26
Combustion with Carbon Capture: Pursuit of Efficient, CarbonMitigated Power Mitigated Power Chris F. Edwards J R Heberle S Ramakrishnan P Mobley J. R. Heberle, S. Ramakrishnan, P . Mobley , A. CalbryMuzyka, R. Pass (JR & SPAR) Advanced Energy Systems Laboratory Department of Mechanical Engineering Stanford University

Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

  • Upload
    ledat

  • View
    220

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Combustion with Carbon Capture:Pursuit of Efficient, Carbon‐

Mitigated PowerMitigated PowerChris F. Edwards

J R Heberle S Ramakrishnan P MobleyJ. R. Heberle, S. Ramakrishnan, P. Mobley, A. Calbry‐Muzyka, R. Pass

(JR & SPAR)

Advanced Energy Systems LaboratoryDepartment of Mechanical Engineering

Stanford University  f y

Page 2: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Efficient, Carbon‐Mitigated “Engines”4

ork)

25%4 25%

en

|← No Sequestration|← 50% Seq. →|→| |← 90% Seq.

Efficient, Carbon Mitigated  Engines

SCWAQS

100% Seq.

3.5

Exe

rgy/

MJ-

W

Super-SFAOxyPC-SFA

GE3Sh ll SFASuper

GE

Shell

SI

SI HSIM OH

29%3.5 29%

SIsum

ptio

nW

ork)

y ergy

)SI

SIH

Hyd

roge

SI

SIHSuper

Oxy

Q

2.5

3

sum

ptio

n (M

J-

6FB

LM6000

Sub.Super

ElsamSuper-SFAGE1

GE2GE3

Shell-SFAEgas

Shell-SFA Sub.

Super

EU

Super

ShellUltra

GE

Shell

SuperOxyPC

O NG

SI-H

DICILM6000D

SIH2PEM

SIMeOH

SIMeOH

CLSCMC-Ultra-Coal-NG

MCGC-RAMCGC-RB

CESMAT 40%

33%

2.5

3

40%

33%Sub

Super

IGCC

SI

SIH

CI

xerg

y C

ons

xerg

y/M

J-W

c E

ffici

ency

J-In

put-E

xe

ADGT

ICGT

HFGT

CIADGT

HCCI

PCCISI

IGCC

Oxy

IGCLMatMCUltra

IGMC

ACCESS

2

c E

xerg

y C

ons

LMS100

STIG

GTCC-H

EUDOE

GTCC-SFA

GTCC-SFA

EUDOEFGC1

FGC2ATR

OxyNG

LBCIPEM

CLCC

SOGT CASOGT CBSOGT-RASOGT RB

SOGT-ZSOGT-BA

SOGT-BB

MCNG-RA

MCNG-RB

AZEPAZEPGraz

ATR-GTCCWC-KWC-GWC-G

50%2 50%DOEPCEUPC

Ultra IGCC

-Spe

cific

Ex

MJ-

Inpu

t-Ex

Exe

rget

iM

J-W

ork/

MJICGT

GTCC

RGT LBCI

CC

PEM

SIH

GTCC

OxyATRCCCLCC

Graz

AZE

P

MCCC

1

1.5

Wor

k-S

peci

fic

GTCC HPEMSOGT-M

SOGT-CASOGT-CBSOGT-CB SOGT-RBSOGT-RC

SOGT BB

SOGT-BCSOGT-C

SOGT-K

100%

67%

1

1.5

100%

67%Wor

k- (M (MSOGTSOGTSOGT

ECFPE

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.081

Work-Specific Carbon Emission to Atmosphere (kg-C/MJ-Work)

W 100%0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

1 100%

Work-Specific Carbon Emission to Atmosphere(kg-C/MJ-Work)

SCATR

The Goal!

Page 3: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Deep Saline Aquifer StorageDeep Saline Aquifer Storage

Power Plant Atm. Emissions

Coal ElectricitySolids

CO22•• Loss of efficiency from separationLoss of efficiency from separation

•• Concern over escape from buoyancyConcern over escape from buoyancy

Page 4: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Storage SecurityStorage Security

Adapted from IPCC Special Report on Carbon Dioxide Capture and Storage 2005, p. 208

Page 5: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Storage Security by Surface DissolutionStorage Security by Surface Dissolution

TraceNOx, SOx,PM, Hg

All not‐yet‐All not yetregulatedspecies

Page 6: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Dissolution and Pre‐equilibration byb i i i i lCombustion in Supercritical Water

No emissionsto atmosphere

XStill have ash,salts to returnto lithosphere

Xp

Page 7: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Pre‐equilibrated SequestrationPre equilibrated Sequestration

Power Plant

Coal ElectricitySolids

Brine Brine

CarbonatedBrine

•• No CONo CO22 separationseparation

•• NonNon‐‐buoyant buoyant injectantinjectant

Page 8: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Supercritical Water Aquifer Sequestration (a k a SCWAQS)Sequestration (a.k.a., SCWAQS)

Can be treated as a 

SolidSeparator

Supercritical Water

CombustorReformer “black‐box” for current purposes

SOLIDSRECYCLE

MINERALSOLIDS

Supercritical WaterOxidation System

Heat Engine

Ai COALSlurryPreparation

Regenerator/Desalinator

AIR AirSeparation

Unit

INJECTANTAQUIFERBRINE

NITROGEN

Page 9: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Detailed ASU AnalysisDetailed ASU Analysis

Air NitrogenOxygenLOXPump

HX 3

LowPress.

Q3

Pump

LP

Col.

Q3

HX 1MP HPHX 3

HX 2

High

Exp.

Press.Col.

Analysis using AspenPlus.  Plant based on patents by Praxair.

Page 10: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

ASU Performance

1 4

1.6

O 2

ASU Performance

1.2

1.4

nsity

, MJ/

kg O

0.3

0.35

on

, % 51% Exergy Efficiency

0.8

1

Oxy

gen

Inte

n

Liquid Pumped ASUCompressed Gas IPCC ASU-High0 15

0.2

0.25

Dest

ruct

io

0 100 200 300 400 500Exit Pressure, bar

p gCompressed Gas IPCC ASU-Low

0.05

0.1

0.15

Exerg

y D

0

Page 11: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Detailed Desalinator/RegeneratorDetailed Desalinator/Regenerator

R tProducts

AIRASU

Regenerator Stream

To SCWO

OxygenLP Desal.

Q2

NITROGEN

IPPump

HPPumpsIP Desal.

SystemIP HX

LP HXp

LPPump

LP HX

Brine Econ.Slurry HX Slurry Regen.

LiftPump

InjectionPump

COAL

SlurryPrep.Slurry

Pump

Q1

AQUIFER BRINEINJECTANT

Page 12: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Heat Engine & Overall ResultsHeat Engine & Overall ResultsComponent Power (MW)

Brayton CycleMain HeatCOMBUSTIONTO REGEN/ y y

Compressor ‐314.4

Turbine 527.1

Net 212.7

Exchanger COMBUSTIONPRODUCTS

TO REGEN/DESAL

Net 212.7

Rankine Cycle

Condensate Pump ‐0.030

Feed Pump ‐2 69

Brayton Cycle

WorkFeed Pump 2.69

Turbine 461.6

Net 458.8

ASU 146 1Rankine CycleQ1 Q2

ASU ‐146.1

Water Pumps ‐25.5

Overall Plant 500.0

Heat Rate (LHV basis) 1364 1

Rankine Cycle Work

Heat Rejectedt E i t Heat Rate (LHV basis) 1364.1

Overall Efficiency 36.7%

to Environment

Page 13: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Comparison with AlternativesComparison with Alternatives40

30

35

V)

20

25

ency, %

 (LHV

10

15

Efficie

0

5

Subcritical PC w/ CO2 Supercritical PC w/ IGCC w/ CO2 Capture SCWO w/ Full CaptureSubcritical PC w/ CO2 Capture 

Supercritical PC w/ CO2 Capture 

IGCC w/ CO2 Capture SCWO w/ Full Capture

Source:  NETL, Cost and Performance Baseline for Fossil Energy Plants, 2010 

and Pre‐equilibration

Page 14: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Exergy DestructionExergy Destruction45

!!!

30

35

40

n, %

!!!

20

25

30

y Destruction

10

15

Exergy

0

5

Page 15: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Going After the Combustion LossGoing After the Combustion Loss

22

1800

20

22

24

26

2ure,

K 1700

20

22

2

28

empe

ratu

1600

Efficiency above 40% (HHV) is probable

22

24

262830

rodu

ct T

e

1400

1500Efficiency above 40% (HHV) is probable

22

2426

Pr 1400

Reactant Temperature, K600 700 800 900

Page 16: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Supercritical Water Aquifer Sequestrationp q q

SolidSeparator

Supercritical Water

CombustorReformer

SOLIDSRECYCLE

MINERALSOLIDS

Supercritical WaterOxidation System

Heat Engine

Ai COALSlurryPreparation

Regenerator/Desalinator

AIR AirSeparation

Unit

INJECTANTAQUIFERBRINE

NITROGEN

Page 17: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Fuel Processing Experimentsh h ll hin the Mitchell Research Group

Page 18: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Ignition of Methanol AchievedIgnition of Methanol Achieved

Reactant Flow Rates

0.20.40.6

ow R

ate

(g/s

)

oxygen

150 160 170 180 1900

Time (min.)

Mas

s Flo methanol

500

550Temperature Downstream of Burner

ture

(K)

150 160 170 180 190450

500

Ti ( i )

Tem

pera

t

Time (min.)

Page 19: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

A Better Plant for Conventionalf dAquifer‐Based Storage?Power Plant Atm. EmissionsX

Coal

Power Plant

ElectricitySolids

No emissions to atmosphereX

COCO2•• Remove pollutants as salts          Remove pollutants as salts          

•• More efficient separationMore efficient separation

Page 20: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Supercritical Autothermal Rankine ( k )(a.k.a. SCATR)

Depicted for methane.  Coal is next.

• Essentially a gas turbine cycle sitting atop a supercritical steam cycleatop a supercritical steam cycle.

• Steam preheats or has 5000:1 expansion.• CO2 self‐separates in the “condenser”.

Page 21: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Exergy Distribution for SCATRExergy Distribution for SCATR

242000 Effi i b 50% (HHV)

18

20

2

22

22

24

24

26

atur

e, K

1800

1900

2000

Methane Fuel47% Exergy Efficiency(44% HHV Efficiency)

Efficiency above 50% (HHV)using coal is probable.

18

20

20

22

2426

28

duct

Tem

pera

1600

1700

(44% HHV Efficiency)

Water as coolant!Water as coolant!

20

222428

30

Reactant Temperature KP

rod

600 700 800 900 1000

1500

Reactant Temperature, K

Page 22: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Some Points of ReferenceSome Points of ReferenceTechnology Option,Fuel Used in Analysis

Efficiency w/out Capture

Efficiencywith Capture

Total Plant Cost w/out

C t

Total Plant Cost with C ty

(Basic Specs.)p

(%, HHV)p

(%, HHV) Capture($/kW)

Capture($/kW)

Subcrit. PC, Illinois #6(165 bar, 566°C, 566°C) 36.8 26.2 1622 2942

Supercrit. PC, Illinois #6 39 3 28 4 1647 2913(241 bar, 593°C, 593°C) 39.3 28.4 1647 2913

IGCC, Illinois #6(GE Radiant & Quench) 39.0 32.6 1987 2711

IGCC, Illinois #6(CoP E Gas FSQ) 39.7 31.0 1913 2817(CoP E-Gas FSQ)IGCC, Illinois #6(Shell Dry Feed) 42.1 31.2 2217 3181

SCWAQS, PRB Coal(250 bar, 1600 K) N.A. 35.4 (40?) N.A. Unknown !!!NGCC, Nat. Gas(GE F-Class GT) 50.2 42.8 584 1226

SCATR, Methane(500 bar, 1600 K) N.A. 44.2 (50?) N.A. Unknown

Source:  NETL, Cost and Performance Baseline for Fossil Energy Plants, 2010 

• Can we identify “optimal architectures” for carbon‐mitigated coal?

Page 23: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1
Page 24: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Experimental Combustor SchematicExperimental Combustor Schematic

Page 25: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Experimental Combustor DesignExperimental Combustor Design

Page 26: Combustion with Carbon Capture - Global Climate and ... Engine & Overall Results Component Power (MW) Main Heat Brayton Cycle TOREGEN/ COMBUSTION Compressor ‐314.4 Turbine 527.1

Experimental ChallengesExperimental Challenges

• Backpressure regulator resolved• JetSeal issue resolved • Window thermal shock resolution• Window thermal shock resolution in progress