Compact Hex Exchanger

Embed Size (px)

Citation preview

  • 8/16/2019 Compact Hex Exchanger

    1/2

    σa 0.697:= βa 751.3m

    2

    m3

    :=

    Fin length : Lf 0.436 0.120−( )

    2in:= Lf  4.013 10

    3−× m=

    ma 20kg

    s:= Th1 380K:= Th2 320K:= mw 50

    kg

    s:= Tc1 17 273+( )K:=

    a)Rea 10

    4:= Ga

    Rea  µa⋅

    Dha

    := Ga 69.403kg

    m2s

    =

    From fig 9.7 for Re=10^4 :  j 0.0039:= f a 0.018:=

    ha  jG

    acp

    a⋅

    Pra

    2

    3

    ⋅:= ha 343.803W

    m2K

    =

    ME421 HEAT EXCHANGER AND STEAM GENERATOR DESIGN

    MT 2 QUESTION 7 SOLUTION

    SPRING 2006

    Question 7 (35 pts): An air-to-water compact heat exchanger is to be designed to serve as an intercooler in a

    gas turbine plant. The geometrical details of the proposed surface, 9.68-0.870-R for the air side is given in Figu

    9.8 and in Table 9.1. Hot air with a flow rate 20 kg/s at 2 atm and 380 K with Re=104 enters the matrix and ex

    at 320 K. Water enters at 17 ºC and with a flow rate of 50 kg/s flows inside the flat tubes. Water side geometricdetails are Dh=0.373 cm, ów=0.129, βw=138 m2/m3.a) Obtain air side heat transfer coefficient (ha)

    b) Calculate fin efficiency (çf ) and overall surface efficiency (ço) for the air side with the fins mof Aluminum (kAl=250 W/mK). Here you may assume fins as flat rectangular cross-section fins.

    c) Find the free flow area (Aff,a) and frontal area (Afr,a) for the air sided) By taking the frontal area of water side same as the air side frontal area (Afr,w=Afr,a), calculate wa

    heat transfer coefficient (hw) using Gnielinski correlation.

    e) By neglecting wall resistance and fouling, calculate the overall heat transfer coefficient based on air

    surface (Ua)f) Using å-NTU method, obtain air side heat transfer area (Aa) and the heat exchanger length.g) BONUS: Calculate the air side pressure drop (∆pa).

    Properties of air at 2 atm and Tf=(320+380)/2=350 K:

    cp,a=1009 J/kg.K Pra=0.708   µa=20.8x10-6 N.s/m2   ρa=2.0 kg/m3Properties of water at 17 ºC:

    cp,w=4184 J/kg.K Prw=7.65   µw=10.84x10-4 N.s/m2 kw=0.594 W/m.K   ρw=999kg/m3

     Solution :

    cpa 1009 Jkg K⋅

    ⋅:= Pra 0.708:= µa 20.8 10 6−⋅ N s⋅

    m2

    ⋅:= ρa 2 kg

    m3

    ⋅:=

    cpw 4184J

    kg K⋅⋅:= Prw 7.65:= µw 10.84 10

    4−⋅

    N s⋅

    m2

    ⋅:= k w 0.594W

    m K⋅⋅:= ρw 999

    kg

    m3

    ⋅:=

    Water side geometry: Dhw 0.373cm:= σw 0.129:= βw 138m

    2

    m3

    :=

    From the core geometry (Fig 9.8 and Table 9.1 for surface 9.68-0.870-R:

    t 0.0102cm:= Af_to_At_ratio 0.795:= Dha 0.2997cm:=

  • 8/16/2019 Compact Hex Exchanger

    2/2

    Ua1

    ηo ha⋅

    1

    Aw_to_Aa_ratio hw⋅

     

     

     

    1−

    :=U

    a218.721

    W

    m2K

    =

    f )Q ma cpa⋅ Th1 Th2−( )⋅:= Q 1.211 10

    6× W=

    Tc2 Tc1Q

    mw cpw⋅+:= Tc2 295.788 K=

    Cw mw cpw⋅:= Cw 2.092 105

    ×kg m

    2

    s3K

    = Ca ma cpa⋅:= Ca 2.018 104

    ×kg m

    2

    s3K

    =

    Cmax Cw:= Cmin Ca:=

    Cr

    Cmin

    Cmax

    := Cr 0.096= εQ

    Cmin Th1 Tc1−( )⋅:= ε 0.667=

    unmixed - unmixed cross flow heat exchanger: from Fig 2.15 (c) : NTU 1.25:=

    Aa

    NTU Cmin⋅

    Ua

    := Aa 115.33 m2

    =

    Volume : VAa

    βa

    := V 0.154m3

    = LV

    Afra

    := L 0.371 m=

    g ) assuming incompressible:   ∆pa f a

    Ga2

    2  ρ a⋅⋅

    4L

    Dha

    ⋅:= ∆pa 1.074 104

    × Pa=

    b )

    k Al 250W

    m K⋅:= mf 

    2 ha⋅

    k Al t⋅:= mf 164.21

    1

    m= ηf 

    tanh mf Lf ⋅( )mf Lf ⋅

    := ηf  0.877=

    ηo 1 Af_to_At_ratio 1   ηf −( )⋅−:= ηo 0.902=

    c ) Aff a

    ma

    Ga

    := Aff a 0.288m2

    = Afra

    Aff a

    σa

    := Afra 0.413m2

    =

    d ) Afrw Afra:= Gw

    mw

    σw Afrw⋅:= Gw 937.475

    kg

    m2s

    = Rew

    Gw Dhw⋅

    µw

    := Rew 3.226 103

    ×=

    Using Gnielinski correlation:

    f w 1.58 ln Rew( )⋅ 3.28−( )2−

    := f w 0.011=

    Nuw

    f w

    2

     

     

     

     Rew 1000−( )⋅ Prw⋅

    1 12.7f w

    2⋅ Prw

    2

    31−

     

     

     

     ⋅+

    := Nuw 25.378= hw

    k w Nuw⋅

    Dhw:= hw 4.041 10

    3

    ×

    W

    m2K

    =

    e )

    Aw_to_Aa_ratioβw

    βa

    := Aw_to_Aa_ratio 0.184=