Comparative Study of Epoxy and Polyester Resin-based Polymer Concrete

Embed Size (px)

Citation preview

  • 8/18/2019 Comparative Study of Epoxy and Polyester Resin-based Polymer Concrete

    1/7

    Com parative stu d y of ep ox y and

    po lyester resin ba sed polym er

    concretes

    P . M a n i , A . K . G u p t a a n d S . K r i s h n a m o o r t h y

    ( Indian Inst itute of Technology, De lhi, India)

    This pap er presents a com parat ive evaluation of tw o types of po lym er concretes,

    prepared wi th two d i f ferent po ly me r b inders epoxy and polyes ter resins) w i th an

    identica l aggreg ate in both cases crushe d qua rtzite and sil ica sand). Comparison is

    a lso ma de w i th a convent ional cem ent concrete. Proper t ies stud ied inc lude st reng th

    compressive, s pl i t - tensi le, f lexural and impact) , sett in g shr inkage, abrasion and

    resistance to various chemicals. Both polye ster concrete and epoxy concrete sh ow fa r

    super ior proper t ies than cem ent concrete. I t is fur ther shown that the polyester

    concrete p roper t ies can be imp roved upon to approach those of the epoxy concrete by

    modi f icat ions such as incorporat ion of ca lc ium carbonate micro f i l ler an d/o r addi tion o f

    a suitable si lane coupling agent.

    K e y w o r d s :

    polymer concretes; epoxy concrete; polyester concrete; strength; setting

    shrinkage; abrasion; skid resistance; cavitation resistance; chemical resistance; water

    absorption; resin/agg regate adhe sion; silane coupling agen t

    New materials composed of inorganic aggregates and

    polymeric resin binders are being developed for

    applications as construction materials with superior

    properties than the conventional cement concrete.

    These materials, also known, as polymer concretes,

    form a wide range depending on the nature of resin

    binder and the aggregates used and the technology of

    their preparation. It is well recognized that the

    properties of these materials are governed mainly by

    the adhesion between the resin binder and the

    aggregate, and therefore present day research is

    directed towards improving the adhesion between the

    two components, so as to achieve improved strength of

    the polymer concrete.

    Since, for the cost considerations, the binder content

    used in such composiste materials is quite low, the

    adhesion of aggregates takes place through a fine layer

    of resin around the aggregates 1 2. A larger contact area

    is therefore desirable, which necessitates a proper space

    filling of the gaps by smal ler aggregates or microfiller

    particles. Use of a silane coupling agent (which

    strengthens the adhesion between the resin and the

    aggregate) and the addition of microfiller (which

    increases the contact surface area of particles coated

    with thin layer of the binder) improves the adhesion

    and thus the ultimate strength of the polymer

    concretes.

    Polymer concretes are finding many applications in

    various civil engineering fields where the conventional

    cement concrete is inadequate due to its lower strength,

    poor chemical resistance, tendency towards crack

    formation, etc. Furthermore, owing to its improved

    bondab ility with old cement concrete 3-5 and more

    rapid setting than the conventional cement concrete,

    the polymer concrete may be used in the repair of

    concrete pavements, highways and airfield runways

    (where quick setting is desirable) and in the repair of

    cracks in old buildings4-1°. Some other applications o f

    polymer concretes may be in the construction of

    off-shore or hydraulic structures prone to erosion and

    cavitation, the construction o f flooring in chemical

    industry facilities.

    In this paper we present a comparative study of a

    cement concrete and two polymer concretes -- one

    based on an unsaturated polyester resin binder

    ('polyester concrete') and the other on an epoxy resin

    binder ('epoxy concrete'), both with identical aggregate

    constitutions. Properties studied include: compressive,

    split-tensile, flexural and impact strengths, abrasion

    resistance, skid resistance, resistance to various

    chemicals, water absorption, cavitation resistance and

    setting shrinkage. Attempts are made to further

    improve the properties of the polyester concrete by

    incorporation of a micro filler and a silane coupling

    0 1 4 3 - 7 4 9 6 / 8 7 / 0 3 0 1 5 7 - 0 7 0 3 . 0 0 © 1 9 8 7 B u tte rw o rth ~ C o (P ub lis he rs )

    Ltd

    INT.JJ~DHESION AND ADHESIVES VO L.7 NO .3 JUL Y 1 987

    1 5 7

  • 8/18/2019 Comparative Study of Epoxy and Polyester Resin-based Polymer Concrete

    2/7

    a g e n t , w h i c h l e a d t o t h e e n c o u r a g i n g p o s s i b i l i t y o f

    r e a c h i n g t h e p r o p e r t i e s e q u i v a l e n t t o t h e e p o x y

    c o n c r e t e b y u s i n g t h e l e s s e x p e n s i v e b i n d e r

    ( u n s a t u r a t e d p o l y e s t e r r e s in ) .

    E x p e r i m e n t a l

    M a t e r i a l s

    Polymer ic b inders

    T h e u n s a t u r a t e d p o l y e s t e r r e s in ( C r y s ti c- 1 9 6 , g e n e r a l

    p u r p o s e g r a d e ) , a s s u p p l i e d b y C r y s t i c R e s i n s ( I n d i a )

    P v t L td , w a s u s e d w i th t h e c a ta l y s t ( 5 0 s o l u t i o n o f

    d i m e t h y l p h t h a l a t e i n m e t h y l e t h y l k e to n e p e r o x i d e )

    a n d t h e a cc e l e ra t o r (1 s o l u t io n o f c o b a l t n a p h t h a n a t e

    i n s t y r e n e ) . B o t h c a t a l y s t a n d a c c e l e r a t o r w e r e a d d e d t o

    2 b y w e i g h t o f t h e r e si n . A c i d v a l u e , v o l a t i l e c o n t e n t

    a n d i n i t ia l v i s c o s it y o f t h e r e s i n a t 2 5 ° C w e r e

    21 mg KO H/g , 38 an d 800-900 cP , re spec t ive ly .

    T h e e p o x y r e s i n ( g r a d e G Y - 2 5 7 ) w i t h p o l y a m i d e

    h a r d e n e r ( g r a d e H Y- 84 0 , C i b a - G e i g y ) w e re u s e d

    m a i n t a i n i n g t h e r e s i n : h a r d e n e r r a t i o a t 1 : 0 . 5 . T h e

    e p o x y v a l u e a n d i n i t i a l v i s c o s it y o f t h e r e s i n a t 2 5 ° C

    were 5 .2-5.4 E q/kg an d 600 cP , re spec t ive ly an d the

    i n i t ia l v i s c o s it y o f t h e h a r d n e r a t 2 5 ° C a n d 4 50 0 cP .

    norganic aggregates

    C o a r s e a g g r e g a t e s c o m p r i s i n g c r u s h e d q u a r t z i t e o f s i z e

    ranging f rom I0 mm to 2 .36 ram, spec i f i c g rav i ty 2 .72 ,

    a n d n e g l i g i b l e o r g a n i c i m p u r i t i e s a n d m o i s t u r e c o n t e n t ,

    w e r e u s e d .

    F i n e a g g r e g a te s c o m p r i s i n g s i l i c e o u s s a n d o f s i ze

    rang ing f rom 1 .18 m m (s i eve s ize BSS-14) to 15 0p v /m

    (s ieve s i ze BSS-100), spec i f i c g rav i ty 2 .6 an d negleg ib le

    o r g a n i c i m p u r i t i e s a n d m o i s t u r e c o n t e n t w e r e a l s o

    used .

    T h e s i z e d i s t r i b u t i o n o f t h e a g g r e g a t e s w a s c h o s e n a s

    s h o w n i n T a b l e 1. T h i s i s b a s e d o n o u r p r e v i o u s

    s tud ies on po lye s t e r re s in conc re te 1L 12, where the

    o p t i m u m s i z e d i s t r i b u t i o n f o r m a x i m u m m e c h a n i c a l

    p r o p e r t i e s s u c h a s c o m p r e s s i v e a n d s p l i t - t e n s i l e

    s t r e n g t h s w a s f o u n d .

    Silane coupling agents

    As pe r the i r su i t ab i l i t y for the re spec t ive re s ins a s

    r e c o m m e n d e d b y t h e m a n u f a c t u r e r s , t w o s il a n e

    c o u p l i n g a g e n t s w e r e u s e d : D y n a s i l DEMO

    T a b l e 1 G r a d i n g o f a g g r e g a t e s i ze u s e d f o r t h e

    p o l y m e r / c o n c r e t e

    S ie v e s i z e

    wt retained Cumulative wt passing

    10 mm 0 100

    4.75 mm 45.00 5 5

    2 3 6 m m 1 8 3 3

    37

    1.18 mm 3.66 33

    600.um 7.33 26

    300 pm 16.50 9

    150/zm 9.18 0

    G r a d i n g m o d u l u s 1 9 = 6 . 4 2 m m - 1

    ean

    d i a m e t e r

    TM

    = 4 . 1 2 r n m

    F i n e n e s s m o d u l u s 1 9 = 4 . 4 0

    ( y - m e t h a c r y l o x y p r o p y l t r i m e t h o x y s i la n e ) t b r t h e

    p o l y e s t e r r e s i n a n d D y n a s i l MEO ( y - a m i n o p r o p y l

    t r i e thoxy s i l ane ) fo r the epoxy re s in .

    Micro i l le r

    F i n e c a l c i u m c a r b o n a t e p o w d e r ( l a b o r a to r y g r a d e,

    part ic le s ize 2.0 to 2.5 pro, specif ic gravity, 2.7) was use d

    a s m i c r o f i l le r i n t h e c a s e o f t h e p o l y e s t e r r e s i n

    concre te .

    M e t h o d o f p r e p a r a ti o n

    Polym er concretes

    A g g r e g a t e s o f a p p r o p r i a t e g r a d i n g w e r e k e p t i n a n

    e n a m a l l e d t r a y . T h e r e s i n m i x ( i e , r e s i n m i x e d w i t h

    c a t a ly s t a n d a c c e le r a to r o r h a r d n e r ) w a s p o u r e d o n t h e

    a g g r eg a t es a n d a h o m o g e n o u s m i x i n g w a s d o n e w i th

    t h e h e l p o f a s p a t u l l a .

    T h e b i n d e r a g g r e g a t e r a t i o w a s 1 2 :8 8 b y w e i g h t . I n

    t h e c a s e o f s a m p l e s c o n t a i n i n g t h e m i c r o f i l l e r , t h e r e

    w a s 1 2 b i n d e r w h i l e t h e r e m a i n i n g 8 8 c o m p r i s e d t h e

    a g g r e g a t e s a n d t h e C a C O 3 m i c r o f i l l e r i n a 9 4 : 6

    p r o p o r t i o n b y w e i g h t.

    S i l a n e c o u p l i n g a g e n t s , w h e r e v e r u s e d , w e r e a d d e d

    d i r e c t l y t o t h e r e s i n - c a t a l y s t - a c c e l e r a t o r m i x (1 b y

    w e i g h t o f t h e r e s i n m i x ) . T h i s m e t h o d o f a p p l y i n g s i l a n e

    c o u p l i n g a g e n t a s a ' i n t e g r a l b l e n d a d d i t i v e ' , u s e d i n

    prev ious s tud ies 13-15 on po lym er con cre te s , p ro du ced

    s i g n i f i c a n t i m p r o v e m e n t s i n t h e m e c h a n i c a l p r o p e r ti e s ,

    w h i c h w e r e a t t r i b u t a b l e t o t h e s i l a n e c o u p l i n g a g e n t .

    H o w e v e r , i n c o m p a r i s o n w i t h o t h e r m e t h o d s , t h e

    ' i n te g r a l b l e n d a d d i t i v e ' m e t h o d p r o d u c e s 1 0 t o 20

    l o w e r c o m p r e s s iv e s t r e n g t h t h a n t h e m e t h o d s i n v o l v i n g

    d i r e c t t r e a t m e n t o f a g g r e g a te s w i t h s i l a n e i n m e t h a n o l

    o r a n a q u e o u s m e d i u m l L

    T h e h o m o g e n o u s p a s te s t h u s p r e p a r e d w e r e p la c e d

    i n t h e m o u l d a n d c o m p a c t e d w e l l w i t h a g l a s s r o d .

    A f t e r 2 4 h c u r i n g t h e m o u l d a t a m b i e n t t e m p e r a t u r e .

    t h e s p e c i m e n s w e r e f u r t h e r c u r e d a t 7 0 ° C f o r 24 h i n

    a n a i r o v e n . C y l i n d r i c a l s p e c i m e n s o f d i m e n s i o n s : ( i )

    5 c m d i a m e t e r a n d 1 0 c m l e n g t h ( f o r te s t in g c o m p r e s s i v e

    a n d s p l i t- t e n s il e s t re n g t h s , c h e m i c a l r e s i st a n c e a n d

    w a t e r a b s o r p t i o n e tc .) a n d ( ii ) 2 .5 4 c m d i a m e t e r a n d

    2 .54 cm length ( for ab ras ion t es ts ), were cas t . Rec tan gula r

    b e a m s o f d i m e n s i o n s : ( i) 6 × 6 × 3 0 c m ( f o r f le x u r a l

    tes ts ) , ( i i ) 2.5 x 2.5 × 25 cm (for se t t ing shrinkage

    m e a s u r e m e n t s ) , a n d ( ii i) 1 X 1 x 7 . 5 c m ( f o r i m p a c t

    t e s t s ) , were cas t . Spec ia l ly curved rec tangula r spec imens

    w e r e c a s t i n t h e m o u l d p r o v i d e d w i t h t h e s k i d

    r e s i st a n c e t e s t i n g i n s t r u m e n t .

    C e m e n t c o n c r e t e

    A s a r e f e r e n c e m a t e r i a l , c e m e n t c o n c r e t e o f th e

    f o l lo w i n g c o m p o s i t i o n w i th a m e d i u m w a t e r - c e m e n t

    r a t i o (0 .5 5 ) c o n c r e t e m i x w a s u s e d . A p r o p o r t i o n o f

    1 1 .6 :2 .4 ( c e m e n t : s a n d : a g g r e g a t e s) w i t h P o r t l a n d

    c e m e n t , s i l i c a s a n d a n d q u a r t z i t e a g g r e g a t e s w a s u s e d .

    S p e c i m e n s o f t h e p r e v i o u s ly d e s c r ib e d s h a p e s a n d

    d i m e n s i o n s w e r e c a s t a f t e r m i x i n g t h e i n g r e d i e n t s o f

    t h e c e m e n t c o n c r et e in a m e c h a n i c a l m i x e r a n d

    c o m p a c t i n g i n a t a b l e v i b r a t o r . T h e c a s t s p e c i m e n s

    w e r e d e m o u l d e d a f t e r 2 4 h c a s ti n g a n d w a t e r c u r e d f o r

    28 days .

    158 INT.J.ADHESION AND ADHESIVES JULY 1987

  • 8/18/2019 Comparative Study of Epoxy and Polyester Resin-based Polymer Concrete

    3/7

    M e a s u r e m e n t s

    Compressive, split-tensile and flexural strengths were

    measured on a Universal testing machine, according to

    the test procedure aS: 1881 part IV, 197016. Static

    loading on cylindrical specimens parallel to the axis of

    the cylinder was used for compressive strength

    measurements. For split-tensile strength, the cylindrical

    specimen was kept in the horizontal position and

    loaded in compression along its diameter until ultimate

    splitting. Flexural strength tests were conducted on

    rectangular beam specimens by the three-point

    bending method maintaining the span length 2.5 cm

    between the point supports.

    Impact tests were carded out on an Izod impact

    tester, involving cantilever type loading of the

    rectangular beam specimens through a pendu lum

    hammer. Abrasion tests were conducted on a Dorry's

    abrasion tester to determine the coefficient of hardness,

    as per the test procedure Is: 2386, 196317. Skid

    resistance tests were conducted on the well polished

    surfaces of the specimens, according to the test

    procedure BS: 812 Part III, 197516 and the results are

    expressed in terms of the coefficient of friction.

    Resistance to chemicals, measured according to the

    method used by Fukuchi and Ohama Is, is expressed in

    terms of 'total evaluacti.'on poin ts' based on percentage

    weight loss and surface appearance characteristics of

    the samples after a prolonged (180 days) exposure of

    the specimen to the chemical reagent. Reagents used

    were the following aqueous solutions: 5 HC1,

    5 H2SO 4, 5 CHaCOOH, 15 NaOH, 15 NaCl, and

    0.2 MgSO4.

    Setting shrinkage was measured at ambient

    temperature using a Demec strain gauge, of gauge

    length 20.32 cm (8 inch) with a total range of

    2500 x 10-5 strain units, and an accuracy of

    measurement within 10 -5 strain units per division. Two

    Demec points were marked on the specimens at the

    time of casting. Measurements were made at intervals

    of 10 rain for the first hour and thereafter at intervals

    o f l h .

    Water absorption tests in cold and boiling water

    were conducted by immersing the specimens in

    distilled water at ambient temperature for 72 h

    (denoted as C 7 2 and in boiling water for 5 h (denoted

    as Bs). Cavitation resistance was measured in a

    Ruemelling utility sand blast cabinet, and represented

    as the specimens' weight loss due to impingement of

    the sand.

    Results of all tests are presented as average values

    obtained from measurements on at least five samples

    in each case. Variation was less than 10 in the results

    on the various samples for any given test.

    R e s u l t s a n d d i s c u s s i o n

    M e c h a n i c a l p r o p e r t i e s

    Po ly m e r c o n c re t e s w i t h o u t s i l a n e o r m ic r o f i l l e r

    Compar ison of compressive, split-tensile, flexural and

    impact strengths, from the data presented in Table 2,

    clearly reveals that both the polyester concrete

    (specimen B) and epoxy concrete (specimen E), without

    silane and microfiller, have considerably superior

    properties than the cement concrete (specimen A). Of

    the two polymer concretes, the epoxy concrete has

    much superior properties tha n the polyester concrete

    (compare, eg, specimens B and E without any silane or

    microfiller in Table 2),

    The split-tensile to compressive strength ratio, which

    is an important property for the selection of these

    polymer concretes (specimens B, E) over the cement

    concrete (specimen A). Thus, in addition to a superior

    load bearing capacity (owing to high compressive and

    flexural strengths) these polymer concretes also have a

    lower crack generation t endency (owing to high split-

    tensile strength) than the cement concrete.

    Impact resistances of both the polyester concrete

    and the epoxy concrete were also superior to that of

    the cement concrete. Of the two polymer concretes the

    epoxy concrete had the greater impact strength over the

    polyester concrete.

    Ef fec t o f s i ane cou p l ing agen t

    Incorporation of a silane coupling agent further

    improves the properties of these polymer concretes.

    Compressive strength goes up by 30 for the polyester

    concrete (compare specimens B and C) and 36 for the

    epoxy concrete (compare specimens E and F). Split-

    T a b l e 2 . M e c h a n i c a l p r o p e r t ie s o f c e m e n t c o n c r e te p o l y e s t e r c o n c r e t e a n d e p o x y c o n c r e t e

    Property Cem ent concrete Polyester concrete Epoxy

    c o n c r e t e

    A) B) a C) b D) c E) d F) e

    C o m p r e s s i v e s t rength (MPa) 24 .0

    Sp l i t - t e n s i l e

    streng th (MPa) 3.2

    S p l i t - t e n s i l e / C o m p r e s s i v e 0 . 1 4

    s t rength ratio

    Flexural s t rength (MPa) 3.6

    Izod impact s t rength 3.3

    (kg cm X cm -2 )

    4 1 .2 53 .0 6 8 .0 71 .6 97 .7

    1 0 . 8 1 1 . 8

    12.1 13.7

    1 8 . 9

    0 .2 6 0 . 2 2 0 .18 0 . 2 1 0 .19

    1 2 . 2 1 3 . 9 1 9 . 3 2 1 . 0 2 1 . 6

    3 . 5 4 . 7 4 . 3 6 . 6 7 . 5

    aVVithout

    s i lane or

    f i l ler

    bw i th s i lane MEMO and wi tho ut f i l le r

    cVVith si lane MEMO

    a n d C a C O

    f i l ler

    d W i th o u t silane

    eWith si lane AMEO

    INTJ .ADHESION AND ADHESIVES JULY 198 7 159

  • 8/18/2019 Comparative Study of Epoxy and Polyester Resin-based Polymer Concrete

    4/7

    t e n si le , f le x u r a l a n d l z o d i m p a c t s t r en g t h s o f b o t h

    p o l y e s t e r a n d e p o x y c o n c r e t e s a l so i m p r o v e d w i t h t h e

    i n c o r p o r a t i o n o f t h e s i l a n e c o u p l i n g a g e n t. T h i s i s a n

    e x p e c t ed o u t c o m e o f t he i m p r o v e d i n t er fa c i al b o n d i n g

    d u e t o t h e s i l a n e c o u p l i n g a g e n t . T h e e f f e c t o f s i la n e

    c o u p l i n g a g e n t is m o r e p r o n o u n c e d i n t h e c a se o f t h e

    e p o x y c o n c r e t e t h a n i n t h e p o l y e s t e r c o n c re t e .

    T h e s p l i t - t e n s i l e s t r e n g t h t o c o m p r e s s i v e s t r e n g t h

    r a t io d e c r e a s e s o n i n c o r p o r a t i o n o f th e s i t a n e c o u p l i n g

    a g e n t i n b o t h c a s e s , i m p l y i n g a g r e a t e r i m p r o v e m e n t o f

    c o m p r e s s i v e s t r e n g t h t h a n t e n s i l e s t r e n g t h i n t h e

    p r e s e n c e o f t h e c o u p l i n g a g e n t . C o m p r e s s i v e

    d e f o r m a t i o n i n v o l v e s d i s p l a c e m e n t o f s e v e r a l

    n e i g h b o u r i n g a g g r eg a t es t o c re a t e r o o m t o a l lo w m o t i o n

    o f a n y tw o m u t u a l l y a p p r o a c h i n g a g g r eg a t es , w h e r e a s

    i n t e n s i l e d e f o r m a t i o n f r a c t u r e i n i t i a t i n g a t a n y s i t e

    p a s s e s t h r o u g h o t h e r i n t e r f a c ia l a r e a s w i t h o u t i n v o l v i n g

    a n y c o o p e r a t i v e d i s p l a c e m e n t o f th e a g g r e g a te s . T h e

    s t r o n g e r b i n d e r a g g r e g a te b o n d i n g i n p r e s e n c e o f th e

    s i l a n e c o u p l i n g a g e n t w o u l d t h u s p r o d u c e g r e a t e r

    r e s i st a n c e t o c o m p r e s s i v e d e f o r m a t i o n , o w i n g t o t h e

    c o o p e r a t i v e m o t i o n o f a la r g e n u m b e r o f ag g r e g a te s

    i n v o l v e d i n t h e p r o c e s s o f c o m p r e s s i v e d e f o r m a t i o n .

    T h i s e x p l a i n s t h e o b s e r v e d d e c r e a s e i n s p l i t - t e n s i l e

    s t r e n g t h t o c o m p r e s s i v e s t r e n g t h r a t i o i n t h e p r e s e n c e

    o f th e s i l a n e c o u p l i n g a g e n t . F u r t h e r m o r e , a

    c o m p a r i s o n o f t h e c o m p r e s s i v e s t re n g t h o f t h es e

    d i f f e re n t c o n c r e t e s w i t h o u t s i l a n e ( s p e c i m e n s B a n d E )

    c l e a r l y sh o w s t h a t t h e s t r o n g e r b i n d e r ( e p o x y r e si n )

    g i ve s a h i g h e r c o m p r e s s i v e s t re n g t h t h a n t h e w e a k e r

    b i n d e r ( p o l y e s t e r r e s i n ) .

    f f ec t o f CaCO m ic r o f i l l e r in p o l y e s t e r c o n c re t e

    F ro m th e a b o v e c o m p a r i s o n s o f t h e m e c h a n i c a l

    p r o p e r t i e s o f t h e t w o p o l y m e r c o n c r e te s , t h e e p o x y

    r e s in w o u l d s e e m t o b e a s u p e r i o r b i n d e r t o t h e

    p o l y e s t e r re s i n. H o w e v e r , t h e h i g h c o s t o f e p o x y r e s i n

    m a y r e s tr i ct i ts u s e t o o n l y v e r y e x c e p t i o n a l

    a p p l i c a t i o n s . F u r t h e r s t u d i es o n t h e p o l y e s t e r c o n c r e t e

    b y i n c o r p o r a t i o n o f C a C O 3 m i c r o f i l l e r i n d i c a t e a c l e a r

    p o s s i b i li t y o f a c h i e v i n g a c o n s i d e r a b l e i m p r o v e m e n t i n

    t h e p r o p e r t i e s o f t h e p o l y e s t e r c o n c r e t e . T h e r o le o f t h e

    m i c r o f i l l e r i s to a c h i e v e b e t t e r f i l li n g o f t h e s p a c e s

    b e t w e e n t h e a g g r e g a t e s s o t h a t t h e r e s i n b i n d e r i s

    c o n c e n t r a t e d o n t h e a g g r e g a t e i n t e r f a c e s r a t h e r t h a n i n

    t h e e m p t y s p a c e s b e t w e e n t h e a g g r e g at e s.

    D a t a o n s p e c i m e n s C a n d D , w h i c h d i f f e r o n l y in

    m i c r o f i l l e r c o n t e n t , i n T a b l e s 2 a n d 3 re v e a l s t h e e f fe c t

    o f C a C o 3 m i c r o f i l l e r o n t h e p r o p e r t i e s o f t h e p o l y e s t e r

    c o n c r e t e . T h e c o m p r e s s i v e a n d f l e x u ra l s t r e n g th s o f t h e

    p o l y e s t e r c o n c r e t e a r e g r e a t l y i m p r o v e d o n

    i n c o r p o r a t i o n o f t h e C a C O 3 m i c r o fi l le r ( c o m p a r e

    s p e c i m e n s C a n d D ) . T h e s p l i t - t e n s i l e s t r e n g t h s h o w s

    l i t t l e c h a n g e , p r o b a b l y b e c a u s e t h e s p l i t - t e n s i l e f a i l u r e

    d e p e n d s o n t h e s t r e n g t h o f b o n d i n g b e t w e e n t h e r e si n

    a n d t h e a g g re g a te s , w h i c h r e m a i n s u n a l t e r e d b y t h e

    i n c o r p o r a t i o n o f C a C o 3 m i c r o f il l e r. H i g h e r c o m p r e s s i v e

    s t r e n g t h ( o r l o w e r s p l i t - t e n s i l e t o c o m p r e s s i v e s t r e n g t h

    r a t io ) f o r s p e c i m e n s w i t h C a C O 3 m i c r o f il l e r is o w e d

    n o t n e c e s s a r i l y to t h e s t r o n g e r b o n d i n g b u t p o s s i b l y t o

    t h e g r e a t e r s p a c e f i l l i n g b y t h e m i c r o f i l l e r p a r t i c l e s

    l e a v i n g l es s r o o m f o r c o m p r e s s i v e d e f o r m a t i o n .

    C o m p r e s s i v e a n d f l e x u r a l st r e n g th o f t h e p o l y e s t e r

    c o n c r e t e o n i n c o r p o r a t i o n o f C a C O 3 m i c r o f il l er r e a c h

    v a l u e s s u f fi c i e n tl y c o m p a r a b l e w i t h th e c a s e o f e p o x y-

    c o n c r e t e w i t h o u t s i l a n e ( s p e c i m e n E ). I m p a c t s t re n g t h

    o f t h e p o l y e s t e r c o n c r e t e , h o w e v e r , i s p o o r e r i n

    p r e s e n c e o f t h e C a C O 3 m i c r o f il l e r.

    A b r a s i o n a n d s k i d r e s i s t a n c e

    T h e c o e f f i c ie n t o f h a r d n e s s o f t h es e p o l y m e r c o n c r e t e s

    a r e s l ig h t l y s u p e r i o r t o t h a t o f th e c e m e n t c o n c r e t e

    ( T a b l e 3 ), i m p l y i n g g o o d a b r a s i o n r e s is t a n c e s f o r b o t h

    p o l y e s t e r a n d e p o x y c o n c re t e s . T h e e p o x y c o n c r e t e h a s

    a s o m e w h a t g r e a t e r a b r a s i o n r e s i s t a n c e t h a n t h e

    p o l y e s t e r c o n c r e t e .

    T a b l e 3 . H a r d n e s s , f r i c t io n , s e t t i n g - s h r i n k a g e , c a v i t a t i o n r e s i s t a n c e a n d w a t e r a b s o r p t i o n p r o p e r t i e s o f t h e

    v a r i o u s c o n c r e t e s

    Proper ty Cemen t

    c o n c r e t e Po ly e s te r c o n c r e t e Ep o x y c o n c r e t e

    A) B)a C)b D) c E)d F)e

    C o e f f i c ie n t o f h a r d n e ss 1 8 .6

    (Dory s abras ion res is tance

    a t 2 0 ° C

    C o e f f i c ie n t o f f r i c tio n ( s k id 0 .5 1

    r e s is t a n c e) a t 2 0 ° C

    S e t t i n g s h r i n k a g e ( 1 0 - 6 *

    strain units)

    C a v i ta t io n r e s is t a n c e 3 9 .0

    ( w t lo s s in g )

    W a t e r a b s o rp t io n

    (%)

    in

    co ld w t e r

    C 7 2 ) 3 . 6 9

    in bo i l ing water (B75)

    5 . 3 3

    1 8 . 6 1 8 . 8 1 8 . 9 1 9 . 0 1 9 . 0

    0 . 5 3 0 . 5 5 0 . 5 0 0 . 5 4 0 . 5 5

    2 9 0 0 * 4 2 0 0 11 O 0 *

    2 8 . 5 2 3 . 0 2 3 . 5 * *

    0 . 1 9 0 . 1 4 0 . 1 1 0 . 0 3 0 . 0 3

    0 . 3 3 0 . 2 6 0 . 2 6 0 . 1 3 0 . 1 3

    * N o t m e a su r e d '

    ~ N i t h o u t

    s i l a n e a n d

    f i l l e r

    / ' W i t h s i l a n e M EM O a n d w i t h o u t f i l l e r

    cVVith s i lane M EMO a n d C a C O f i ll e r

    d ~ v i t h o u t

    s i l a n e

    eVVith s i l a n e AMEO

    1 60 IN T .J .A D H E S IO N A N D A D H E S IV E S J U L Y 1 9 8 7

  • 8/18/2019 Comparative Study of Epoxy and Polyester Resin-based Polymer Concrete

    5/7

    Coefficients of friction for both polyester and epoxy

    concretes are distinctly superior to that of the cement

    concrete, except in the case of polyester concrete

    conta ining CaCO 3 microfiller. This shows that the skid

    resistance of these polymer concretes are not inferior to

    that of the cement concrete.

    The abrasion and skid resistance properties are

    especially relevant for end uses such as bridge-decks,

    airport runway, motor-highway surfaces. For very

    specific applications these polymer concretes may

    prove useful in spite of the high cost of the binders.

    S e t t i n g s h r i n k a g e

    Volume change on solidification of the liquid

    polymeric resins gives rise to significant shrinkage of

    polymer concretes during the resin setting or curing

    processes. When measured as a function of time, the

    shrinkage remains insignificantly small in the first few

    hours (up to 5 h). After the ini tial 5 h cure, the

    shrinkage increases with time and reaches a plateau

    after 15-20 h. The plateau value of the shrinkage is

    taken as the setting shrinkage . As shown in Table 3,

    setting shrinkage of the polyester concrete (specimen B)

    is much higher than that of the epoxy concrete

    (specimen E). Addition of CaCO3 microfiller, produces

    an adverse effect on the setting shrinkage of the

    polyester concrete (compare specimens B and D).

    Use of shrinkage reducing agents is essential,

    particularly in applications where shrinkage of

    concrete during setting cannot be accomodated, as for

    example in the case of polymer concrete mortar used

    in the repair of cracks in cement concrete structures or

    in the surfacing of roads and pavements etc. Use of a

    polymer concrete mortar is sometimes preferable in the

    repair of the cracks in old cement concrete due to the

    fact that bonding between old and new cement

    concrete and the polymer concrete is remarkably good.

    Studies of shrinkage reduction in polyester concrete,

    reported in detail in a previous publica tion ]2 showed

    that the shrinkage could be reduced to zero or could

    even be negative (ie, expansion), depending on the

    composition and quant ity of shrinkage reducing agent

    added to the resin. The problem of shrinkage reduction

    is overcome in a number of ways not only for the

    concretes but also for many other applications of the

    binder resins.

    W a t e r a b s o r p t i o n a n d c a v i t a t i o n r e s i s t a n c e

    Both the polymer concretes show considerably smaller

    water adsorption tendencies than the cement concrete,

    as shown in Table 3; the epoxy concrete showing a

    lower water absorption than the polyester concrete. The

    effects of the silane coupling agent and CaCO3

    microfiller on water absorption of the polymer

    concretes are insignificant. Water absorption, which is

    greater in boiling water than in cold (ambient

    temperature) water, is considerably smaller for these

    polymer concretes than the cement concrete. Amongst

    the two polymer concretes the epoxy concrete has

    significantly lower water absorption than the polyester

    concrete. Incorporation o f the silane coupling agent

    produces a slight decrease in water absorption

    tendency of the polyester concrete and no significant

    change in case of the epoxy concrete. Water absorption

    at these two temperatures (ambient and the boiling

    temperature of water) clearly suggest a still lower value

    of water absorption around the water freezing

    temperature, thus indicating a greater freeze-thaw

    resistance for these polymer concretes than the cement

    concrete.

    Tendency to cavitation is compared in terms of the

    weight loss on sand blasting under identical

    conditions; the lower value of weight loss implies

    greater resistance to cavitation. Values shown in Table

    3, indicate greater cavitation resistance of the polyester

    concrete than the cement concrete; silane coupling

    agent further enhances the cavitation resistance of the

    polyester concrete, while the CaCO3 microfiller does

    not produce any significant effect. This suggests better

    durability unde r adverse weather conditions of the

    polyester concrete than the cement concrete.

    e s i s t a n c e t o c h e m i c a l s

    The chemical resistance study was carded out with

    chemical reagents relevant to the general applications

    of concrete. The six chemical reagents used were He1,

    H2SO4 CH3COOH, NaOH, NaC1, MgSO4 representing

    the effects of strong and weak acids, alkali, saline water

    and sulphate resistance respectively. Other chemicals

    relevant to specific end-uses of polymer concrete, such

    as diesel and petrol for highways or some specific

    chemicals for polymer concretes used in floor surfacing

    in chemical industries etc, are not included in this

    study. Overall resistance to a given chemical is

    determined after constant exposure for 180 days in all

    cases and the results are expressed in the units of total

    evaluation points as defined by Fukuchi and Ohama is.

    The specimens, after exposure to the chemicals, were

    examined for changes of weight, surface appearance

    and colour and graded according to the scheme

    described in Table 4. The total evaluation points were

    calculated according to expression given in Table 4.

    Higher values of total evaluation points imply greater

    resistance to the chemical concerned.

    From the results shown in Table 5 it can be seen

    that, in most cases the chemical resistance of these

    polymer concretes is superior to that o f the cement

    concrete, with the exception of the resistance to alkali

    (NaOH) of the polyester concrete. The alkali resistance

    of the polyester concrete is comparable with that of the

    cement concrete and is decreased in presence of the

    CaCO3 microfiller. There is a possibility of

    saponification of the polyester component in the

    presence of NaOH, which might be the cause of the

    lower alkali resistance of the polyester component

    observed in presence of NaOH, which could explain

    the lower alkali resistance of the polyester concrete.

    Addition of the CaCO3 microfiller decreases the

    resistance of polyester concrete to, not only the alkali,

    but to most of the chemicals used. This is unavoidable

    owing to the considerable reactivity of CaCO3 with

    these chemical reagents. Thus, although the addi tion of

    CaCO3 microfiller enhances the strength of the

    polyester concrete it does have an adverse effect on its

    chemical resistance. Hence a compromise of the

    properties for specific applications, or a search for an

    alternative microfiller would be necessary.

    Epoxy concretes, which show superior resistance to

    alkali, show somewhat lower resistance to sulphuric

    acid and acetic acid than the polyester concretes

    INT.J.ADHESION AN D ADHES IVES JUL Y 19 87 161

  • 8/18/2019 Comparative Study of Epoxy and Polyester Resin-based Polymer Concrete

    6/7

    Table 4 . Eva lua t ion

    c r i te r ia for

    c hem i c a l r es i s t anc e

    o f p o l y m e r c o n c r e t e

    Evaluation i tem Standard value for evaluation (Grading points)

    Excel lent (4) Good (3) Fair (2) Poor (1)

    W eigh t change (A) _+ 2%

    Surface appearance No change

    change (B)

    Colour change (C) No change

    + 2 t o + 1 5 %

    - 2 t o - 4

    Light scal ing

    Slight discolouration

    + 1 5 to + 2 0 %

    - 4 to - 6 %

    Medium scal ing

    Fair discolouration

    > + 2 0 %

    < - 6 %

    Complete col lapse

    Rem arkable discolouration

    Total evaluation points =

    1 . 5 A + B + 0 . 5 C

    T a b l e 5 . R e s i s t a n c e t o v a r io u s c h e m i c a l s o f t h e c e m e n t c o n c r e t e a n d t h e p o l y m e r c o n c r e t e s a f te r 1 8 0 d a y s

    e x p o s u r e ( v a lu e s e x p r e s s e d i n u n i t s o f t o t a l e v a l u a t i o n p o i n t s d e s c r ib e d i n th e t e x t )

    Sample numb er R e a g en t Cement concrete Polyester concrete Epoxy concrete

    wi thout s i lane

    A) B) C)

    1 5% HCI 2 .5 4 .0 4 .0 3 .8 4 .0

    2 5 %

    H 2 S O 4

    3.0 4 .0 4 .0 3 .8 3 .7

    3 5% CH3COOH 2 .2 4 .0 4 .0 3 .5 3 .7

    4 1 5% NaCI 3 .7 4 .0 4 .0 3 .8 4 .0

    5 1 5% NaOH 3.0 3 .0 3 .0 2 .5 4 .0

    6 0 .2% MgSO4 3 .2 4 .0 4 .0 3 .8 4 .0

    (A)Without silane or microfiller

    (B)With silane MEMO

    (C)With CaCO and silane MEMO

    ( w i t h o u t C a C O 3 m i c r o f i l l e r ) . R e s i s t a n c e t o H C 1 , s a l i n e

    w a t e r a n d s u l p h a t e s a lt o f th e e p o x y c o n c r e t e s i s q u i te

    c o m p a r a b l e w i t h t h a t o f t h e p o l y e s t e r c o n c r e t e s

    ( w i t h o u t C a C O 3 m i c r o f i l l e r ) .

    C o n c l u s i o n

    T h e u s e o f p o l y m e r i c r e si n b i n d e r s , i n s t e a d o f c e m e n t ,

    g i v es st r o n g e r c o n c r e t e t h a n t h e c o n v e n t i o n a l c e m e n t

    c o n c r e t e . P o l y m e r c o n c r e t e s b a s e d o n u n s a t u r a t e d

    p o l y e s t e r r e s in s a n d e p o x y re s i n b i n d e r s s h o w

    c o m p r e s s i v e s t r e n g t h s h i g h e r b y a f a c t o r 2 t o 4 a n d

    s p l i t -t e n s i l e a n d f l e x u r a l s t r e n g t h s h i g h e r , b y a f a c t o r 3

    t o 6 , t h a n t h e c o n v e n t i o n a l c e m e n t c o n c r e t e . E p o x y

    c o n c r e t e i s, i n g e n e r a l , s t r o n g e r t h a n p o l y e s t e r c o n c r e t e

    b u t t h e c o s t o f e p o x y r e s in b i n d e r m a y r e s tr i c t i ts u s e.

    P r e s e n t s t u d i e s s h o w t h a t t h e c o m p r e s s i v e , s p l i t - t e n s i l e

    a n d f l e x u r a l s t r e n g t h s o f p o l y e s t e r c o n c r e t e c a n b e

    f u r t h e r e n h a n c e d b y i n c o r p o r a t i o n o f a s il a n e c o u p l i n g

    a g e n t a n d t h e m i c r o f i l l e r to r e a c h a l e v e l s u f f i c i e n t l y

    c o m p a r a b l e w i t h t h e e p o x y c o n c r e t e w i t h o u t s il a n e' . I n

    o t h e r p r o p e r t ie s , s u c h a s i m p a c t s t r e n g t h a n d w a t e r

    a b s o r p t i o n t h e p o l y m e r c o n c r e t e s a r e s u p e r i o r t o

    c e m e n t c o n c r e t e w h i l e i n a b r a s i o n a n d s k i d re s i s t an c e

    t h e y a r e c o m p a r a b l e ( o r a t le a s t n o t i n f e r io r ) t o c e m e n t

    c o n c r e t e . C h e m i c a l r e s i s ta n c e o f th e p o l y m e r c o n c r e t e s

    i s m a r k e d l y s u p e r i o r t o t h a t o f th e c e m e n t c o n c r e t e ,

    w i t h t h e e x c e p t i o n o f t h e a l k a l i r e s i s t a n c e o f t h e

    p o l y e s t e r c o n c r e t e a n d a d e c r e a s e i n c h e m i c a l

    r e s i st a n c e i n t h e p r e s e n c e o f C a C O 3 m i c r o f il l e r.

    R e f e r e n c e s

    1 Ga ms ki. K. R esinous binder concrete' Proceedings of 1st

    In ternat ional Congress on Polymers in Concrete

    The C oncrete

    Society, London (1975) p 223

    2 Gupta, A.K., lear, B. and Men i, P. J Reinforced Plas tics a nd

    Composites

    1 (1982) p 370

    3 Ma ni , P.

    PhD Thes is

    (Indian Institute of Technology, New Delhi,

    1983)

    4 Ma ni , P., Kr ishnam oorthy, S. and Gupta, A.K. Proceedings of

    Nat ional Sympo s ium on Binder Economy and Al ternat ive Binders in

    Road and Bui ld ing Cons t ruc t ion

    Cement Research nstitute, New

    Delhi. India (1981) pp 1~3

    5 B lake,

    L S . and

    Pu ller-att acke r, P. 'Epoxy resins for repair of

    concrete',

    R I LEM Bu l l e t in

    No. 28, (September 1965) p 25

    6 Trem 0er, B. 'Repair of damaged concrete with epoxy resins', J AC I

    82 No. 2 (1960) p 173

    7 Kukamka ,L.E. and F ontana, J . 'Concrete-polymer materials

    f o r

    highway appl ications final report' BNL 50462 and PHWA-RD-75-

    86, (Radiation Division, 6NL, N ew Yo rk, 1975)

    8 Ch andra, H, and Pando, S.N.

    Ind ian R oad Congress Journal 7

    ( 1 9 7 6 ) p 45 5

    9 G holh , R.K., Phu l l , Y.R. and Pant, C.S. Polymers in Concrete',

    (ACI Publ ication. Michigan, 1978) p 10 3

    10 M elkote , R.$. and Sur i , S.B. Proceed ings o f 44 t h An nua l

    Research Session

    (Central Board of Irrigation and P ower, New Delhi,

    Publ ication No. 123, 1975) p 146

    11 Ma ni , P., Kr ishnam oorthy, S, and Gupta, A.K.

    Proceedings of

    I n t e rna t iona l Sem ina r on Po l y m er i c M a t e r i a ls

    (College of

    Engineering, Trivandrum. 1981 ) p 13

    12 Me ni , P. , Kr ishnam oorthy, S. and Gupta, A.K ./n t J Adhes ion and

    Adhesives

    3 (1983) p 101

    162 INT.J .ADHESION AND ADHESIVES JULY 198 7

  • 8/18/2019 Comparative Study of Epoxy and Polyester Resin-based Polymer Concrete

    7/7

    13 Gupta, A.K., Mani , P. and Kr ishnamoorthy, S.

    Int J Adhesion and

    Adhesives

    3 (1983) p 149

    14 Ma ni , P. , Gupta, A.K. and Kr ishnam oorthy,

    S J Mater Sci 18

    (1983 ) p 3599

    15 Sterman, S. and Marsde n, J .G.

    Proceedings of SPI 18th Annual

    Technical Conference

    (Chicago, USA . 1963 Section ID)

    16 'Methods o f Tests for Mechan ical Properties of Concrete' (British

    Standards institute Publication, London, 1975)

    17 Methods of Test for Aggregates for Concrete (Indian Standards

    Institute Publication, New Delhi, 1978)

    18 Fuku chi, T. and Ohama, Y.

    Trens Japan Concrete Institute

    (1979)

    p 100

    1 9 J a c k s o n N .

    'Civil Engineering Materials' (ELBS Macmillan

    Publ ications, Hong Kong, 1978) p 12 4

    Authors

    The authors are with the Centre for Materials Science

    and Technology, Indian Institute of Technolgy, Hauz

    Khas, New Delhi-110 016, India. P. Mani is presently

    at the Materials Division, Regional Research

    Laborat ory CSIR), Trivandmm-695019, India.

    Inquiries should be directed to Dr Gupta in the first

    instance.

    I N T J A D H E S I O N A N D A D H E S I V E S J U L Y 1 9 8 7 1 6 3