24
Copyright 2001 by the Genetics Society of America Comparative Gene Expression Profiles Following UV Exposure in Wild-Type and SOS-Deficient Escherichia coli Justin Courcelle,* ,1 Arkady Khodursky, ,1 Brian Peter, Patrick O. Brown and Philip C. Hanawalt § Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, Department of MCB, UC-Berkeley, Berkeley, California 94720, *Department of Biological Science, Mississippi State University, Mississippi State, Mississippi 39762 and § Department of Biological Sciences, Stanford University, Stanford, California 94305 Manuscript received October 4, 2000 Accepted for publication January 29, 2001 ABSTRACT The SOS response in UV-irradiated Escherichia coli includes the upregulation of several dozen genes that are negatively regulated by the LexA repressor. Using DNA microarrays containing amplified DNA fragments from 95.5% of all open reading frames identified on the E. coli chromosome, we have examined the changes in gene expression following UV exposure in both wild-type cells and lexA1 mutants, which are unable to induce genes under LexA control. We report here the time courses of expression of the genes surrounding the 26 documented lexA-regulated regions on the E. coli chromosome. We observed 17 additional sites that responded in a lexA-dependent manner and a large number of genes that were upregulated in a lexA-independent manner although upregulation in this manner was generally not more than twofold. In addition, several transcripts were either downregulated or degraded following UV irradiation. These newly identified UV-responsive genes are discussed with respect to their possible roles in cellular recovery following exposure to UV irradiation. I RRADIATION of growing Escherichia coli cultures the genes normally suppressed by LexA are more fre- quently transcribed (Sassanfar and Roberts 1990 and with ultraviolet light (UV) produces DNA lesions that at least transiently block the essential processes of references therein; Friedberg et al. 1995). An interest- ing feature of the LexA/RecA regulatory circuit is that replication and transcription. A large amount of work has demonstrated that the cell responds to this stress the timing, duration, and level of induction can vary for each LexA-regulated gene, depending upon the lo- by upregulating the expression of several genes that cation and binding affinity of the LexA box(es) relative function to repair the DNA lesions, restore replication, to the strength of the promoter. As a result of these and prevent premature cell division. A number of other properties, some genes may be partially induced in re- genes are known to be upregulated, yet remain function- sponse to even endogenous levels of DNA damage, while ally uncharacterized. The changes in gene expression other genes appear to be induced only when high or in response to DNA damage produced by UV and some persistent DNA damage is present in the cell. In fact, other environmental agents have been collectively ter- the SOS response may represent a continuum in the med the SOS response, after the international distress monitoring of environmental stress, rather than simply signal (Radman 1974 and reviewed in Friedberg et al. operating as an emergency switch following acute injury. 1995; Koch and Woodgate 1998). The first systematic search for damage-inducible (din) Many of the DNA damage-induced genes are nega- genes was carried out by Kenyon and Walker (1980) tively regulated by the LexA repressor protein, which by randomly inserting a lac reporter gene into the E. binds to a 20-bp consensus sequence in the operator coli chromosome to identify promoters that were upreg- region of the genes, suppressing their expression (Brent ulated following DNA damage in a recA/lexA-dependent and Ptashne 1981; Little et al. 1981). Derepression fashion. Using this same technique, subsequent studies of these genes occurs when the RecA protein binds to identified additional din genes and in some cases identi- single-stranded regions of DNA created at replication fied genes previously characterized to be involved in the forks when they are blocked by DNA damage. RecA recovery from DNA damage (Bagg et al. 1981; Fogliano bound to single-strand DNA becomes conformationally and Schendel 1981; Huisman and D’Ari 1981; Kenyon active, serving as a coprotease to cleave the LexA repres- and Walker 1981; Shurvinton and Lloyd 1982; sor. As the cellular concentration of LexA diminishes, Lloyd et al. 1983; Siegel 1983; Bonner et al. 1990; Iwasaki et al. 1990; Ohmori et al. 1995b). Analysis of the known din genes revealed a 20-bp consensus LexA- Corresponding author: Justin Courcelle, Department of Biological binding motif, or “SOS box,” shared by these genes Science, P.O. Box GY, Mississippi State University, Mississippi State, in their promoter/operator regions (Walker 1984), MS 39762. E-mail: [email protected] 1 These authors contributed equally to this work. which has been used in more recent studies to systemati- Genetics 158: 41–64 (May 2001)

Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

Copyright 2001 by the Genetics Society of America

Comparative Gene Expression Profiles Following UV Exposure in Wild-Typeand SOS-Deficient Escherichia coli

Justin Courcelle,*,1 Arkady Khodursky,†,1 Brian Peter,‡ Patrick O. Brown† and Philip C. Hanawalt§

†Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, ‡Department of MCB,UC-Berkeley, Berkeley, California 94720, *Department of Biological Science, Mississippi State University, Mississippi State,

Mississippi 39762 and §Department of Biological Sciences, Stanford University, Stanford, California 94305

Manuscript received October 4, 2000Accepted for publication January 29, 2001

ABSTRACTThe SOS response in UV-irradiated Escherichia coli includes the upregulation of several dozen genes

that are negatively regulated by the LexA repressor. Using DNA microarrays containing amplified DNAfragments from 95.5% of all open reading frames identified on the E. coli chromosome, we have examinedthe changes in gene expression following UV exposure in both wild-type cells and lexA1 mutants, whichare unable to induce genes under LexA control. We report here the time courses of expression of thegenes surrounding the 26 documented lexA-regulated regions on the E. coli chromosome. We observed17 additional sites that responded in a lexA-dependent manner and a large number of genes that wereupregulated in a lexA-independent manner although upregulation in this manner was generally notmore than twofold. In addition, several transcripts were either downregulated or degraded following UVirradiation. These newly identified UV-responsive genes are discussed with respect to their possible rolesin cellular recovery following exposure to UV irradiation.

IRRADIATION of growing Escherichia coli cultures the genes normally suppressed by LexA are more fre-quently transcribed (Sassanfar and Roberts 1990 andwith ultraviolet light (UV) produces DNA lesions

that at least transiently block the essential processes of references therein; Friedberg et al. 1995). An interest-ing feature of the LexA/RecA regulatory circuit is thatreplication and transcription. A large amount of work

has demonstrated that the cell responds to this stress the timing, duration, and level of induction can varyfor each LexA-regulated gene, depending upon the lo-by upregulating the expression of several genes thatcation and binding affinity of the LexA box(es) relativefunction to repair the DNA lesions, restore replication,to the strength of the promoter. As a result of theseand prevent premature cell division. A number of otherproperties, some genes may be partially induced in re-genes are known to be upregulated, yet remain function-sponse to even endogenous levels of DNA damage, whileally uncharacterized. The changes in gene expressionother genes appear to be induced only when high orin response to DNA damage produced by UV and somepersistent DNA damage is present in the cell. In fact,other environmental agents have been collectively ter-the SOS response may represent a continuum in themed the SOS response, after the international distressmonitoring of environmental stress, rather than simplysignal (Radman 1974 and reviewed in Friedberg et al.operating as an emergency switch following acute injury.1995; Koch and Woodgate 1998).

The first systematic search for damage-inducible (din)Many of the DNA damage-induced genes are nega-genes was carried out by Kenyon and Walker (1980)tively regulated by the LexA repressor protein, whichby randomly inserting a lac reporter gene into the E.binds to a 20-bp consensus sequence in the operatorcoli chromosome to identify promoters that were upreg-region of the genes, suppressing their expression (Brentulated following DNA damage in a recA/lexA-dependentand Ptashne 1981; Little et al. 1981). Derepressionfashion. Using this same technique, subsequent studiesof these genes occurs when the RecA protein binds toidentified additional din genes and in some cases identi-single-stranded regions of DNA created at replicationfied genes previously characterized to be involved in theforks when they are blocked by DNA damage. RecArecovery from DNA damage (Bagg et al. 1981; Foglianobound to single-strand DNA becomes conformationallyand Schendel 1981; Huisman and D’Ari 1981; Kenyonactive, serving as a coprotease to cleave the LexA repres-and Walker 1981; Shurvinton and Lloyd 1982;sor. As the cellular concentration of LexA diminishes,Lloyd et al. 1983; Siegel 1983; Bonner et al. 1990;Iwasaki et al. 1990; Ohmori et al. 1995b). Analysis ofthe known din genes revealed a 20-bp consensus LexA-

Corresponding author: Justin Courcelle, Department of Biological binding motif, or “SOS box,” shared by these genesScience, P.O. Box GY, Mississippi State University, Mississippi State,in their promoter/operator regions (Walker 1984),MS 39762. E-mail: [email protected]

1 These authors contributed equally to this work. which has been used in more recent studies to systemati-

Genetics 158: 41–64 (May 2001)

Page 2: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

42 J. Courcelle et al.

from a fresh overnight culture into 200 ml Davis media andcally search and identify additional lexA-regulated genesincubated in a 1-liter Erlenmeyer flask at 378 in a New Bruns-(Lewis et al. 1994; Ohmori et al. 1995a; Fernandez Dewick Scientific (Edison, NJ) model G76 gyrotory water bath

Henestrosa et al. 2000). These studies in total have at 220 rpm to midlog (OD600 0.4, z2 3 108 cells/ml). A 15-Widentified 31 genes under lexA/recA control. germicidal lamp (254 nm, 0.66 J/m2/sec at the sample posi-

tion) provided the UV irradiation. A total of 70 ml of cultureOther genes have been reported to be upregulatedwas placed into a 15-cm-diameter glass petri dish and irradi-following DNA damage but are believed to be indepen-ated for 60 sec with gentle agitation. Two 65-ml unirradiateddent of the lexA regulon. In some cases, the inductionsamples were also agitated in a 15-cm petri dish but were not

is thought to be dependent on recA, but independent exposed to UV. A total of 70 ml of irradiated culture (in afrom the LexA repressor. In other cases, genes have 500-ml Erlenmeyer flask) and 30 ml of unirradiated culture

(in a 250-ml Erlenmeyer flask) were then returned to thebeen shown to be upregulated independently from bothshaking water bath for the duration of the time course. AtrecA and lexA (Friedberg et al. 1995; Koch and Wood-the appropriate times, 10-ml samples were placed into 20 mlgate 1998). The mechanism of regulation in these casesof ice-cold NET (100 mm NaCl, 10 mm Tris, 10 mm EDTA),

is not understood. An additional, although as yet unex- pelleted by centrifugation, washed with 1 ml cold NET, re-plored, possibility is that some genes may be repressed pelleted, and frozen at 2808. The limited availability of mi-

croarray chips constrained this experiment to a single timeor their transcripts may be degraded in response tocourse containing seven samples (five irradiated, two unirradi-DNA damage.ated) for each strain.It was of interest to us not only to learn whether

Microarray procedures: Relative mRNA levels were deter-additional genes can be regulated in a LexA-dependent mined by parallel two-color hybridization to cDNA microarraysmanner but also to determine whether other cellular representing 4101 open reading frames (ORFs) representing

95.5% of E. coli ORFs according to Blattner et al. (1997).responses to UV irradiation exist that are lexA indepen-cDNA arrays were manufactured as described in MGuide atdent. The lexA1 allele encodes an amino acid changehttp://cmgm.stanford.edu/pbrown/mguide/index.html. To-at a position that is essential for the cleavage and inacti-tal mRNA was extracted from 2–5 3 109 cells using QIAGEN

vation of LexA (Slilaty and Little 1987). Thus, in (Chatsworth, CA) RNeasy spin columns. A total of 25–30 mglexA1 mutants, the LexA1 concentration remains high of total RNA was labeled with Cy-3-dUTP (or Cy-5-dUTP) inand LexA-regulated genes are not induced, even in the a standard reverse transcriptase (RT) reaction by Superscript

II (1) (GIBCO BRL, Gaithersburg, MD) with 1 mg of randompresence of high levels of activated RecA. Thereforehexamer (Pharmacia, Piscataway, NJ) primers. Following puri-this system should allow an analysis of gene expressionfication through Microcon-30 (Millipore, Bedford, MA)that occurs independent of the LexA repressor. (MGuide), Cy-3- and Cy-5-labeled cDNA were combined with

The changes in gene expression in the entire genome SSC (2.53 final), SDS (0.25%), and 40 mg of E. coli rRNAcan be measured simultaneously using high-density (Boehringer Mannheim, Indianapolis) in a final volume of

16 ml and hybridized to a DNA microarray for 5 hr at 658.cDNA microarrays (Schena et al. 1995). DNA microar-Slides were washed as described in MGuide and scanned usingrays contain PCR-amplified DNA fragments of knownan AxonScanner (Axon Instruments, Foster City, CA; GenPixand predicted genetic sequences that are printed on 1.0) at 10 mm per pixel resolution. Acquired 16-bit TIFF im-

the surface of a glass slide. Through the comparative ages were analyzed using ScanAlyze software, which is publiclyhybridization of two cellular RNA preparations, the rela- available at http://rana.stanford.edu/software/.

Comparative measurements of transcript abundance: Timetive difference between transcript levels of any genecourse samples were analyzed directly by comparing the abun-in these preparations can be determined. Using thedance of each gene’s transcripts relative to the t0 sample. RNAcomplete sequence of the E. coli genome (Blattner etsamples taken during the time course were labeled with Cy-5,

al. 1997), DNA microarrays were prepared containing and RNA from the t0 sample was labeled with Cy-3.PCR products corresponding to 95.5% (4101 out of Sequence analysis: Nucleotide sequences in the regions of4295) of all annotated open reading frames in the E. induced genes were examined using the COLIBRI program

provided by the Pasteur Institute at http://genolist.pasteur.fr/coli genome (Khodursky et al. 2000). We utilized thesecolibri/. Regions surrounding induced genes were searchedmicroarrays to follow the changes in gene expressionfor the consensus sequence CTG(N)10CAG, allowing for oneoccurring during the first hour following UV irradiation mismatch. Matching sequences that fell between 2400 and

in the wild-type strain, MG1655, and in an isogenic lexA1 1100 bp of a start codon were then examined for their heterol-mutant. ogy index. The heterology index was determined as reported

in Lewis et al. (1994) on the basis of the formula developedby Berg and von Hipple (1988). Heterology index 5o ln[(n(consensus) 1 0.5)/(n(actual) 1 0.5)], where n(consensus)MATERIALS AND METHODSrefers to the number of times that the most common, orconsensus, base occurs at a given position in the set of knownBacteria: Strain MG1655 was used as the wild-type strainbinding sites, and n(actual) refers to the number of times thatin this study since its genome has been completely sequencedthe base being analyzed occurs at the same position in the(Blattner et al. 1997). The MG1655 lexA1(Ind2) malB::Tn9set of known binding sites. n values for each position of thewas constructed by P1-mediated transduction of the lexA1 al-20-bp LexA binding site were determined using the knownlele from strain GC2281 (Taddei et al. 1995) into strainLexA-binding sites shown in Figure 1A and their respectiveMG1655. Transfer of the lexA1 allele was verified by resistancecomplementary sequences.to chloramphenicol and hypersensitivity to UV irradiation.

Nomenclature: All genes are named according to the RuddGrowth and irradiation: Cells were grown in Davis mediumplus 0.4% glucose. Cultures were inoculated at a 1:200 dilution system at http://bmb.med.miami.edu/ecogene/ecoweb (Rudd

Page 3: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

43E. coli Gene Expression Profiles After UV

2000). In cases where we found no corresponding Rudd gene plotted in Figure 2A. For most of the LexA-regulatedfor the open reading frame examined, the original identifica- genes, the level and timing of the induction observedtion numbers of Blattner, b#### (Blattner et al. 1997), were

in our experiments are in good agreement with previousused.observations. In confirmation of previous studies, weRaw data: The raw data from these experiments are avail-

able for download at the following web address http://www2. find that recN, recA, and sulA are heavily induced withinmsstate.edu/zjcc129. the first 5 min of irradiation whereas the uvrD induction

is much less robust (Casaregola et al. 1982; Arthurand Eastlake 1983; Salles and Paoletti 1983; Pick-

RESULTS AND DISCUSSIONsley et al. 1984; Sandler 1994). umuCumuD are alsoknown to be strongly induced; however, full inductionWe examined the response of E. coli strain MG1655

following a dose of 40 J/m2 (254 nm). Previous studies of these genes is not observed until 20 min after UVirradiation (Woodgate and Ennis 1991). We were un-in our laboratory have shown that exposing an exponen-

tially growing culture of E. coli to 40 J/m2 of UV produces able to assay ftsK induction in wild-type cells due toa problem amplifying the ftsK fragment when con-approximately one cyclobutane pyrimidine dimer on

each strand per 6 kb of DNA (Mellon and Hanawalt structing the bacterial microarray. However, some lexA-dependent induction is observed in lolA, possibly repre-1989; Crowley and Hanawalt 1998). This dose tran-

siently inhibits both replication and transcription, and senting some transcriptional readthrough from the ftsKgene. In some cases, we observed co-upregulation ofinduces a strong SOS response (Courcelle et al. 1997;

Crowley and Hanawalt 1998). More than half of the the neighboring ORFs that are transcribed in the sameorientation. This effect can clearly be seen in the induc-cells survive and genomic replication fully recovers

within z45 min following UV irradiation. Within that tion of dinB transcription, which also renders an in-crease in yafN, yafO, and yafP mRNA. Similarly, yebF andtime, most of the DNA lesions have also been repaired

(Mellon and Hanawalt 1989; Courcelle et al. 1999). yebE are also induced along with LexA-regulated yebG.In the case of recN, the downstream genes smpA and smpBTo examine the changes in gene expression in re-

sponse to this dose of UV irradiation, we compared also appear to be upregulated following UV irradiation.However, for b2619 and b2618 it is actually the antisensesamples of total RNA taken 5, 10, 20, 40, and 60 min after

irradiation to samples made just prior to irradiation. To strand that would be transcribed following UV irradia-tion if this induction represents transcriptional read-control for UV-independent changes, total RNA prepa-

rations from nonirradiated samples at 20 and 60 min through. The actual mechanism of such coregulationcould be produced by: (1) transcriptional readthroughwere also prepared. This analysis was carried out with

the wild-type MG1655 strain as well as the isogenic lexA1 resulting from inefficient transcriptional termination;(2) the actual operon spanning across the entire groupderivative and represents the changes in transcript levels

of each gene from up to seven independent comparative of neighboring genes; or (3) a regional effect conferredthrough protein factors or DNA structural conforma-hybridizations for each cell line, which were observed

within the same experiment. tions within the region under consideration.Some of the transcripts from documented LexA-regu-The average change in transcript level in the irradi-

ated samples compared to those in the unirradiated lated genes, dinG, molR, uvrD, and uvrA, did not signifi-cantly rise following UV irradiation. However, in eachsamples for each gene along the E. coli chromosome is

plotted sequentially in Figure 1. In some cases, no data of these cases, the samples of these transcripts in theunirradiated (control) culture were significantly de-were plotted for a gene, because either the PCR reaction

failed during microarray construction or the fluorescent creased during the time course. The reason for thisobservation is unclear. However, both initial and unirra-signal in the unirradiated samples was too low for reli-

able detection. However, raw data for any or all genes diated samples were “mock” UV treated by gentle agita-tion for 60 sec in a 15-cm glass petri dish and it isare available for downloading at the web addresses indi-

cated in materials and methods or upon request to possible that some genes were affected by this treatment.Importantly, however, when comparing the net changethe authors.

Genes induced in a LexA-dependent manner follow- in irradiated and unirradiated samples, the lexA-depen-dent induction of these genes is clearly evident: 1.77-,ing UV irradiation: Twenty-six functional LexA-binding

regions controlling at least 31 genes have been pre- 1.78-, 2.51-, and 3.85-fold increases, respectively.Of the reported LexA-regulated genes, we did notviously demonstrated to be functionally active following

irradiation. At the time at which these bacterial microar- detect significant induction of either hokE or ssb in ourexperiment. recA/lexA-dependent transcription fromrays were constructed, 3 of these genes, ysdAB, dinQ,

and dinS, had not yet been identified as open reading hokE has previously been shown to occur in the E. colistrain RW118 following mitomycin C treatment (Fer-frames (Fernandez De Henestrosa et al. 2000) and

were not included in our analysis. The time courses nandez De Henestrosa et al. 2000). However, theSOS induction of ssb is less clear. Although a plasmid-observed for all other genes/operons known to be regu-

lated by LexA and that contain LexA-binding sites are encoded ssb has been shown to be slightly upregulated

Page 4: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

44 J. Courcelle et al.

Figure 1.—Changes in gene expression within the E. coli genome following UV irradiation. The average change in transcriptlevels in the irradiated samples compared to unirradiated samples for each gene along the E. coli chromosome is plottedsequentially. Open squares, wild type; solid circles, lexA1. The location of genes on the chromosome, in kilobase pairs, is indicatedalong the top of each graph. The average change in transcript levels was calculated as the (average change in irradiated samples)/(average change in unirradiated samples). The data for all plotted genes represent an average of between 3 and 5 irradiatedtime points and at least one unirradiated time point. Time points for which the PCR or hybridization failed, or the fluorescentsignal generated by the unirradiated sample was ,30% above the background level of fluorescence, were not included in theaverages.

Page 5: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

45E. coli Gene Expression Profiles After UV

Figure 1.—Continued.

Page 6: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

46 J. Courcelle et al.

Figure 1.—Continued.

Page 7: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

47E. coli Gene Expression Profiles After UV

Figure 1.—Continued.

Page 8: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

48 J. Courcelle et al.

Figure 1.—Continued.

Page 9: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

49E. coli Gene Expression Profiles After UV

Figure 1.—Continued.

Page 10: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

50 J. Courcelle et al.

Page 11: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

51E. coli Gene Expression Profiles After UV

following SOS induction, no induction of the chromo- lation, or through other regulatory proteins that areinactivated by a similar RecA-catalyzed proteolysis. Thesomally encoded ssb has been reported and SOS induc-

tion does not lead to higher levels of SSB protein (Brand- activated form of RecA is also known to induce proteo-lytic cleavage of other proteins containing “LexA-like”sma et al. 1983; Perrino et al. 1987).

If the LexA-binding site is located within the operator cleavage motifs such as those found in UmuD, the plas-mid-encoded MucA, and the repressor proteins of sev-regions of two diverging transcripts, it is possible that

a single site may regulate the transcription of both oper- eral bacteriophage (Little 1984; Perry et al. 1985).This possibility is especially attractive considering thatons. This is presumed to be the case at uvrA and ssb

and also appears to occur between ybiA and dinG as well several of the newly identified genes, borD, the lit-intEregion, and ogrK, share homology with cryptic prophageas umuCD and hylE.

In addition to the previously reported lexA-regulated genes. The borD gene product is a homolog of the phagel Bor protein, a lipoprotein expressed during lysogenygenes, we observed several other genes that appeared

to be upregulated in a LexA/RecA-dependent manner that is present in the outer membrane. The borD geneproduct shares homology to other bacterial virulence(Figure 2B). However, to determine whether these

genes are directly under LexA control will require fur- proteins and its expression increases E. coli survival inanimal serum (Barondess and Beckwith 1990, 1995).ther investigation. Some of these genes do appear to

have potential candidate LexA boxes (Table 1B). One lit, intE, and several genes of unknown function inthis same region are expressed at relatively late timesmethod of predicting whether a LexA-like sequence will

bind LexA is to examine its heterology index (HI), following UV exposure (Figure 3). lit encodes a prote-ase specific for elongation factor EF-tu. Expression ofwhich is a value derived from a mathematical formula

ranking the relatedness of a potential sequence to that lit is induced at late times following phage T4 infectionand prevents late phase phage amplification throughof known LexA-binding sequences (Lewis et al. 1994).

Low HI values predict that a potential sequence is more its EF-tu proteolysis (Georgiou et al. 1998). FollowingT4 infection, the endogenous lit gene has been sug-likely to bind LexA protein. Previous studies found that

lexA sequences with an HI value of ,15 generally bound gested to trigger an apoptotic-like death of the infectedcell, thereby thwarting the reproduction of the virus andLexA (Lewis et al. 1994) and recently this method was

used to identify seven new lexA-regulated genes (Fer- precluding the widespead infection of the population.Further characterization is required to know whethernandez De Henestrosa et al. 2000). However, there

are exceptions to the predictions from HI values. On this activity or any of the genes in this region affectrecovery following DNA damage.the basis of earlier calculations that were based upon a

smaller set of lexA sequences, Fernandez De Henes- ogrK is a prophage gene from a phage P2. Ogr hasbeen shown to regulate late P2 gene transcriptiontrosa et al. (2000) found that although dinJ had an HI

value of 7.06, it did not bind LexA. Yet ybfE, which they through an interaction with the host RNA polymerase(Wood et al. 1997). Additionally, an ogr-like gene, regCcalculated to have an HI value of 14.07, did bind LexA

(Lewis et al. 1994). This observation suggests that all in Serratia marcescens, has been shown to be inducedfollowing mitomycin C treatment in an SOS-dependentfactors comprising a functional LexA box have not yet

been identified. Therefore, we have recalculated the HI manner (Jin et al. 1996).grxA is a glutoredoxin that acts as a hydrogen donorvalues using all 28 functional LexA sequences found on

the chromosome and we have included any potential for the E. coli ribonucleotide reductases. Several thiore-doxin and glutoredoxin genes in E. coli are coregulatedLexA-binding sequence with an HI value of ,20 in

Table 1B. with ribonucleotide reductase gene expression (Prieto-Alamo et al. 2000). From this perspective, it is interestingWhile some of these newly identified genes appear

to have potential LexA-binding sequences, many of the to note that the ribonucleotide reductase genes nrdAand nrdB are among the strongest lexA-independentinduced genes do not, suggesting that in some cases

the regulation may occur indirectly. Indirect lexA-depen- induced genes following UV exposure (Figure 4). grxAis also induced in an oxyR-dependent manner underdent induction of these genes might occur through

regulatory proteins that are themselves under lexA regu- some conditions (Prieto-Alamo et al. 2000).

Figure 2.—Transcriptional induction following UV irradiation in the genes surrounding known LexA boxes. The change intranscript levels for the indicated gene is plotted over time. The arrows indicate the direction of transcription within the operonrelative to the LexA box. Arrows pointing left are transcribed on the minus strand and arrows pointing right are transcribed onthe plus strand. The locations and distances, in base pairs, of the LexA box from the initial ATG codon are indicated in theboxes. The graphs of genes that are directly adjacent on the chromosome are joined together. The location of the gene(s) onthe chromosome, in kilobase pairs, is indicated along the top of each plot. Solid squares, irradiated wild type; open squares,unirradiated wild type; solid circles, irradiated lexA1; open circles, unirradiated lexA1. Time points in which the PCR or hybridizationfailed, or the fluorescent signal generated by the unirradiated sample was ,30% above the background level of fluorescence,are not plotted.

Page 12: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

52 J. Courcelle et al.

TABLE 1 TABLE 1

Known and potential LexA boxes surrounding induced genes (Continued)

HI BasesA. Known genes LexA box sequence valuea HI from

B. Potential LexA box valueb startysdAB tactgtttatttatacagta 1.81umuDC tactgtatataaaaacagta 2.12 intE regionsbmC tactgtatataaaaacagta 2.12 intE ggctgctgaaaaatacagaa 16.94 2195pcsA aactgtatataaatacagtt 2.19 ymfI ttctgtaccagaaaacagtt 15.48 84recN no. 1 tactgtatataaaaccagtt 3.53 ymfM agctgcaggagcatgcagca 19.32 2122dinQ tactgtatgattatccagtt 3.92 lit tgatgacagagtgtccagtg 20.32 2193urvB aactgtttttttatccagta 4.26 ymfE cactggacactctgtcatca 20.32 2280dinI acctgtataaataaccagta 4.84 intE ggcggtataagcatccagtg 14.76 84hokE cactgtataaataaacagct 4.92 intE tgctgaaaaatacagaagta 20.81 2192recA tactgtatgctcatacagta 4.98 ymfM ggcagttattcaaaacagat 19.98 2222sulA tactgtacatccatacagta 5.39 ymfM aaccgcatgagaagacagca 18.91 2173uvrA tactgtatattcattcaggt 6.23 ymfN aactgattgcgcttcctgta 16.89 2312ssb acctgaatgaatatacagta 6.23 ymfN cgctggttcaaagatcacta 20.90 2152yebG tactgtataaaatcacagtt 6.26 ymgF regionlexA/denF no. 2 aactgtatatacacccaggg 7.25 ymgF cggtgtaattatagacagct 15.08 2105ydjQ cactggatagataaccagca 7.42 ymgH aactgaaaaaactccccggg 19.13 6lexA/dinF no. 1 tgctgtatatactcacagca 7.45 ydeO regionruvAB cgctggatatctatccagca 7.59 ydeO aaatgcatgcgaccacagtg 20.68 2272yjiW tactgatgatatatacaggt 7.92 ydeT regionmolR aactggataaaattacaggg 8.14 ydeS tactgaaccagcagacagca 16.79 243dinS agctgtatttgtctccagta 8.24 yneL cactgcatacgaaaacacca 18.21 257uvrD atctgtatatatacccagct 8.46 yoaA regionrecN no. 2 tactgtacacaataacagta 8.50 yoaB ccctgttgatttgaacaggg 13.32 2123dinG tattggctgtttatacagta 8.65 yoaA ccctgttcaaatcaacaggg 13.32 224yigN aactggacgtttgtacagca 8.82 ogrK regionydjM1 tactgtacgtatcgacagtt 9.05 ogrK cattgtcctttatgccagca 19.29 8ftsK tcctgttaatccatacagca 9.18 ogrK gactggacaatcactaaggt 19.35 2193dinB cactgtatactttaccagtg 9.40 yqgC regionrecN no. 3 taatggtttttcatacagga 10.08 yqgC acatggattttccagcagtg 18.78 2193ydjM2 cactgtataaaaatcctata 10.85 yqgC ctcagtaactgtaaccagct 20.65 241ybfE aactgattaaaaacccagcg 10.92 yhiL regionpolB gactgtataaaaccacagcc 12.55 yhiL atctgtttttcagacaagta 18.22 263

yhiL tgctgttgttttttacaatt 12.30 2187Concensus taCTGtatatatataCAGta glvB region

glvG tcctgaagtggcattcagcg 17.45 211(continued) glvG taatgaccaaattctcagtg 19.17 0

glvB tgctggtgggaattaccgaa 20.04 2174glvC ggctggccaaaagtacaaat 20.85 578glvC tgctgtcggtttacccattg 15.97 214glvB induction is unusual in that glvB lies in the mid-

ipbA regiondle of a predicted operon and encodes a portion of aibpA tgctgaaaataacatcatca 17.25 2249protein transport system. Nevertheless, glvB induction

yigN regionwas also observed following exposure to gamma irradia- yigN aactggacgtttgtacagca 8.82 261tion (data not shown) and may be driven from an alter-

a HI values were calculated from all sequences reported bynative promoter or alternative open reading frame inLewis et al. (1994) and Fernandez de Henestrosa et al.the region.(2000). The HI values reported here were calculated to in-

In the case of yigN, a previous study has demonstrated clude the results of Fernandez de Henestrosa et al. (2000)that it contains a functional LexA binding site; however, and therefore differ from the values used in their previous

study.no further increase in yigN expression was observedb No sequences with HI values ,20 were found for grxA,following treatment with mitomycin C in wild-type,

borD, ybiN, arpB, yccF, or yifL.lexA51 (deficient), or lexA1 (uninducible) E. coli cul-tures. We have no clear explanation of this difference.However, alternative promoters proximal to yigN could ibpA (hslT) and ibpB (hslS), encoding heat-induciblehave allowed for full expression to occur in these previ- chaperonins, were also induced in a LexA-dependentous studies prior to mitomycin treatment since yigN manner.appeared to be heavily expressed under all conditions There has been little functional characterization of

the remaining induced genes. yoaA shares homologyin that study (Fernandez De Henestrosa et al. 2000).

Page 13: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

53E. coli Gene Expression Profiles After UV

Figure 3.—Genes that displayed the largest LexA-dependent transcriptional induction following UV irradiation are plotted.The change in transcript levels for the indicated gene is plotted as in Figure 2. Solid squares, irradiated wild type; open squares,unirradiated wild type; solid circles, irradiated lexA1; open circles, unirradiated lexA1.

Page 14: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

54 J. Courcelle et al.

Figure 4.—Representation of genes dis-playing a LexA-independent transcription-al induction following UV irradiation. Thechange in transcript levels for the indicatedgene is plotted as in Figure 2. (A) Thelargest LexA-independent inductions. (B)Typical profiles of genes with an early UV-dependent transcriptional induction. (C)Typical profiles of genes with a slow UV-dependent transcriptional induction. Solidsquares, irradiated wild type; open squares,unirradiated wild type; solid circles, irradi-ated lexA1; open circles, unirradiated lexA1.

with other ATP-dependent helicases. The gene products ularly impressive considering that these nucleotide me-tabolism genes are often found in very small operonsof ydeT, ydeS, and ydeR share homology to other fimbrial

proteins. b1169 ycgH has homology with other ATP-bind- spaced throughout the genome. Other categories ofgenes that appeared to be upregulated included heat-ing subunits of transport systems. Both ydeO and ydiW

have motifs that suggest they may function as transcrip- shock or chaperone proteins as well as several of thegenes involved in RNA metabolism. It is notable thattional regulators. No significant homology between

ybiN, yqgC, yhiJL, or yifL and any other characterized nearly half of the genes that were upregulated have hadlittle or no functional characterization.proteins has been reported.

Genes induced independently of LexA following UV Loss of gene expression following UV irradiation:Whereas several studies have focused upon the need toirradiation: The time courses of the largest lexA-inde-

pendent inductions are plotted in Figure 4A. Most strik- upregulate certain gene products following UV irradia-tion, it has remained relatively unexplored, yet very pos-ing is precisely how few lexA-independent changes occur

following UV exposure. In general, lexA-independent sible, that repression or even active degradation of somegene transcripts will also be an important factor in cellu-inductions, with the exception of nrdA, nrdB, and yeeF,

are in the range of twofold effects. Furthermore, many lar recovery. The bacterial microarray offers an opportu-nity to address this very question. Indeed, repressionof these lexA-independent profiles appear to rise very

rapidly (within the first 5 min) and then either subside was observed in a large number of genes following UVirradiation. However, our results do not allow us toor plateau. A large number of genes and regions were

observed to be regulated in this manner and some gen- determine whether the decrease in a given transcriptrepresents diminished transcription or accelerated deg-eralizations are apparent from both Figure 1 and Table

2. Many proteins associated with the replication machin- radation in response to UV irradiation. Nevertheless, alarge number of genes in the wild-type, but not in theery are slightly induced following UV irradiation. Addi-

tionally, several genes associated with purine and pyrimi- lexA1, samples were reduced in their transcript levels atthe 5-, 10-, and 20-min time points following irradiation.dine metabolism seem to be upregulated in a similar

manner. Although not dramatic, these results are partic- This observation may suggest that some inhibition of

Page 15: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

55E. coli Gene Expression Profiles After UV

TA

BL

E2

Gen

esw

ith

incr

ease

dtr

ansc

ript

leve

lsfo

llow

ing

UV

-irra

diat

ion

Wild

type

:m

inut

espo

stir

radi

atio

nc

lexA

1:m

inut

espo

stir

radi

atio

n

2060

2060

WT

lexA

1(N

o(N

o(N

o(N

oG

ene

(ave

)b(a

ve)

510

2040

60U

V)

UV

)5

1020

4060

UV

)U

V)

Poss

ible

fun

ctio

n

Rep

licat

ion

and

repa

irum

uCa

20.6

0.97

45.

2220

.59

15.5

839

.36

22.7

41.

110.

90.

950.

910.

950.

971.

041.

040.

94Po

lV,

SOS

mut

agen

esis

recN

a20

.18

0.93

728

.94

26.2

26.7

29.7

623

.07

1.36

1.31

0.79

0.8

0.85

0.9

0.76

0.99

0.76

Prot

ein

used

inD

NA

repa

irum

uDa

17.3

61.

046

5.13

12.4

228

.56

27.0

78

1.18

0.69

0.94

1.01

1.11

1.01

1.03

10.

95SO

Sm

utag

enes

is;

form

sco

mpl

exw

ith

PolV

recA

a10

.08

1.25

16.

166.

289.

268.

494.

570.

60.

781.

090.

950.

931.

041.

120.

80.

84H

omol

ogou

sst

ran

dpa

irin

g,D

NA

stra

nd

exch

ange

dinB

a7.

749

1.09

83.

665.

87.

085.

725.

250.

711.

031.

020.

810.

941.

030.

880.

88Po

lIV

uvrB

a4.

142

1.49

63.

164.

424

5.03

4.62

0.94

1.11

1.15

1.11

1.35

1.63

1.68

0.98

0.87

DN

Are

pair

;ex

cisi

onn

ucle

ase

subu

nit

Buv

rAa

3.84

61.

167

1.96

1.79

1.68

1.37

1.18

0.39

0.44

1.07

1.01

0.88

0.85

0.83

0.74

0.85

DN

Are

pair

;ex

cisi

onn

ucle

ase

subu

nit

Aru

vAa

3.55

21.

043

4.54

4.6

3.07

3.76

3.3

1.06

1.11

1.16

11.

11.

071.

21.

150.

97H

ollid

ayju

nct

ion

hel

icas

esu

bun

itB

;br

anch

mig

rati

onpo

lBa

3.2

1.09

81.

461.

71.

611.

652.

140.

520.

550.

910.

760.

730.

822.

190.

911.

06D

NA

poly

mer

ase

IIyd

jQa

3.36

10.

852

2.78

3.35

2.13

2.41

2.27

0.63

0.91

0.87

0.79

0.68

0.69

0.59

0.86

0.84

Puta

tive

exci

nuc

leas

esu

bun

ituv

rDa

2.50

51.

127

1.25

1.02

1.22

1.47

1.49

0.47

0.56

1.1

1.03

1.17

1.2

1.33

1.09

0.98

DN

Aex

cisi

onre

pair

;h

elic

ase

IIre

cF1.

792

1.67

51.

221.

10.

990.

981.

310.

590.

662.

011.

651.

110.

980.

910.

860.

73ss

DN

Aan

dds

DN

Abi

ndi

ng,

AT

Pbi

ndi

ng

dnaN

1.68

41.

591.

831.

461.

091.

051.

350.

810.

82.

251.

751.

61.

151.

081.

020.

95D

NA

poly

mer

ase

III,

b-s

ubun

itdn

aA1.

627

1.63

32.

451.

321.

591.

21.

370.

841.

112.

572.

071.

721.

351.

271.

031.

17D

NA

init

iati

onof

chro

mos

ome

repl

icat

ion

dnaC

1.48

21.

621

2.06

1.52

1.32

1.64

1.28

1.2

0.91

1.68

1.41

1.54

1.88

1.92

1.15

0.93

DN

Are

plic

atio

nin

itia

tion

and

chai

nel

onga

tion

rep

1.62

21.

433

1.13

0.83

0.8

1.1

1.33

0.57

0.71

1.67

1.53

1.56

1.68

1.91

1.14

1.19

Rep

hel

icas

e,ch

rom

osom

ere

plic

atio

nru

vBa

1.93

10.

889

3.19

2.96

2.66

2.78

2.22

1.42

1.44

1.01

1.01

1.01

1.02

0.86

1.09

1.12

Hol

liday

jun

ctio

nh

elic

ase

subu

nit

A;

bran

chm

igra

tion

ruvC

1.37

51.

452

1.01

0.76

0.89

0.81

0.62

0.5

0.69

1.58

1.51

1.55

1.49

1.64

1.16

0.98

Hol

liday

jun

ctio

nn

ucle

ase;

reso

luti

onof

stru

ctur

es

Tra

nsc

ript

ion

and

tran

scri

ptio

nal

regu

lati

onle

xAa

4.8

0.91

43.

213.

073.

082.

772.

510.

610.

610.

840.

60.

670.

60.

490.

780.

62R

egul

ator

for

SOS(

lexA

)re

gulo

ndi

nIa

4.46

11.

022.

462.

813.

242.

781.

980.

490.

71.

041

1.06

1.1

0.9

0.97

1.03

Dam

age-

indu

cibl

epr

otei

nI

deaD

1.47

92.

819

1.31

0.65

0.85

0.64

0.58

0.5

0.59

2.11

1.35

1.62

1.7

2.1

0.65

0.61

Indu

cibl

eA

TP-

inde

pen

den

tR

NA

hel

icas

erp

oD1.

712.

131

2.33

1.84

1.36

1.43

0.95

0.87

0.98

2.78

2.73

2.41

2.43

2.86

1.28

1.2

RN

Apo

lym

eras

e,si

gma(

70)

fact

orhe

pA1.

92N

D1.

841.

821.

772.

161.

530.

891.

01Pr

obab

leA

TP-

depe

nde

nt

RN

Ah

elic

ase

fisa

2.29

41.

366

3.02

2.19

1.94

2.01

1.22

0.83

0.98

1.63

1.43

1.56

1.44

1.52

1.05

1.17

DN

Ain

vers

ion

fact

or,

tran

scri

ptio

nfa

ctor

suhB

a2.

081

1.55

51.

941.

331.

351.

60.

960.

690.

692.

382.

072.

252.

562.

711.

441.

64E

nh

ance

ssy

nth

esis

ofs

32in

mut

ant

ttka

2.17

91.

408

2.67

2.07

1.77

2.56

1.77

1.09

0.9

1.4

1.52

1.58

1.44

1.17

0.94

Puta

tive

tran

scri

ptio

nal

regu

lato

ryd

eOa

2.41

21.

009

1.64

3.37

10.3

32.

981.

581.

651.

131.

111.

191.

231.

321.

181.

19Pu

tati

veA

RA

C-ty

pere

gula

tory

prot

ein

rph

1.75

1.59

51.

531.

080.

821.

41.

250.

690.

71.

691.

661.

762.

041.

821.

221.

03R

Nas

ePH

srm

B1.

474

1.83

91.

961.

421.

161.

541.

290.

881.

122.

782.

42.

32.

492.

721.

311.

45A

TP-

depe

nde

nt

RN

Ah

elic

ase

soxS

1.72

81.

345

2.07

1.48

2.1

0.95

1.06

0.85

1.06

1.1

1.23

1.48

1.05

0.93

0.83

Reg

ulat

ion

ofsu

pero

xide

resp

onse

regu

lon

rnpA

1.69

61.

329

2.32

1.47

1.24

1.34

1.05

0.81

0.94

1.45

1.28

1.24

1.29

1.45

0.94

1.08

RN

ase

Pco

mpo

nen

t;pr

oces

ses

tRN

A,

4.5S

RN

A

(con

tinue

d)

Page 16: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

56 J. Courcelle et al.

TA

BL

E2

(Con

tinu

ed)

Wild

type

:m

inut

espo

stir

radi

atio

nc

lexA

1:m

inut

espo

stir

radi

atio

n

2060

2060

WT

lexA

1(N

o(N

o(N

o(N

oG

ene

(ave

)b(a

ve)

510

2040

60U

V)

UV

)5

1020

4060

UV

)U

V)

Poss

ible

fun

ctio

n

Nuc

leos

ide

met

abol

ism

nrdA

2.05

15.

046

2.11

2.06

3.15

8.28

6.5

2.37

1.94

1.06

1.66

4.91

11.7

420

.49

1.77

1.39

Rib

onuc

leos

ide

redu

ctas

e1,

a-s

ubun

it,

B1

grxA

a4.

515

1.20

52.

1825

.25

9.65

1.9

1.2

1.66

1.9

1.07

0.91

11.

061.

230.

950.

8G

luta

redo

xin

coen

zym

efo

rri

bon

ucle

otid

ere

duct

ase

nrdB

2.11

72.

956

1.4

1.26

2.51

5.92

4.47

1.53

1.41

0.81

1.05

2.25

5.23

7.14

1.15

1.08

Rib

onuc

leos

ide

redu

ctas

e1,

b-s

ubun

it,

B2

upp

2.12

61.

922

14.4

59.

437.

348.

623.

323.

934.

194

3.53

2.26

2.63

2.76

1.53

1.63

Ura

cil

phos

phor

ibos

yltr

ansf

eras

epy

rF1.

734

1.70

12.

131.

971.

22.

662.

11.

11.

221.

961.

571.

491.

761.

980.

931.

13O

roti

din

e-59

-ph

osph

ate

deca

rbox

ylas

ets

x1.

964

1.33

14.

082.

341.

612.

121.

240.

931.

391.

721.

511.

421.

261.

211.

051.

09N

ucle

osid

ech

ann

el;

phag

eT

6re

cept

oran

dco

licin

Kgu

aA1.

833

1.44

72.

041.

891.

082.

091.

470.

910.

961.

721.

891.

51.

61.

611.

051.

25G

MP

syn

thet

ase

(glu

tam

ine-

hyd

roly

zin

g)sp

eB1.

494

1.75

71.

131.

060.

890.

880.

970.

620.

71.

681.

491.

811.

751.

660.

920.

99A

gmat

inas

epu

rF1.

728

1.51

53.

132.

371.

273.

242.

171.

311.

512.

51.

91.

611.

671.

561.

141.

3PR

PPam

inot

ran

sfer

ase

dfp

1.60

11.

602

2.9

1.95

1.96

2.19

2.65

1.41

1.5

2.06

1.62

1.8

1.78

1.75

1.29

0.96

Flav

opro

tein

affe

ctin

gD

NA

pan

thot

hen

ate

met

abol

ism

pyrH

1.60

21.

562.

361.

331.

131.

81.

230.

851.

111.

711.

531.

721.

561.

011.

08U

ridy

late

kin

ase

ntpA

1.41

61.

732

1.54

1.53

1.25

1.76

1.39

0.92

1.19

1.55

1.79

1.8

1.88

1.9

11.

06dA

TP

pyro

phos

phoh

ydro

lase

dut

1.64

11.

504

1.68

1.28

0.95

1.42

1.48

0.84

0.82

1.36

1.43

1.5

1.55

1.64

1.06

0.93

Deo

xyur

idin

etri

phos

phat

ase

gauB

1.50

91.

532

2.64

1.76

1.53

2.33

1.81

1.23

1.44

2.02

1.98

1.75

1.97

1.51

1.21

1.2

IMP

deh

ydro

gen

ase

purB

1.47

91.

526

3.31

2.82

2.39

3.38

2.26

1.49

2.34

2.14

2.2

1.86

2.18

1.92

1.36

1.34

Ade

nyl

osuc

cin

ate

lyas

egp

t1.

666

1.31

92.

852.

012

1.9

1.03

1.09

1.26

1.67

1.51

1.36

1.48

1.4

1.01

1.24

Gua

nin

e-h

ypox

anth

ine

phos

phor

ibos

yltr

ansf

eras

epy

rD1.

557

1.42

68.

045.

092.

985.

82.

732.

763.

572.

021.

71.

171.

291.

21.

011.

06D

ihyd

ro-o

rota

tede

hyd

roge

nas

epu

rH1.

494

1.47

80.

720.

930.

491.

511.

730.

580.

861.

651.

551.

81.

681.

121.

14A

ICA

Rfo

rmyl

tran

sfer

ase;

IMP

cycl

ohyd

rola

sepy

rE1.

839

1.12

41.

381.

060.

851.

31.

250.

60.

671.

131.

060.

921.

020.

930.

940.

86O

rota

teph

osph

orib

osyl

tran

sfer

ase

mur

B1.

457

1.43

83.

182.

012.

352.

682.

61.

631.

891.

21.

171.

251.

331.

090.

870.

81U

DP-

N-a

cety

len

olpy

ruvo

ylgl

ucos

amin

ere

duct

ase

cmk

1.5

1.37

1.69

1.8

0.99

2.18

1.48

1.24

0.93

1.48

1.46

1.37

1.46

1.39

1.08

1.01

Cyt

idyl

atat

eki

nas

ekd

sB1.

623

1.22

50.

821.

110.

661.

851.

320.

70.

721

1.15

0.81

1.05

0.95

0.85

0.77

CT

P:C

MP-

3deo

xy-d

-man

no-

octu

loso

nat

etr

ansf

eras

e

Tra

nsl

atio

n/a

min

oac

idm

etab

olis

mar

gS1.

708

1.64

52.

512.

81.

593.

362.

551.

671.

331.

861.

71.

461.

831.

911.

131

Arg

inin

etR

NA

syn

thet

ase

prfC

1.65

61.

576

2.01

1.49

1.28

1.75

1.79

0.98

1.03

1.98

1.58

1.68

1.9

21.

11.

22Pe

ptid

ech

ain

rele

ase

fact

orR

F-3

aspS

1.66

21.

542.

131.

651.

271.

531.

691.

010.

982.

191.

822.

042.

152.

041.

381.

28A

spar

tate

tRN

Asy

nth

etas

esp

eA1.

485

1.71

51.

621.

491.

11.

261.

250.

870.

942.

122.

241.

761.

871.

71.

031.

23B

iosy

nth

etic

argi

nin

ede

carb

oxyl

ase

prfB

1.59

81.

594

1.97

1.39

1.37

1.73

2.13

0.97

1.18

1.6

1.62

1.59

1.67

1.45

0.96

1.03

Pept

ide

chai

nre

leas

efa

ctor

RF-

2fa

bZ1.

698

1.49

23.

632.

72.

712.

941.

821.

641.

611.

511.

461.

51.

661.

591.

041.

03(3

R)-

hyd

roxy

myr

isto

lac

ylca

rrie

rde

hyd

rata

setg

t1.

682

1.50

72.

21.

651.

641.

961.

591.

071.

081.

91.

841.

861.

91.

691.

21.

24tR

NA

-gua

nin

etr

ansg

lyco

syla

seyj

eA1.

759

1.29

81.

851.

631.

141.

40.

930.

950.

631.

581.

391.

451.

451.

431.

051.

2Pu

tati

vely

syl-t

RN

Asy

nth

etas

egl

tX1.

671.

375

3.65

2.84

1.88

3.49

2.67

1.95

1.53

1.68

1.67

1.6

1.97

2.05

1.2

1.41

Glu

tam

ate

tRN

Asy

nth

etas

e,ca

taly

tic

subu

nit

queA

1.61

31.

381

1.22

0.84

0.83

1.05

0.9

0.61

0.59

1.8

1.5

1.55

1.58

1.82

1.14

1.25

Syn

thes

isof

queu

ine

intR

NA

yafT

a1.

747

1.12

31.

161.

151.

91.

730.

960.

890.

691.

161.

051.

141.

341.

151.

011.

07Pu

tati

veam

inop

epti

dase

(con

tinue

d)

Page 17: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

57E. coli Gene Expression Profiles After UV

TA

BL

E2

(Con

tinu

ed)

Wild

type

:m

inut

espo

stir

radi

atio

nc

lexA

1:m

inut

espo

stir

radi

atio

n

2060

2060

WT

lexA

1(N

o(N

o(N

o(N

oG

ene

(ave

)b(a

ve)

510

2040

60U

V)

UV

)5

1020

4060

UV

)U

V)

Poss

ible

fun

ctio

n

Hea

tsh

ock,

tran

spor

tpr

otei

ns

ycgH

a5.

823

1.08

64.

1620

.67

10.3

72.

071.

291.

911.

131.

081.

121.

171.

581.

041.

2Pu

tati

veA

TP-

bin

din

gtr

ansp

ort

syst

emco

mpo

nen

tgl

vBa

5.73

70.

902

1.65

3.69

4.64

3.84

3.82

0.74

0.49

1.05

1.08

11.

10.

911.

111.

17PT

Ssy

stem

,ar

buti

n-li

keII

Bco

mpo

nen

tye

eF3.

086

2.81

56.

085.

672.

973.

51.

221.

251.

274.

983.

82.

872.

442.

381.

171.

17Pu

tati

veam

ino

acid

/am

ine

tran

spor

tpr

otei

nyb

eWa

2.98

60.

913

0.9

1.76

8.27

1.97

1.08

0.84

0.9

1.03

1.12

1.04

0.96

1.2

Puta

tive

dnaK

prot

ein

ibpB

*2.

216

1.33

52.

992.

712.

593.

161.

91.

281.

131.

191.

241.

261.

391.

561.

090.

9H

eat-s

hoc

kpr

otei

nco

rA1.

805

1.63

1.88

1.37

1.15

2.21

2.01

0.98

0.93

2.39

2.04

2.08

2.52

2.38

1.43

1.37

Mg2 1

tran

spor

t,sy

stem

Iyh

fC1.

771

1.57

32.

112.

011.

272.

221.

511.

031.

032.

271.

61.

811.

791.

771.

141.

21Pu

tati

vetr

ansp

ort

sdaC

1.76

21.

384

1.82

1.85

0.72

1.89

1.43

1.17

0.58

1.7

1.6

1.59

1.54

1.7

1.26

1.09

Prob

able

seri

ne

tran

spor

ter

potB

a1.

833

1.22

64.

543.

131.

982.

772.

061.

541.

621.

761.

291.

041.

091.

010.

971.

05Sp

erm

idin

e/pu

tres

cin

etr

ansp

ort

syst

empe

rmea

sehs

lU1.

559

1.49

81.

641.

731.

412.

072.

541.

211.

21.

241.

792.

12.

022.

511.

411.

17H

eat-s

hoc

kpr

otei

nh

slV

U,

AT

Pase

subu

nit

potC

1.50

11.

489

4.53

3.66

1.75

2.61

2.05

1.82

2.07

2.44

2.02

1.34

1.26

1.28

1.01

1.23

Sper

mid

ine/

putr

esci

ne

tran

spor

tsy

stem

perm

ease

uraA

1.55

41.

382.

852.

140.

881.

650.

990.

821.

372.

372.

051.

151.

311.

161.

061.

27U

raci

ltr

ansp

ort

potD

1.38

31.

498

2.03

2.3

1.99

1.58

1.23

1.24

1.4

1.98

2.69

2.23

2.09

1.72

1.5

1.36

Sper

mid

ine/

putr

esci

ne

peri

plas

mic

tran

spor

tpr

otei

npo

tA1.

611.

241

4.43

3.36

1.75

2.51

1.47

1.98

1.38

1.74

1.82

1.38

1.19

1.16

1.06

1.29

AT

P-bi

ndi

ng

com

pon

ent

ofsp

erm

idin

etr

ansp

ort

artP

1.50

31.

305

3.15

2.89

1.43

2.92

1.52

1.75

1.42

1.75

1.58

1.32

1.64

1.54

1.28

1.12

Th

ird

argi

nin

etr

ansp

ort

syst

em,

AT

P-bi

ndi

ng

Cel

lD

ivis

ion

sulA

*9.

561

1.10

813

.74

11.7

13.1

711

.55

9.36

1.05

1.44

0.85

0.92

0.76

0.9

0.89

0.89

0.67

Supp

ress

orof

lon

;in

hib

its

cell

divi

sion

Prop

hag

ege

nes

ymfN

a7.

571.

034

0.09

3.35

7.12

0.54

0.39

1.1

1.03

1.14

1.1

0.93

1.15

0.9

Orf

,h

ypot

het

ical

prot

ein

intE

a4.

292

0.90

51.

051.

171.

767.

9621

.11

1.65

1.43

0.91

0.96

0.95

1.01

1.15

1.03

1.17

Prop

hag

ee1

4in

tegr

ase

ymfJ

a3.

658

1.00

40.

71.

021.

1713

.56

4.95

1.17

1.03

0.9

0.94

0.96

0.94

10.

9O

rf,

hyp

oth

etic

alpr

otei

nym

fGa

2.51

40.

996

0.75

1.31

1.05

4.5

6.28

1.1

1.11

0.98

1.04

1.03

1.12

1.01

1.05

1.03

Orf

,h

ypot

het

ical

prot

ein

ogrK

a2.

191

1.24

22.

984.

76.

893.

231.

591.

691.

851.

121.

111.

142

1.09

0.94

1.14

Prop

hag

eP2

ogr

prot

ein

ybcU

a1.

854

1.00

49.

355.

63.

685.

152.

972.

613.

161.

161.

051.

021.

031.

011.

021.

08B

acte

riop

hag

el

Bor

prot

ein

hom

olog

Oth

ers

prfB

2.15

9N

D1.

961.

411.

241.

732.

080.

78fa

bF1.

788

2.24

93.

052.

232.

532.

731.

81.

381.

381.

81.

891.

972.

242.

951.

020.

913-

oxoa

cyl-[

acyl

-car

rier

-pro

tein

]sy

nth

ase

IIpp

hB2.

743

1.18

92.

183.

188.

51.

291.

241.

31.

091.

111.

021.

011.

071.

080.

940.

84Pr

otei

nph

osph

atas

e2

yhdG

2.08

71.

744

1.83

1.59

1.24

1.66

0.88

0.68

0.7

2.38

2.01

2.13

1.93

1.84

1.18

1.18

Puta

tive

deh

ydro

gen

ase

hlyE

1.89

4N

D2.

522.

974.

353.

081.

571.

281.

78H

emol

ysin

Eri

bH1.

857

1.70

31.

140.

990.

81.

11.

170.

410.

711.

641.

571.

481.

61.

630.

930.

93R

ibofl

avin

syn

thas

e,b

chai

ngi

dA1.

678

1.55

81.

140.

870.

780.

931.

020.

520.

611.

391.

421.

651.

461.

440.

831.

06G

luco

se-in

hib

ited

divi

sion

;ch

rom

osom

ere

plic

atio

n?

prm

A1.

595

ND

1.29

1.18

1.04

1.31

1.12

0.63

0.86

cvpA

1.79

11.

368

3.05

3.15

1.77

4.85

2.67

2.03

1.43

1.61

1.31

1.29

1.44

1.19

0.94

1.06

Mem

bran

epr

otei

nre

quir

edfo

rco

licin

Vpr

oduc

tion

pabC

1.55

5N

D1.

251.

191.

251.

571.

270.

840.

844-

amin

o-4-

deox

ych

oris

mat

ely

ase

(con

tinue

d)

Page 18: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

58 J. Courcelle et al.

TA

BL

E2

(Con

tinu

ed)

Wild

type

:m

inut

espo

stir

radi

atio

nc

lexA

1:m

inut

espo

stir

radi

atio

n

2060

2060

WT

lexA

1(N

o(N

o(N

o(N

oG

ene

(ave

)b(a

ve)

510

2040

60U

V)

UV

)5

1020

4060

UV

)U

V)

Poss

ible

fun

ctio

n

Oth

ers

(con

tinue

d)pt

a1.

661.

444

1.72

1.73

1.14

2.57

2.26

1.26

1.01

1.47

1.73

1.76

1.99

2.11

1.2

1.31

Phos

phot

ran

sace

tyla

senu

oB1.

567

1.49

22.

112.

461.

233.

122.

481.

511.

42.

171.

481.

531.

481.

321.

091.

05N

AD

Hde

hyd

roge

nas

eI

chai

nB

gidB

1.69

81.

354

2.08

1.4

1.79

1.7

1.52

0.85

1.15

1.35

1.3

1.39

1.31

1.35

10.

98G

luco

se-in

hib

ited

divi

sion

;ch

rom

osom

ere

plic

atio

n?

fldA

1.49

11.

474

5.95

4.41

4.5

5.5

3.64

3.29

3.15

1.8

1.51

1.68

2.11

2.22

1.17

1.36

Flav

odox

in1

plsX

1.59

41.

363

2.01

1.37

1.1

1.8

1.33

0.99

0.92

1.48

1.32

1.31

1.5

1.41

1.04

1.02

Gly

cero

lph

osph

ate

auxo

trop

hy

inpl

sBba

ckgr

oun

dsm

pAa

1.95

0.98

42.

152.

052.

61.

961.

671

1.14

1.03

1.01

0.94

0.86

0.93

0.94

1Sm

all

mem

bran

epr

otei

nA

smpB

a1.

755

1.16

92.

642.

331.

672.

391.

811.

281.

191.

231.

491.

231.

281.

231.

081.

13Sm

all

prot

ein

Bem

rB1.

606

1.28

61.

281.

061.

041.

151.

050.

650.

741.

321.

061.

161.

430.

981.

050.

8M

ulti

drug

resi

stan

ce;

puta

tive

tran

sloc

ase

ackA

1.54

11.

342

3.41

2.91

2.97

3.27

2.62

1.92

2.02

1.23

1.34

1.25

1.37

1.52

0.99

1.01

Act

ate

kin

ase

fabG

1.26

51.

576

2.13

1.84

1.86

2.04

1.27

1.3

1.59

1.24

1.44

1.47

1.72

2.01

0.94

1.06

3-ox

oacy

l-[ac

yl-c

arri

er-p

rote

in]

redu

ctas

esb

p1.

344

1.48

10.

840.

811.

143.

663.

361.

471.

450.

61.

11.

62.

212.

971.

181.

11Pe

ripl

asm

icsu

lfat

e-bi

ndi

ng

prot

ein

Un

know

ns

dinD

a10

.47

1.02

86.

715.

956.

025.

486.

190.

560.

60.

770.

720.

570.

710.

520.

780.

5D

NA

-dam

age-

indu

cibl

epr

otei

nor

aAa

9.00

21.

087

4.83

5.99

6.2

8.43

3.13

0.67

0.6

1.09

1.05

1.08

1.04

1.04

0.97

0.98

Reg

ulat

or,

Ora

Apr

otei

nye

bGa

8.85

31.

175

3.87

4.51

5.64

6.1

3.34

0.44

0.62

0.95

0.82

0.75

0.84

0.87

0.67

0.77

Orf

,h

ypot

het

ical

prot

ein

yfaE

2.18

2.69

10.

861.

474.

093.

481.

190.

810.

770.

941.

783.

614.

670.

870.

88O

rf,

hyp

oth

etic

alpr

otei

nyi

gFa

3.81

31.

057

1.84

15.1

83.

022.

031.

191.

221.

090.

980.

971.

081.

061.

020.

94O

rf,

hyp

oth

etic

alpr

otei

nyi

gNa

3.96

90.

866

2.11

2.38

2.13

3.13

4.14

0.66

0.74

0.79

0.82

0.86

0.76

0.71

0.89

0.93

Puta

tive

a-h

elix

chai

nar

pBa

3.74

90.

996

2.29

12.2

95.

322.

581.

611.

231.

341.

081.

010.

950.

940.

80.

970.

95O

rf,

hyp

oth

etic

alpr

otei

ndi

nFa

3.62

11.

029

2.1

1.98

1.26

1.81

1.54

0.58

0.38

1.02

1.06

0.87

0.84

0.84

0.95

0.85

DN

A-d

amag

e-in

duci

ble

prot

ein

Fya

fOa

3.48

61.

031

3.73

4.97

3.51

3.35

2.83

0.8

1.31

0.98

0.96

0.86

0.96

1.11

1.02

0.87

Orf

,h

ypot

het

ical

prot

ein

yegQ

2.03

42.

403

2.32

1.85

0.86

1.63

1.02

0.63

0.88

3.66

3.18

2.53

2.35

2.46

1.18

1.18

Orf

,h

ypot

het

ical

prot

ein

yoaA

2.18

2N

D1.

431.

21.

081.

431.

350.

60.

59Pu

tati

veen

zym

eya

fNa

2.73

81.

097

33.

713.

662.

281.

051.

261.

011.

080.

950.

820.

920.

84O

rf,

hyp

oth

etic

alpr

otei

nye

bFa

2.90

90.

859

3.24

4.06

3.33

4.67

2.88

1.25

1.05

1.01

10.

890.

841

1.23

Orf

,h

ypot

het

ical

prot

ein

yafP

a2.

622

1.13

2.29

3.29

3.18

2.65

1.83

0.84

1.18

1.05

10.

970.

870.

80.

830.

83O

rf,

hyp

oth

etic

alpr

otei

nyd

iYa

2.19

71.

539

4.65

2.39

1.85

2.1

1.37

1.07

1.18

2.86

1.59

1.4

1.28

1.18

1.02

1.14

Orf

,h

ypot

het

ical

prot

ein

ydjM

a2.

629

1.10

41.

923.

083.

032.

651.

941.

030.

891.

031.

010.

850.

81

0.84

0.86

Orf

,h

ypot

het

ical

prot

ein

yebC

1.94

41.

692.

672.

142.

171.

91.

280.

971.

121.

511.

921.

642.

332.

361.

21.

11O

rf,

hyp

oth

etic

alpr

otei

nyf

gB2.

064

1.55

52.

051.

291.

081.

331.

060.

60.

721.

561.

411.

381.

441.

480.

960.

91O

rf,

hyp

oth

etic

alpr

otei

nyg

jO1.

796

1.70

31.

141.

10.

711.

060.

930.

580.

522.

111.

481.

621.

591.

631.

010.

97Pu

tati

veen

zym

eye

bEa

2.37

91.

047

1.56

1.68

1.69

1.49

1.61

0.63

0.72

0.95

0.88

0.71

0.76

0.86

0.88

0.71

Orf

,h

ypot

het

ical

prot

ein

ydgN

1.93

11.

454

1.95

1.05

0.96

0.99

1.23

0.54

0.74

1.85

1.35

1.31

1.26

1.21

0.95

0.97

Puta

tive

mem

bran

epr

otei

nyl

iG1.

774

1.54

42.

141.

761.

32.

281.

31.

010.

972

1.58

1.7

1.95

1.84

1.16

1.19

Orf

,h

ypot

het

ical

prot

ein

ybiN

a2.

072

1.22

22.

92

1.72

2.8

2.13

1.15

1.08

1.31

1.16

1.1

1.3

1.24

1.02

0.98

Orf

,h

ypot

het

ical

prot

ein

dcrB

1.73

21.

498

1.98

1.94

1.51

2.4

2.65

1.21

1.21

1.74

1.48

1.71

2.33

2.18

1.14

1.38

Orf

,h

ypot

het

ical

prot

ein

(con

tinue

d)

Page 19: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

59E. coli Gene Expression Profiles After UV

TA

BL

E2

(Con

tinu

ed)

Wild

type

:m

inut

espo

stir

radi

atio

nc

lexA

1:m

inut

espo

stir

radi

atio

n

2060

2060

WT

lexA

1N

o(N

o(N

o(N

oG

ene

(ave

)b(a

ve)

510

2040

60U

V)

UV

)5

1020

4060

UV

)U

V)

Poss

ible

fun

ctio

n

Un

know

ns

(con

tinue

d)yc

ePa

2.02

81.

183

1.79

2.21

1.93

1.44

1.45

0.87

0.87

10.

921.

030.

960.

940.

80.

84O

rf,

hyp

oth

etic

alpr

otei

nyc

iH1.

971

1.22

12.

331.

961.

412.

081.

630.

91.

011.

631.

341.

221.

251.

461.

011.

25O

rf,

hyp

oth

etic

alpr

otei

nye

dM1.

826

1.35

51.

863.

914.

612.

731.

731.

811.

441.

020.

982.

111.

20.

890.

950.

88O

rf,

hyp

oth

etic

alpr

otei

nyc

gW1.

582

ND

1.83

3.12

2.99

3.77

4.47

1.97

2.12

Orf

,h

ypot

het

ical

prot

ein

yebU

1.64

11.

476

4.46

2.75

2.53

3.35

2.21

1.97

1.76

1.74

1.33

1.48

1.5

1.44

1.11

0.92

Puta

tive

nuc

leol

arpr

otei

ns

ycfB

1.75

71.

358

1.89

1.42

0.96

1.68

1.43

0.99

0.69

1.43

1.2

1.26

1.43

1.37

0.88

1.09

Orf

,h

ypot

het

ical

prot

ein

yjiW

a2.

255

0.85

52.

492

1.8

1.71

1.47

0.7

0.98

0.97

1.02

0.98

1.07

0.81

1.15

1.12

Orf

,h

ypot

het

ical

prot

ein

yifL

a2.

185

0.90

71.

551.

431.

631.

651.

170.

680.

930.

90.

710.

90.

640.

870.

93O

rf,

hyp

oth

etic

alpr

otei

nyb

fE1.

677

1.36

42.

462.

52.

913.

422.

041.

271.

911.

241.

081.

141.

51.

350.

860.

99O

rf,

hyp

oth

etic

alpr

otei

nyh

bC1.

276

1.75

41.

780.

991.

090.

770.

760.

820.

871.

411.

061

0.95

0.93

0.62

0.6

Orf

,h

ypot

het

ical

prot

ein

ydeT

a2.

083

0.96

3.17

2.8

1.91

2.47

1.26

1.2

1.03

1.35

1.08

1.05

0.96

1.01

1.17

1.1

Puta

tive

oute

rm

embr

ane

prot

ein

ygcM

1.78

1.25

2.27

1.93

2.22

2.91

1.66

1.33

1.14

1.12

1.2

1.08

1.09

1.26

0.84

1Pu

tati

ve6-

pyru

voyl

tetr

ahyd

robi

opte

rin

syn

thas

eyf

jA1.

548

1.46

72.

711.

481.

321.

951.

481

1.31

1.43

1.48

1.57

1.6

1.88

1.09

1.08

Orf

,h

ypot

het

ical

prot

ein

ychF

1.61

31.

394

2.34

1.96

1.53

2.07

1.7

1.1

1.28

1.84

1.77

1.85

1.87

1.87

1.27

1.37

Puta

tive

GT

P-bi

ndi

ng

prot

ein

ygiR

1.51

31.

494

1.5

0.89

0.77

0.92

1.14

0.55

0.83

1.91

1.44

1.42

1.53

1.32

1.05

0.99

Orf

,h

ypot

het

ical

prot

ein

IS5K

1.69

61.

292

1.82

1.44

1.52

1.75

1.23

0.93

0.9

1.05

1.18

1.07

1.15

1.04

0.83

0.87

Orf

,h

ypot

het

ical

prot

ein

yfhE

1.15

71.

828

0.47

0.57

0.47

0.61

0.57

0.42

0.51

1.34

1.8

1.84

1.63

1.66

0.9

0.91

Orf

,h

ypot

het

ical

prot

ein

yeeA

1.75

31.

229

2.78

2.71

2.63

2.53

1.84

1.47

1.38

1.04

1.14

1.02

0.99

0.85

0.87

0.77

Orf

,h

ypot

het

ical

prot

ein

yaeS

1.67

91.

221

1.68

1.15

1.11

1.4

10.

880.

631.

221.

261.

221.

281.

281.

060.

99O

rf,

hyp

oth

etic

alpr

otei

nya

aH1.

706

1.19

31.

530.

950.

840.

90.

770.

460.

711.

11.

151.

080.

90.

990.

930.

82O

rf,

hyp

oth

etic

alpr

otei

nyc

fQ1.

675

1.28

53.

393.

333.

433.

031.

981.

891.

731.

481.

321.

451.

531.

481.

340.

92O

rf,

hyp

oth

etic

alpr

otei

nb1

228

1.62

41.

330.

610.

860.

981.

371.

010.

560.

631.

231.

151.

171.

271.

30.

890.

95O

rf,

hyp

oth

etic

alpr

otei

nyd

jRa

1.88

41.

055

1.76

2.17

1.58

1.68

1.71

0.85

1.04

1.03

0.84

0.94

0.91

0.92

0.95

0.81

Orf

,h

ypot

het

ical

prot

ein

yrfH

1.48

11.

453

1.24

1.29

0.93

1.66

1.88

10.

891.

181.

231.

41.

61.

61.

010.

92O

rf,

hyp

oth

etic

alpr

otei

nyb

jF1.

627

1.33

81.

71.

311.

311.

731.

270.

810.

991.

681.

461.

61.

51.

621.

181.

17Pu

tati

veen

zym

eya

cL1.

496

1.38

52.

792.

662.

312.

692.

341.

721.

71.

411.

411.

481.

612.

021.

131.

16O

rf,

hyp

oth

etic

alpr

otei

nyf

gK1.

395

1.49

91.

10.

990.

981.

121.

180.

740.

81.

131.

331.

471.

51.

690.

910.

99Pu

tati

veG

TP-

bin

din

gfa

ctor

ydgO

1.44

91.

415

1.67

1.28

1.14

1.04

0.74

0.74

0.88

1.53

1.17

1.17

1.08

1.03

0.88

0.81

Orf

,h

ypot

het

ical

prot

ein

yleA

1.51

21.

345

1.45

1.19

1.01

1.21

0.96

0.66

0.88

1.18

1.45

1.02

1.13

1.24

0.89

0.9

Orf

,h

ypot

het

ical

prot

ein

yiaD

1.53

21.

318

1.95

1.3

1.98

1.61

1.47

0.88

1.29

1.21

1.45

1.74

1.65

1.33

1.1

1.14

Puta

tive

oute

rm

embr

ane

prot

ein

ygeQ

1.42

41.

423

2.43

1.57

1.73

1.54

1.24

1.3

1.09

1.18

1.06

1.15

1.09

1.21

0.74

0.86

Orf

,h

ypot

het

ical

prot

ein

yccF

a1.

765

1.06

72.

051.

71.

843.

041.

341.

041.

221.

40.

861.

091.

181.

020.

981.

1O

rf,

hyp

oth

etic

alpr

otei

nya

bO1.

624

1.20

71.

191.

11.

151.

10.

820.

610.

711.

091.

11.

011.

011.

10.

870.

89O

rf,

hyp

oth

etic

alpr

otei

nyh

dJ1.

686

1.11

72.

551.

711.

231.

380.

760.

731.

081.

551.

071.

161.

031.

110.

951.

17Pu

tati

vem

eth

yltr

ansf

eras

e

aIn

duce

din

ale

xA-d

epen

den

tm

ann

er.

bA

vere

pres

ents

the

aver

age

tran

scri

ptle

vel

inir

radi

ated

sam

ples

com

pare

dto

that

inun

irra

diat

edsa

mpl

esas

desc

ribe

din

mat

eria

lsan

dm

eth

od

s.cV

alue

sre

pres

ent

the

fold

chan

gein

tran

scri

ptle

vel

atth

eti

me

indi

cate

dco

mpa

red

toth

ebe

gin

nin

gof

the

expe

rim

ent

asde

scri

bed

inm

ater

ials

and

met

ho

ds.

Page 20: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

60 J. Courcelle et al.

Figure 5.—Representation of genes that displayed a reduced level of transcripts following UV irradiation. The change intranscript levels for the indicated gene is plotted as in Figure 2. (A) A typical operon in which the transcript from both wild-type cells and lexA1 mutants was observed to be reduced. (B) An operon in which the transcript from wild-type cells was observedto be severely reduced at the 59 end. (C) Three operons in which transcripts were reduced in wild-type cells throughout theoperon.

transcription or degradation of transcripts occurs in a gat operon, the decrease in transcript levels followingUV irradiation was observed in both wild-type and lexA1lexA-dependent manner, and it may point to a lexA-

dependent mechanism for inhibition of transcription cells (Figure 5A). In the wild-type cells, the time at whichtranscripts recovered to preirradiation levels varied butor enhanced degradation of these transcripts. Due to

the small sample size of this experiment, we are inclined generally occurred prior to 40 min postirradiation. In-terestingly, whereas transcripts recovered to pretreat-to interpret these findings cautiously. However, further

investigation of these observations is clearly warranted. ment levels in the wild-type cells, transcripts of severalgenes failed to recover in lexA1 mutants within the pe-The phenomenon of downregulation is also interest-

ing to consider with respect to DNA repair. Actively riod observed in these experiments, suggesting that lexA-regulated genes have an important role in this transcrip-transcribed genes in E.coli are repaired preferentially

compared to nontranscribed genes (Mellon and Hana- tional recovery (Figure 5A).The gat operon, controlling galactitol uptake and me-walt 1989). When the lac operon is actively transcribed

at the time of UV irradiation, repair of the transcribed tabolism, is one of several operons involved in the me-tabolism of different carbon sources, which were foundstrand occurs within 5 min after irradiation. While it is

assumed that this response allows for the rapid transcrip- to have reduced transcript levels following UV irradia-tion. Other carbon metabolism operons whose tran-tional recovery of expressed genes, little is known about

the actual inhibition or recovery of transcription for script levels decreased include fru, man, wwb, glg, andmal . Our cultures were grown with glucose as the soleoperons other than lac in E. coli.

Diminished transcript levels were clearly evident in carbon source. It may be interesting to know how thesemetabolic pathways are regulated when cells are grownsome operons. Several different temporal profiles were

observed (Figure 5). In some cases, exemplified by the in the presence of their respective carbon sources.

Page 21: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

61E. coli Gene Expression Profiles After UV

TA

BL

E3

Ope

rons

wit

hre

duce

dtr

ansc

ript

leve

lsfo

llow

ing

UV

-irra

diat

ion

Wild

type

:m

inut

espo

stir

radi

atio

nb

lexA

1:m

inut

espo

stir

radi

atio

nL

ocat

ion

inkb

and

2060

2060

stra

nd

WT

lexA

1(N

o(N

o(N

o(N

oO

pero

ntr

ansc

ribe

d(a

ve)a

(ave

)5

1020

4060

UV

)U

V)

510

2040

60U

V)

UV

)Po

ssib

lefu

nct

ion

araD

652

0.85

1.07

0.82

1.08

0.98

1.33

1.4

1.12

1.51

1.04

1.06

1.01

1.07

1.15

11

l-ri

bulo

se-5

-ph

osph

ate

4-ep

imer

ase

araA

0.58

ND

0.48

0.38

0.84

0.79

0.93

1.22

0.93

1.08

0.98

0.99

0.96

l-ar

abin

ose

isom

eras

ear

aB0.

651.

050.

630.

710.

241.

041.

161.

141.

190.

971.

051

1.05

1.13

10.

99l-

ribu

loki

nas

e

mod

F79

120.

670.

450.

440.

540.

541.

371.

91.

191.

680.

40.

680.

730.

680.

441.

3A

TP-

bin

din

gco

mpo

nen

tof

mol

ybda

tetr

ansp

ort

syst

em

ybiC

8351

0.62

0.51

1.28

1.01

1.04

0.93

0.93

1.48

1.86

0.85

0.9

0.89

0.84

0.57

1.57

1.61

Puta

tive

deh

ydro

gen

ase

ybiK

8651

0.83

0.93

0.74

0.84

11.

522.

221.

441.

590.

491.

061.

381.

421.

131.

21.

15Pu

tati

veas

para

gin

ase

yliA

0.63

0.73

0.35

0.42

0.54

0.8

1.22

0.79

1.32

0.57

0.76

0.76

0.71

0.63

0.92

0.95

Puta

tive

AT

P-bi

ndi

ng

com

pon

ent

ofa

tran

spor

tsy

stem

yliA

ND

0.79

1.01

0.7

0.79

0.68

0.59

1.04

0.86

Puta

tive

AT

P-bi

ndi

ng

com

pon

ent

ofa

tran

spor

tsy

stem

yliB

0.62

0.56

0.36

0.36

0.43

0.65

0.88

0.85

0.89

0.3

0.46

0.7

0.59

0.46

0.95

0.83

Puta

tive

tran

spor

tpr

otei

nyl

iC0.

60.

830.

470.

340.

420.

550.

790.

80.

910.

710.

850.

850.

820.

710.

930.

97Pu

tati

vetr

ansp

ort

syst

empe

rmea

sepr

otei

nyl

iD0.

740.

610.

580.

320.

440.

630.

780.

850.

630.

460.

490.

650.

610.

520.

890.

89Pu

tati

vetr

ansp

ort

syst

empe

rmea

sepr

otei

n

min

C12

232

0.33

0.65

1.31

0.73

0.52

0.64

0.96

2.45

2.61

0.79

0.94

0.83

0.82

0.58

1.2

1.23

Cel

ldi

visi

onin

hib

itor

,in

hib

its

ftsZ

rin

gfo

rmat

ion

min

D0.

450.

631.

520.

810.

60.

740.

782.

11.

840.

80.

930.

880.

720.

541.

371.

1C

ell

divi

sion

inh

ibit

or,

am

embr

ane

AT

Pase

,ac

tiva

tes

min

Cm

inE

0.33

0.94

1.03

0.59

0.46

0.58

0.64

1.87

2.17

0.96

0.98

1.02

1.1

0.84

1.05

1.03

Cel

ldi

visi

onto

polo

gica

lsp

ecifi

city

fact

or

treA

1244

20.

480.

72.

291.

151.

271

1.09

32.

70.

990.

890.

880.

80.

841.

271.

25T

reh

alas

e,pe

ripl

asm

ic

ycgC

1246

20.

490.

540.

650.

650.

710.

881.

231.

391.

960.

540.

590.

580.

560.

40.

990.

99Pu

tati

vePT

Ssy

stem

enzy

me

Iyc

gS0.

690.

670.

770.

520.

350.

580.

880.

880.

920.

770.

740.

720.

70.

671.

121.

04Pu

tati

vedi

hyd

roxy

acet

one

kin

ase

ycgT

0.8

ND

0.99

0.59

0.62

0.77

1.01

0.86

1.12

0.95

0.94

1.1

Puta

tive

dih

ydro

xyac

eton

eki

nas

eyc

gTN

D0.

780.

810.

81.

140.

790.

71.

121.

06Pu

tati

vedi

hyd

roxy

acet

one

kin

ase

ydcL

1500

10.

590.

571.

971.

231.

430.

90.

772.

192.

050.

90.

850.

720.

430.

311.

30.

96O

rf,

hyp

oth

etic

alpr

otei

n

yddU

1561

2N

DN

D0.

680.

790.

740.

841.

09Pu

tati

veen

zym

eyd

dV0.

270.

790.

710.

570.

730.

560.

732.

292.

610.

850.

970.

920.

730.

881.

071.

14O

rf,

hyp

oth

etic

alpr

otei

n

pqqL

1570

2N

D0.

710.

720.

790.

770.

910.

881.

241.

05Pu

tati

vepe

ptid

ase

yddB

0.38

0.66

0.93

0.6

0.64

1.18

1.25

2.25

2.54

0.68

0.83

0.84

1.19

1.01

1.7

1.05

Orf

,h

ypot

het

ical

prot

ein

yddA

0.6

0.87

0.73

0.5

0.84

1.2

1.19

1.3

1.67

0.96

1.1

1.08

1.21

1.14

1.3

1.22

Puta

tive

AT

P-bi

ndi

ng

com

pon

ent

ofa

tran

spor

tsy

stem

yeaG

1864

10.

50.

631.

411.

321.

461.

10.

962.

862.

180.

880.

931.

070.

720.

581.

491.

16O

rf,

hyt

poth

etic

alpr

otei

nye

aH18

661

0.5

0.62

0.61

0.62

0.95

0.58

0.52

1.2

1.44

0.69

0.95

0.84

0.65

0.58

1.21

1.18

Orf

,h

ypot

het

ical

prot

ein

man

X19

001

0.58

0.44

1.16

0.51

0.39

0.54

0.75

1.01

1.31

0.71

0.67

0.46

0.38

0.3

1.28

1.02

PTS

enzy

me

IIA

B,

man

nos

e-sp

ecifi

cm

anY

0.55

0.55

1.18

0.72

0.33

0.61

0.74

1.3

1.31

0.82

0.64

0.53

0.48

0.42

1.07

1.04

PTS

enzy

me

IIC

,m

ann

ose-

spec

ific

man

Z0.

730.

61.

230.

650.

480.

550.

70.

921.

050.

820.

740.

570.

490.

421.

060.

96PT

Sen

zym

eII

D,

man

nos

e-sp

ecifi

c

(con

tinue

d)

Page 22: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

62 J. Courcelle et al.

TA

BL

E3

(Con

tinu

ed)

Wild

type

:m

inut

espo

stir

radi

atio

nb

lexA

1:m

inut

espo

stir

radi

atio

nL

ocat

ion

inkb

and

2060

2060

stra

nd

WT

lexA

1(N

o(N

o(N

o(N

oO

pero

ntr

ansc

ribe

d(a

ve)b

(ave

)5

1020

4060

UV

)U

V)

510

2040

60U

V)

UV

)Po

ssib

lefu

nct

ion

IS5I

2099

20.

981.

161.

070.

70.

560.

760.

760.

561.

011.

151.

11.

171.

311.

281.

011.

06IS

5tr

ansp

osas

ew

bbL

0.49

0.89

0.61

0.25

0.41

1.12

1.25

1.27

1.7

0.73

0.77

0.76

0.86

0.96

0.92

0.91

Puta

tive

crea

tin

ase

wbb

K0.

470.

660.

490.

240.

391.

31.

61.

531.

910.

270.

260.

290.

450.

830.

690.

58Pu

tati

vegl

ucos

etr

ansf

eras

ew

bbJ

0.55

0.74

0.77

0.53

0.79

1.41

1.65

1.64

2.12

0.48

0.54

0.56

0.71

0.71

0.79

0.83

Puta

tive

o-a

cety

ltr

ansf

eras

ew

bbI

0.41

0.93

0.52

0.5

0.9

1.37

1.31

22.

460.

610.

690.

790.

870.

930.

870.

8Pu

tati

veG

alf

tran

sfer

ase

rfc

0.53

1.14

0.37

0.3

0.59

1.05

0.95

1.14

1.3

0.6

0.59

0.71

0.75

1.04

0.68

0.61

o-A

nti

gen

poly

mer

ase

glf

ND

0.88

0.62

0.64

0.62

0.7

0.88

0.79

0.78

UD

P-ga

lact

opyr

anos

em

utas

e

gatR

_220

692

0.76

0.9

1.33

0.8

0.71

0.94

0.8

1.15

1.26

0.96

0.9

0.93

0.92

0.86

0.95

1.07

Split

gala

ctit

olut

iliza

tion

oper

onre

pres

sor,

frag

men

t2

gatD

0.36

0.43

1.05

0.22

0.16

0.28

0.67

1.18

1.46

0.41

0.35

0.33

0.35

0.36

0.89

0.77

Gal

acti

tol-1

-ph

osph

ate

deh

ydro

gen

ase

gatC

0.41

0.33

1.22

0.51

0.29

0.43

0.66

1.71

1.3

0.6

0.39

0.25

0.24

0.17

1.05

0.95

PTS

syst

emga

lact

itol

-spe

cifi

cen

zym

eII

Cga

tB0.

450.

351.

480.

460.

250.

410.

871.

471.

60.

570.

320.

270.

250.

220.

970.

88G

alac

tito

l-spe

cifi

cen

zym

eII

Bph

osph

otra

nsf

eras

esy

stem

gatA

0.34

0.35

1.1

0.37

0.16

0.43

0.73

1.61

1.71

0.49

0.39

0.31

0.27

0.24

10.

93G

alac

tito

l-spe

cifi

cen

zym

eII

Aph

osph

otra

nsf

eras

esy

stem

gatZ

0.51

0.28

0.98

0.39

0.25

0.54

0.93

1.29

1.14

0.42

0.3

0.25

0.22

0.14

10.

89Pu

tati

veta

gato

se6-

phos

phat

eki

nas

e1

gatY

0.46

0.32

0.82

0.46

0.45

0.6

11.

551.

320.

450.

410.

360.

310.

211.

111.

08T

agat

ose-

bisp

hos

phat

eal

dola

se1

fruA

2260

20.

60.

90.

320.

420.

410.

440.

660.

720.

770.

890.

940.

880.

930.

940.

961.

07PT

Ssy

stem

,fr

ucto

se-s

peci

fic

tran

spor

tpr

otei

nfr

uK0.

570.

580.

40.

320.

230.

410.

790.

830.

680.

870.

610.

640.

620.

731.

311.

07Fr

ucto

se-1

-ph

osph

ate

kin

ase

fruB

0.4

0.73

0.27

0.2

0.11

0.37

0.9

10.

860.

840.

531.

570.

710.

71.

131.

26PT

Ssy

stem

,fr

ucto

se-s

peci

fic

IIA

/fpr

com

pon

ent

yfbE

2363

10.

490.

531.

661.

170.

850.

880.

972.

911.

610.

850.

790.

850.

80.

81.

441.

62Pu

tati

veen

zym

e

mal

P35

452

0.5

0.67

0.97

0.71

0.75

0.61

1.04

1.73

1.55

0.76

0.72

0.92

0.78

0.64

1.28

1.01

Mal

tode

xtri

nph

osph

oryl

ase

mal

Q0.

560.

840.

690.

320.

560.

390.

470.

870.

870.

980.

931.

020.

950.

791.

191.

044-

a-g

luca

not

ran

sfer

ase

(am

ylom

alta

se)

glpD

3560

10.

56N

D0.

220.

370.

40.

30.

610.

660.

69sn

-gly

cero

l-3-p

hos

phat

ede

hyd

roge

nas

e(a

erob

ic)

glgP

3561

20.

620.

550.

490.

30.

50.

510.

660.

680.

90.

440.

50.

740.

680.

641.

151.

04G

lyco

gen

phos

phor

ylas

egl

gA0.

390.

590.

30.

260.

430.

370.

490.

741.

160.

460.

50.

750.

790.

661.

11.

06G

lyco

gen

syn

thas

egl

gC0.

630.

630.

570.

530.

50.

640.

871.

010.

960.

50.

660.

80.

790.

621.

051.

1G

lyco

se-1

-ph

osph

ate

aden

ylyl

tran

sfer

ase

glgX

0.64

0.54

0.33

0.48

0.5

0.61

0.86

0.94

0.81

0.36

0.49

0.68

0.57

0.47

0.99

0.91

Agl

ycos

yll

hyd

rola

se,

debr

anch

ing

enzy

me

glgB

0.71

0.62

0.72

0.67

0.45

0.8

0.99

0.94

1.11

0.56

0.72

0.84

0.7

0.64

1.17

1.05

1,4-

a-g

luca

nbr

anch

ing

enzy

me

nlpA

3836

20.

610.

431.

471.

111.

051.

92.

42.

62.

620.

490.

620.

620.

520.

461.

251.

3L

ipop

rote

in-2

8

aceB

4213

10.

670.

551.

481.

230.

781.

241.

952.

371.

610.

770.

790.

710.

550.

431.

351.

02M

alat

esy

nth

ase

Aac

eA1

0.64

1.82

0.56

0.57

0.49

0.97

0.81

0.96

0.74

0.67

0.58

0.53

0.35

1.01

0.77

Isoc

itra

tely

ase

aceK

0.46

0.44

0.59

0.46

0.37

0.38

0.79

1.14

1.11

0.42

0.44

0.36

0.3

0.24

0.9

0.71

Isoc

itra

tede

hyd

roge

nas

eki

nas

e/ph

osph

atas

e

aA

vere

pres

ents

the

aver

age

tran

scri

ptle

vel

inir

radi

ated

sam

ples

com

pare

dto

that

inun

irra

diat

edsa

mpl

esas

desc

ribe

din

mat

eria

lsan

dm

eth

od

s.bV

alue

sre

pres

ent

the

fold

chan

gein

tran

scri

ptle

vel

atth

eti

me

indi

cate

dco

mpa

red

toth

ebe

gin

nin

gof

the

expe

rim

ent

asde

scri

bed

inm

ater

ials

and

met

ho

ds.

Page 23: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

63E. coli Gene Expression Profiles After UV

supported by the National Institutes of Health (NIH), MolecularA second form of repression profile is exemplified byBiophysics training grant GM08295-11. The work was supported bythe rfa operon, which encodes gene products involvedNIH grants to Nicholas R. Cozzarelli and David Botstein. P.O.B. was

in lipid synthesis in the membrane. The rfa operon supported by the Howard Hughes Medical Institute and NIH grantdisplayed a loss of transcript following UV irradiation HG00983. P.O.B. is an associate investigator at the Howard Hughes

Medical Institute. Research by P.C.H. is supported by an Outstandingin wild-type cells, but not in the lexA1 mutant. The lossInvestigator grant CA44349 from the National Cancer Institute.of transcript was more severe at the 59 end of the operon,

which may at least partially reflect the fact that mostRNA degradation in E. coli is believed to occur 39–59(Figure 5B). LITERATURE CITED

A third pattern of transcript reduction can be seenArthur, H. M., and P. B. Eastlake, 1983 Transcriptional controlin nrdHIEFproVWX and fruAKB operons shown in Figure

of the uvrD gene of Escherichia coli. Gene 25: 309–316.5C. In these cases, loss of the wild-type transcripts oc- Bagg, A., C. J. Kenyon and G. C. Walker, 1981 Inducibility of

a gene product required for UV and chemical mutagenesis incurred uniformly throughout the operons.Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 5749–5753.The most severely reduced transcripts from operons

Barondess, J. J., and J. Beckwith, 1990 A bacterial virulence deter-for which we obtained signal are listed in Table 3. Of minant encoded by lysogenic coliphage lambda. Nature 346:

871–874.interest to note is the repression of operons such asBarondess, J. J., and J. Beckwith, 1995 bor gene of phage lambda,minCDE following UV irradiation. These genes are re-

involved in serum resistance, encodes a widely conserved outerquired to induce and regulate septum formation prior membrane lipoprotein. J. Bacteriol. 177: 1247–1253.

Berg, O. G., and P. H. von Hippel, 1988 Selection of DNA bindingto cell division and it is interesting to consider the losssites by regulatory proteins. II. The binding specificity of cyclicof these transcripts with respect to the induction ofAMP receptor protein to recognition sites. J. Mol. Biol. 200:

other genes that regulate cell division such as sulA and 709–723.Blattner, F. R., G. R. Plunkett, C. A. Bloch, N. T. Perna, V.ftsK. Also worth noting is that minC, which is severely

Burland et al., 1997 The complete genome sequence of Esche-repressed, actually contains a LexA-like box, which isrichia coli K-12 (comment). Science 277: 1453–1474.

predicted to be a very good LexA-binding sequence Bonner, C. A., S. Hays, K. McEntee and M. F. Goodman, 1990 DNApolymerase II is encoded by the DNA damage-inducible dinA gene(Fernandez De Henestrosa et al. 2000). Dramatic re-of Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 7663–7667.ductions in transcript levels at predicted LexA boxes

Brandsma, J. A., D. Bosch, C. Backendorf and P. van de Putte,were also observed for rfaJ and metE (Figure 5B and 1983 A common regulatory region shared by divergently tran-

scribed genes of the Escherichia coli SOS system. Nature 305:Table 3). While it is impossible from these experiments243–245.to determine if the repression is directly due to a LexA

Brent, R., and M. Ptashne, 1981 Mechanism of action of the lexAregulation, we did observe cases where functional LexA gene product. Proc. Natl. Acad. Sci. USA 78: 4204–4208.

Casaregola, S., R. D’Ari and O. Huisman, 1982 Quantitative evalu-boxes appeared to result in inhibition of gene expres-ation of recA gene expression in Escherichia coli. Mol. Gen. Genet.sion following UV irradiation. The loss of transcription185: 430–439.

from araDAB following UV irradiation seems likely to Courcelle, J., C. Carswell-Crumpton and P. C. Hanawalt, 1997recF and recR are required for the resumption of replication atbe due to the upregulation of polB, which is locatedDNA replication forks in Escherichia coli. Proc. Natl. Acad. Sci.proximal to this operon (Figure 1 and Table 3). Thus,USA 94: 3714–3719.

although LexA serves as a negative regulator for polB, Courcelle, J., D. J. Crowley and P. C. Hanawalt, 1999 Recoveryof DNA replication in UV-irradiated Escherichia coli requiresit essentially behaves as a positive regulator of araDABboth excision repair and recF protein function. J. Bacteriol. 181:expression.916–922.

The study we have presented should serve as a starting Crowley, D. J., and P. C. Hanawalt, 1998 Induction of the SOSresponse increases the efficiency of global nucleotide excisionpoint for follow-up projects. It provides some generaliza-repair of cyclobutane pyrimidine dimers, but not 6-4 photoprod-tion with respect to the role of LexA in the regulationucts, in UV-irradiated Escherichia coli. J. Bacteriol. 180: 3345–

(up and possibly down) of genes in response to one 3352.Fernandez De Henestrosa, A. R., T. Ogi, S. Aoyagi, D. Chafin,type of environmental stress. Surprisingly, it shows us

J. J. Hayes et al., 2000 Identification of additional genes belong-that, in the absence of LexA regulation, there are noing to the LexA regulon in Escherichia coli. Mol. Microbiol. 35:

other major responses to UV irradiation at the level of 1560–1572.Fogliano, M., and P. F. Schendel, 1981 Evidence for the inducibil-transcriptional regulation. It remains to be determined

ity of the uvrB operon. Nature 289: 196–198.whether the minor changes are significant in terms ofFriedberg, E. C., C. W. Graham and W. Siede, 1995 DNA Repair

the overall stress response. The values and raw data for and Mutagenesis. ASM Press, Washingtion, DC.Georgiou, T., Y. N. Yu, S. Ekunwe, M. J. Buttner, A. Zuurmondany or all of the genes can be retrieved either via the web

et al., 1998 Specific peptide-activated proteolytic cleavage oflocations listed in materials and methods or uponEscherichia coli elongation factor Tu (comment). Proc. Natl.

request. Acad. Sci. USA 95: 2891–2895.Huisman, O., and R. D’Ari, 1981 An inducible DNA replication-We thank Nicholas Cozzarelli and David Botstein for initiating and

cell division coupling mechanism in E. coli. Nature 290: 797–799.supporting experiments with bacterial microarrays. We thank C. Rich- Iwasaki, H., A. Nakata, G. C. Walker and H. Shinagawa, 1990mond, Y. Wei, and F. Blattner for their help in preparing a library The Escherichia coli polB gene, which encodes DNA polymeraseof E. coli ORFs. J.C. is currently being supported by a European II, is regulated by the SOS system. J. Bacteriol. 172: 6268–6273.Molecular Biology Organization fellowship ALTF 265-1999. A.K. is Jin, S., Y. Chen, G. E. Christie and M. J. Benedik, 1996 Regulation

of the Serratia marcescens extracellular nuclease: positive controla PMMB/NSF Postdoctoral Fellow (grant DMS-9406348). B.P. was

Page 24: Comparative Gene Expression Profiles Following UV …the known din genes revealed a 20-bp consensus LexA-Corresponding author: Justin Courcelle, Department of Biological binding motif,

64 J. Courcelle et al.

by a homolog of P2 Ogr encoded by a cryptic prophage. J. Mol. DNA double-strand breaks in Escherichia coli K12 requires afunctional recN product. Mol. Gen. Genet. 195: 267–274.Biol. 256: 264–278.

Kenyon, C. J., and G. C. Walker, 1980 DNA-damaging agents stimu- Prieto-Alamo, M. J., J. Jurado, R. Gallardo-Madueno, F. Monje-Casas, A. Holmgren et al., 2000 Transcriptional regulation oflate gene expression at specific loci in Escherichia coli. Proc.

Natl. Acad. Sci. USA 77: 2819–2823. glutaredoxin and thioredoxin pathways and related enzymes inresponse to oxidative stress. J. Biol. Chem. 275: 13398–13405.Kenyon, C. J., and G. C. Walker, 1981 Expression of the E. coli

uvrA gene is inducible. Nature 289: 808–810. Radman, M., 1974 Phenomenology of an inducible mutagenic DNArepair pathway in Escherichia coli: SOS repair hypothesis, pp. 128–Khodursky, A. B., B. J. Peter, M. B. Schmid, J. DeRisi, D. Botstein

et al., 2000 Analysis of topoisomerase function in bacterial repli- 142 in Molecular and Environmental Aspects of Mutagenesis, editedby L. Prakash, F. Sherman, M. Miller, C. Lawrence and H. W.cation fork movement: use of DNA microarrays. Proc. Natl. Acad.

Sci. USA 97: 9419–9424. Tabor. Charles C. Thomas, Springfield, IL.Rudd K. E., 2000 EcoGene: a genome sequence database for Esche-Koch, W. H., and R. Woodgate, 1998 The SOS response, pp. 107–

richia coli K-12. Nucleic Acids Res. 28(1): 60–64.134 in DNA Damage and Repair: DNA Repair in Prokaryotes andSalles, B., and C. Paoletti, 1983 Control of UV induction of recALower Eukaryotes, edited by J. A. Nickoloff and M. F. Hoekstra.

protein. Proc. Natl. Acad. Sci. USA 80: 65–69.Humana Press, Totowa, NJ.Sandler, S. J., 1994 Studies on the mechanism of reduction of UV-Lewis, L. K., G. R. Harlow, L. A. Gregg-Jolly and D. W. Mount,

inducible sulAp expression by recF overexpression in Escherichia1994 Identification of high affinity binding sites for LexA whichcoli K-12. Mol. Gen. Genet. 245: 741–749.define new DNA damage-inducible genes in Escherichia coli. J.

Sassanfar, M., and J. W. Roberts, 1990 Nature of the SOS-inducingMol. Biol. 241: 507–523.signal in Escherichia coli. The involvement of DNA replication.Little, J. W., 1984 Autodigestion of lexA and phage lambda repres-J. Mol. Biol. 212: 79–96.sors. Proc. Natl. Acad. Sci. USA 81: 1375–1379.

Schena, M., D. Shalon, R. W. Davis and P. O. Brown, 1995 Quanti-Little, J. W., D. W. Mount and C. R. Yanisch-Perron, 1981 Puri-tative monitoring of gene expression patterns with a complemen-fied lexA protein is a repressor of the recA and lexA genes. Proc.tary DNA microarray (comment). Science 270: 467–470.Natl. Acad. Sci. USA 78: 4199–4203.

Shurvinton, C. E., and R. G. Lloyd, 1982 Damage to DNA inducesLloyd, R. G., S. M. Picksley and C. Prescott, 1983 Inducibleexpression of the ruv gene of Escherichia coli. Mol. Gen. Genet.expression of a gene specific to the RecF pathway for recombina-185: 352–355.tion in Escherichia coli K12. Mol. Gen. Genet. 190: 162–167.

Siegel, E. C., 1983 The Escherichia coli uvrD gene is inducible byMellon, I., and P. C. Hanawalt, 1989 Induction of the EscherichiaDNA damage. Mol. Gen. Genet. 191: 397–400.coli lactose operon selectively increases repair of its transcribed

Slilaty, S. N., and J. W. Little, 1987 Lysine-156 and serine-119DNA strand. Nature 342: 95–98.are required for LexA repressor cleavage: a possible mechanism.Ohmori, H., E. Hatada, Y. Qiao, M. Tsuji and R. Fukuda, 1995aProc. Natl. Acad. Sci. USA 84: 3987–3991.dinP, a new gene in Escherichia coli, whose product shows similari-

Taddei, F., I. Matic and M. Radman, 1995 cAMP-dependent SOSties to UmuC and its homologues. Mutat Res 347: 1–7. induction and mutagenesis in resting bacterial populations. Proc.Ohmori, H., M. Saito, T. Yasuda, T. Nagata, T. Fujii et al., 1995b Natl. Acad. Sci. USA 92: 11736–11740.The pcsA gene is identical to dinD in Escherichia coli. J. Bacteriol. Walker, G. C., 1984 Mutagenesis and inducible responses to deoxy-177: 156–165. ribonucleic acid damage in Escherichia coli. Microbiol Rev 48:

Perrino, F. W., D. C. Rein, A. M. Bobst and R. R. Meyer, 1987 The 60–93.relative rate of synthesis and levels of single-stranded DNA bind- Wood, L. F., N. Y. Tszine and G. E. Christie, 1997 Activation ofing protein during induction of SOS repair in Escherichia coli. P2 late transcription by P2 Ogr protein requires a discrete contactMol. Gen. Genet. 209: 612–614. site on the C terminus of the alpha subunit of Escherichia coli

Perry, K. L., S. J. Elledge, B. B. Mitchell, L. Marsh and G. C. RNA polymerase. J. Mol. Biol. 274: 1–7.Walker, 1985 umuDC and mucAB operons whose products are Woodgate, R., and D. G. Ennis, 1991 Levels of chromosomallyrequired for UV light- and chemical-induced mutagenesis: encoded Umu proteins and requirements for in vivo UmuD cleav-UmuD, MucA, and LexA proteins share homology. Proc. Natl. age. Mol. Gen. Genet. 229: 10–16.Acad. Sci. USA 82: 4331–4335.

Picksley, S. M., P. V. Attfield and R. G. Lloyd, 1984 Repair of Communicating editor: P. L. Foster