMENTARY NOTES

Tai, Wilson, Shinn, Cucinotta: Langley Research Center, Hampton, VA; Bichsel: Washington University, Seattle,WA; Badavi: Christopher Newport University, Newport News, VA.

12a. DISTRIBUTION/AVAILABILITYSTATEMENT

Unclassified-Unlimited

Subject Category 72

Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The codes used to calculate stopping power and range for the space radiation shielding program at the LangleyResearch Center are based on the work of Ziegler but with modifications. As more experience is gained from exper-iments at heavy ion accelerators, prudence dictates a reevaluation of the current databases. Numerical values of

stopping power and range calculated from four different codes currently in use are presented for selected ions andmaterials in the energy domain suitable for space radiation transport. This study of radiation transport has foundthat for most collision systems and for intermediate particle energies, agreement is less than 1 percent, in general,among all the codes. However, greater discrepancies are seen for heavy systems, especially at low particle energies.

14. SUBJECT YP.HMS

Stopping power; Range; Radiation; Charge particle

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

6816. PRICE CODE

A04120. LIMITATION

OF ABSTRACT

Standard Form 298 (Rev. 2-89)Prescribed by ANSI Std. Z39-18298-102