22
1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang Princeton University Plasma Physics Laboratory With thanks to W. Guttenfelder, V. Kornilov, N. Nakajima, J. Nuehrenberg, D. Spong, J.N. Talmadge, H. Yamada, and M. Zarnstorff, for providing input data and for discussions *Work supported by U.S. D.O.E. Contract No. DE-AC02-76-CHO-3073

Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

  • Upload
    dodiep

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

1

Comparison ofMicroinstability Propertiesfor Stellarator Magnetic

Geometries*

G. Rewoldt, L.-P. Ku,and W.M. Tang

Princeton UniversityPlasma Physics Laboratory

With thanks to W. Guttenfelder,V. Kornilov, N. Nakajima,

J. Nuehrenberg, D. Spong,J.N. Talmadge, H. Yamada,

and M. Zarnstorff,for providing input data and for

discussions

*Work supported by U.S.D.O.E. Contract No.

DE-AC02-76-CHO-3073

Page 2: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

2

Introduction• Differing regions of localization of

trapped electrons, and of “good”(stabilizing) and “bad”(destabilizing) magneticcurvature, along magnetic fieldlines, can affect linear growthrates and real frequencies of IonTemperature Gradient (ITG)modes and Trapped-ElectronModes (TEMs) in tokamaks andstellarators.

• Here, we compare ITG-TEMmode properties for stellaratorcases corresponding to differentpresent and planned stellarators,and to correspondingaxisymmetric cases.

Page 3: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

3

Introduction-2• Use stellarator (non-

axisymmetric) version of FULLcode, in electrostatic,collisionless limit, on single,chosen magnetic surface.Includes trapped particles,complete FLR (Bessel functions),transit frequency, bouncefrequency, and magnetic driftfrequency resonances, for allincluded species, in high-n,radially-local limit (ballooningrepresentation).

Page 4: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

4

Cases• LHD• NCSX (non-zero total current)• NCSX-J=0 (zero total current)• Wendelstein 7-X (W7-X)• HSX• QPS• NCSX-SYM (like NCSX, but keep

n=0 components only in MHDequilibrium)

• NCSX-TOK (like NCSX-SYM, butchange to tokamak-like q or ιprofile)

• NCSX-BETA (like NCSX, but with4% volume-average β)

Page 5: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

5

Cases-2• All cases have same geometric-

center major radius• All cases have same B0 at

geometric center• All cases have same density and

temperature profile shapes, andthus pressure profile shape(taken from LHD inward-shiftedexperimental shot), but with verylow volume-average β = 0.1%(except for NCSX-BETA case)

Page 6: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

6

Cases-3• Shapes of last closed flux

surfaces shown in Fig. 1,with magnetic field strengthindicated (red=strongest,blue=weakest)

• Rotational transform ιprofiles shown in Fig. 2

• MHD equilibrium fromVMEC, with resultsprocessed throughTERPSICHORE and VVBAL

Page 7: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

NCSX & NCSX-J=0& NCSX-BETA

LHD

W7-X

HSX

QPS

NCSX-SYM& NCSX-TOK

Fig. 1

Page 8: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.0 0.2 0.4 0.6 0.8 1.0

Iota

S

LHD

HSX

W7-X

NCSX-TOK NCSX

NCSX-BETA

NCSX-J=0

QPSNCSX-SYM

Fig. 2

Page 9: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

7

Results• All calculations for magnetic

surface with s = 0.74 ∝ (r/a)2, withni = ne and Ti=Te (includeelectrons & deuterium only)

• Start with α = ζ-qθ = 0, θ0 (=θk) =0,η = ηi = ηe = 2.66 (LHDexperimental value), and k⊥(θ = 0)ρi = 0.30, with ηj = d ln Tj / d ln nj

• ITG mode and TEM mode“hybridize” to form single ITG-TEM root!

• First, maximize linear growth rateγ over α (gives αMax for eachcase)

• Second, maximize linear growthrate γ over θ0 (gives θ0

Max for eachcase) for α = αMax

Page 10: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

8

Results-2• Third, maximize linear growth

rate γ over k⊥(θ=0)ρi (gives k⊥Max(θ=0)ρi for each case) for α

= αMax and θ0 = θ0Max

• Finally, vary η = ηi = ηe for α =αMax and θ0 = θ0Max and k⊥(θ=0)ρi= k⊥Max(θ=0)ρi

• Magnetic field strength variationalong field line (in ballooningrepresentation) for α = αMax andθ0 = θ0Max shown for nine cases inFig. 3, with illustrative trapped-particle orbit extents

• Corresponding variation ofk⊥2(θ)/n2 shown in Fig. 4

• Corresponding variation ofcurvature function k⊥•{b×[(b•∇)b]}/n (where b=B/B) shown inFig. 5

Page 11: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

W7-X|B(θ)| (T)

|B(θ)| (T)

|B(θ)| (T)

|B(θ)| (T)

|B(θ)| (T)

|B(θ)| (T)

|B(θ)| (T)LHD

NCSX

NCSX-J=0

HSX

QPS

NCSX-SYM

0 3-3θ (radians)

21-1-2

1.2

1.7

1.5

1.0

1.5

2.01.3

1.5

1.7

1.5

1.7

1.3

1.5

1.3

1.5

1.71.2

1.6

2.0

NCSX-TOK

NCSX-BETA

|B(θ)| (T)

1.3

1.8

1.5

|B(θ)| (T)

1.3

1.7

1.5

Fig. 3

Page 12: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

0

400

800

k (θ

) / n

(m

)⊥2

2-2

LHD

80

40

0

NCSX

k (θ

) / n

(m

)⊥2

2-2

40

20

0

k (θ

) / n

(m

)⊥2

2-2 NCSX-J=0

0

50

100

150W7-X

k (θ

) / n

(m

)⊥2

2-2

HSX60

40

20

0

k (θ

) / n

(m

)⊥2

2-2

QPS180

120

60

0

k (θ

) / n

(m

)⊥2

2-2

NCSX-SYM16001200800400

0

k (θ

) / n

(m

)⊥2

2-2

0 3-3θ (radians)

21-1-2

NCSX-TOK

NCSX-BETA70

40

0

k (θ

) / n

(m

)⊥2

2-2

k (θ

) / n

(m

)⊥2

2-2

400

200

0

Fig. 4

Page 13: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

-606

1218

“bad curvature”

“good curvature”

LHD

“good curvature”

“bad curvature”0.5

0

-0.5

NCSX

“bad curvature”

“good curvature”-1.2

0

1.2 NCSX-J=0

-2

0

“bad curvature”

“good curvature”

W7-X

“bad curvature”

“good curvature”

HSX

-2

-1

0

1

QPS

-2.4

-1.2

0

“bad curvature”

“good curvature”

-6

-4

-2

0“bad curvature”

“good curvature”

NCSX-SYM

0 3-3θ (radians)

21-1-2

“bad curvature”

“good curvature”“bad curvature”

“good curvature”

NCSX-TOK

NCSX-BETA

-1.2

-0.8

-0.4

0

-0.6-0.3

0

0.30.6

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

k ⋅

{b×[

(b⋅∇

)b]}/

n⊥

Fig. 5

Page 14: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

9

Results-3• Variation of growth rate γ and

real frequency ωr with Mα (whereM = number of periods) forstarting values for nine casesshown in Fig. 6

• Corresponding variation of γ andωr with θ0 (for α = αMax and otherstarting values) shown in Fig. 7

• Corresponding variation of γ andωr with k⊥(θ=0)ρi (for α = αMax andθ0 = θ0

Max and other startingvalues) shown in Fig. 8

• Linear eigenfunctions along fieldline (in ballooning representation)(for α = αMax and θ0 = θ0

Max andk⊥(θ=0)ρi = k⊥Max(θ=0)ρi) shownin Fig. 9

Page 15: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

0

1

2

0 1 2 3

LHDNCSXNCSX-J=0W7-XHSXQPSNCSX-SYMNCSX-TOKNCSX-BETA

γ (10

5 sec

-1)

M α = M (ζ - q θ) (radians)

(a)

-2

-1

0

1

0 1 2 3

LHDNCSXNCSX-J=0W7-XHSXQPSNCSX-SYMNCSX-TOKNCSX-BETA

ωr (1

05 sec

-1)

M α = M (ζ - q θ) (radians)

(b)

Fig. 6

Page 16: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

0

1

2

0 1 2 3

LHDNCSXNCSX-J=0W7-XHSXQPSNCSX-SYMNCSX-TOKNCSX-BETA

γ (10

5 sec

-1)

θo = θk (radians)

(a)

-2

-1

0

1

0 1 2 3

LHDNCSXNCSX-J=0W7-XHSXQPSNCSX-SYMNCSX-TOKNCSX-BETA

ωr (1

05 sec

-1)

θo = θk (radians)

electron diamagnetic direction

ion diamagnetic direction

(b)

Fig. 7

Page 17: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

0

2

4

0 0.4 0.8

LHDNCSXNCSX-J=0W7-XHSXQPSNCSX-SYMNCSX-TOKNCSX-BETA

γ (10

5 sec

-1)

k⊥(θ = 0) ρi

(a)

-6

-4

-2

0

0 0.4 0.8

LHDNCSXNCSX-J=0W7-XHSXQPSNCSX-SYMNCSX-TOKNCSX-BETA

ωr (1

05 sec

-1)

k⊥(θ = 0) ρi

electron diamagnetic direction

ion diamagnetic direction

(b)

Fig. 8

Page 18: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

0(arb

itrar

y un

its)

Re φ

Im φ

LHD

Re φ

Im φ0

(arb

itrar

y un

its) NCSX

Re φ

Im φ(arb

itrar

y un

its)

0

NCSX-J=0

Re φ

Im φ

W7-X

0(arb

itrar

y un

its)

Re φ

Im φ

HSX

0(arb

itrar

y un

its)

Re φ

Im φ

|φ|

0

(arb

itrar

y un

its) QPS

NCSX-SYM

0 4π2π-2π−4πθ (radians)

Im φRe φ

|φ|

0

(arb

itrar

y un

its)

NCSX-BETA

NCSX-TOK

0

0Re φ

Re φ

Im φ

Im φ

|φ|

|φ|

(arb

itrar

y un

its)

(arb

itrar

y un

its)

Fig. 9

Page 19: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

10

Results-4• Variation of γ and ωr with η = ηi =ηe (for α = αMax and θ0 = θ0

Max

and k⊥(θ=0)ρi = k⊥Max(θ=0)ρi)shown in Fig. 10

• ITG destabilization mechanism(non-resonant) dominant at largeηi - strongly unstable for all cases

• Collisionless TEM destabilizationmechanism (resonant with orbit-average magnetic drift frequency)dominant for small ηi - stronglyunstable for some cases andweakly unstable or stable forother cases

• Small-ηi result depends ondetails of localization of trappedelectrons and of localization ofgood and bad curvature!

Page 20: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

0

2

4

0 1 2 3 4

LHDNCSXNCSX-J=0W7-XHSXQPSNCSX-SYMNCSX-TOKNCSX-BETA

γ (10

5 sec

-1)

η = ηi = ηe

(a)

-4

0

4

8

0 1 2 3 4

LHDNCSXNCSX-J=0W7-XHSXQPSNCSX-SYMNCSX-TOKNCSX-BETA

ωr (1

05 sec

-1)

η = ηi = ηe

electron diamagnetic direction

ion diamagnetic direction

(b)

Fig. 10

Page 21: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

11

Conclusions• For NCSX, NCSX-J=0, and LHD

cases, γ rises as η approacheszero, indicating rather strongdestabilization from trapped-electron magnetic drifts (badcurvature)

• For W7-X, NCSX-SYM, andNCSX-BETA cases, γ falls as ηapproaches zero, indicating weaktrapped-electron destabilization.For HSX and NCSX-TOK cases,γ also falls as η approaches zero,but overall destabilization islarger

• For QPS case, γ also falls as ηapproaches zero, and ITG-TEMmode is completely stable for η <0.5!

Page 22: Comparison of Microinstability Properties for Stellarator ... file1 Comparison of Microinstability Properties for Stellarator Magnetic Geometries* G. Rewoldt, L.-P. Ku, and W.M. Tang

12

Conclusions-2• NCSX-SYM case, with negative

magnetic shear (in tokamaksense) less unstable than NCSX-TOK case, with positive shear, asexpected

• NCSX-BETA case (with largevolume-average β) less unstablethan NCSX case, (with almostzero β), showing Shafranov-shift-like reduction in trapped-electronbad curvature!

• For all of these magneticgeometries, this ITG-TEM modeis strongly unstable linearly if thetemperature gradient is large!