15
Combing Through Space: Precision Optical Frequencies for Astronomy D. Braje, M. Kirchner, T. Fortier and S. Diddams National Institute of Standards and Technology, Boulder Colorado S. Osterman and C. Froning Center for Astrophysics and Space Astronomy University of Colorado, Boulder, Colorado A. Bartels and D. Heinecke Center for Applied Photonics University of Konstanz, Konstanz Germany $$ from NIST, Univ of Colorado, and DARPA Thanks also to L. Hollberg, Q. Quraishi, S. Meyer, V. Mbele, R. Fox. S. Xiao

Combing Through Space: Precision Optical Frequencies for

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Combing Through Space: Precision Optical Frequencies for

Combing Through Space:Precision Optical Frequencies for Astronomy

D. Braje, M. Kirchner, T. Fortier and S. Diddams National Institute of Standards and Technology, Boulder Colorado

S. Osterman and C. FroningCenter for Astrophysics and Space Astronomy

University of Colorado, Boulder, Colorado

A. Bartels and D. HeineckeCenter for Applied Photonics

University of Konstanz, Konstanz Germany

$$ from NIST, Univ of Colorado, and DARPA

Thanks also to L. Hollberg, Q. Quraishi, S. Meyer, V. Mbele, R. Fox. S. Xiao

Page 2: Combing Through Space: Precision Optical Frequencies for

Applications of precision spectroscopy in observational astronomy...

• Searches for variations in the fine structure constant J.K. Webb, et al. Phys Rev Lett., 82, 884 (1999). H. Chand, et al. A&A 417, 853 (2004).

• Direct measurement of the cosmic accelerationJ. Liske., et al., arXiv:0802.1926v1 [astro-ph],

• Searches for terrestrial mass extrasolar planetsR. P. Butler, et al., AJ, 646, 505 (2006). G. Rupprecht, et al., Proc. SPIE, 5492, 148 (2004).

• ......??

Precision spectroscopy has been a critical tool for discovery in both the quantum and the cosmos

Present Spectral Precision: 3x10-8 (1 m/s radial velocity or ~1 MHz)

Most demanding applications need improvement by 100x

Page 3: Combing Through Space: Precision Optical Frequencies for

Challenges of High-Tech “Classical” Spectroscopy

CalibrationSource

Present Centroiding: 10-3

Goal: improve to 10-5 !!

➡ Extreme demands on mechanical and optical system design

➡ Requires a better calibration source (10-11)

Current Calibration Technology: Discharge Lamps and Absorption Cells

Advantage: Simplicity, mature technology

Disadvantages: limited throughput, limited spectral range and density, uncertainty in line shape and identification, variable line intensity, aging.....

Page 4: Combing Through Space: Precision Optical Frequencies for

Frequency Combs for Spectrograph Calibration

➡ Uniform grid of frequencies tied to atomic standards (stable over decades)

➡ Absolute uncertainty down to ~4x10-17 (limited by atomic reference)

➡ Broad spectral coverage (400-2000 nm)

➡ Power per mode in excess of 1 nW

Femtosecond Laser Frequency Comb

M. Murphy et al., Mon. Not. Roy. Astr. Soc. 380, 839 (2007)P.O. Schmidt, et al., arXiv:0705.0763 v1 (2007)S. Osterman, et al. Proc. SPIE 6693, pp. 66931 (2007)C.H. Li, et. al., Nature 452, 610 (2008)D. Braje, et al., Eur. Phys. Journ. D 48 57 (2008)

AtomicClock

Page 5: Combing Through Space: Precision Optical Frequencies for

Femtosecond Laser Frequency Combs

PUMP

OCM3

M1 M2νn = fo + n frep

Frequency Comb

0!

!n = nfr + f0

= fr (n + !"/2#)

I(f)

f

f0 fr

Frequency domain!

2!"

1/fr

t

E(t)

Time domain

!"

x2$ !2n=f0+2nfr !n=f0+nfr

f0

Frequency Comb

A. Bartels, H Kurz, Opt. Lett. 27, 1839 (2002)T. Fortier, A. Bartels, S. Diddams, Opt. Lett. 31, 1011 (2006)

Stabilized Comb = 106 Modes ⇒ with Hz-level linewidths⇒ residual frequency noise at 1×10-19 level

Page 6: Combing Through Space: Precision Optical Frequencies for

Requirements for Spectrograph Calibration

Desired Parameters

➡ Mode Spacing: 10-50 GHz

➡ Coverage: 300-1100 nm (or 1000-2000 nm)

➡ Power: 10-15 W/mode (ideally flat spectrum)

➡ 10-11 accuracy over years

Dirk Heinecke, Univ. Konstanz

Page 7: Combing Through Space: Precision Optical Frequencies for

Approaches to High Rep Rate Combs1. Cavity Filtering

D. Braje, et al., Eur. Phys. Journ. D 48 57 (2008)C.H. Li, et. al., Nature 452, 610 (2008)

• 10-15% fractional bandwidth with single cavity

• Multiple cavities likely required

• Need 25-50 dB side mode suppression

• Residual side modes can lead to asymmetry

2. Direct Generation

Mode-locked lasers >100 GHz, but .....

• typically picosecond pulses with low energies

• difficult to make low noise, broad bandwidth combs

Page 8: Combing Through Space: Precision Optical Frequencies for

PBS

~1 GHz Comb

PZT

λ/4

servo

frequency frequency

frep m frep

Th. Udem, et al., Phys. Rev. Lett. 82, 3568 (1999)D. Braje, et al., Eur. Phys. Journ. D 48, 57 (2008)

Eout (ω)Ein (ω)

=1− R(ω)

1− R(ω)e i[2n(ω )ωL / c+2φ R ]

FSR ≈ c2nL

νFW ≈c

2πnL(1− R) / R

Cavity-filtered comb

Page 9: Combing Through Space: Precision Optical Frequencies for

Side mode suppression + comb linewidth

frequency

m frep

**

m=20

m=10

Unsuppressed side modes+

Asymmetric suppression+

Excessive comb linewidth

Can lead to biases >> 10 kHz

D. Braje, et al., Eur. Phys. Journ. D 48, 57 (2008)

Page 10: Combing Through Space: Precision Optical Frequencies for

Approaches to High Rep Rate Combs1. Cavity Filtering

D. Braje, et al., Eur. Phys. Journ. D 48 57 (2008)C.H. Li, et. al., Nature 452, 610 (2008)

• 10-15% fractional bandwidth with single cavity

• Multiple cavities likely required

• Need 25-50 dB side mode suppression

• Residual side modes can lead to asymmetry

2. Direct Generation

Mode-locked lasers >100 GHz, but .....

• typically picosecond pulses with low energies

• difficult to make low noise, broad bandwidth combs

Page 11: Combing Through Space: Precision Optical Frequencies for

10 GHz femtosecond Ti:sapphire ring laser

M1-M3 with -40 fs2 GDD Total cavity GDD -35 fs2

Total cavity length 30 mm 6.5 W 532 nm pump power 1% OC 0.65 W output 2% OC 1.06 W output Laser self starts8 mm

A. Bartels, Univ. Konstanz and GigaOptics

Page 12: Combing Through Space: Precision Optical Frequencies for

Shortest pulse: 42 fs 500+ modes with power >1 mW Clean microwave spectrum: No super modes or Q-switching

5 MHz

87 dB

Pump = 6.5 W

10 GHz laser outputCombination of shortest pulse, highest rep rate, and highest average power

Page 13: Combing Through Space: Precision Optical Frequencies for

Continuum Generation

10 GHz femtosecond

laser: 1% output coupling microstructured fiber

1.5 micron core, 590 nm 0-GVD

L=1.3 m, γ ~140 (W-km)-1

Coupling Efficiency: ~35 %

~640 mW64 pJ

Ppk = 1.6 kW Optical Spectrum Analyzer

For octave spanning spectrum: Need ~2x more power in this fiber, or a fiber with ~2x larger nonlinearitynanowatt powers are sufficient for frequency metrology; astronomical applications require femtowatts

~200 nm over which power in each mode is >1 nW

1 nW per mode

1 mW per mode

Page 14: Combing Through Space: Precision Optical Frequencies for

Mode-resolved Spectroscopy

5 2P3/2

5 2S1/2

F=2

F=16.834 GHz

F’=0-3

87 Rb D2 line780 nm

laser Grating +CCDRb vapor cell

6.5 GHz

0.7 GHz

Doppler limited spectroscopy. Enables determination of mode index and fo With frep locked, we determine optical frequencies of modes to ~50 MHz Nonlinear spectroscopy with single mode should be possible 100 kHz precision

calculation: D. Braje

Page 15: Combing Through Space: Precision Optical Frequencies for

Combs in Space??Several aspects of high resolution astronomical spectroscopy would benefit from space-born or lunar observatories

➡ atmospheric absorption and blurring➡ wind loading and vibrations➡ thermal stability➡ pointing stability

Frequency comb technology has progressed to the point where deployment in space appears feasible

SWAP of Er and Yb-based combs could be10 liters, 10 W, 10 kg