42
1 Jean-Pierre Desclés, Berne oct. 2004 1 Combinatory Logic, Combinatory Logic, Categorization and Typicality Categorization and Typicality Jean-Pierre Desclés Paris-Sorbonne University LaLICC « Languages, Logic, Informatics, Cognition and Communication », CNRS / Paris-Sorbonne Jean-Pierre. [email protected] Swiss Society for Logic and Philosophy of Science, Berne, 14-15 october 2004 Jean-Pierre Desclés, Berne oct. 2004 2 Summary 1. Combinatory Logic 2. Differences between Combinatory Logic and λ-calculus 3. Categorization : a naive approach 4. Categorization : a new approach 5. Typical object and specification operator 6. Typical and atypical instances ; inheritance property 7. « Star » quantifiers vs fregean quantifiers

Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

  • Upload
    others

  • View
    15

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

1

Jean-Pierre Desclés, Berne oct. 2004 1

Combinatory Logic, Combinatory Logic, Categorization and TypicalityCategorization and Typicality

Jean-Pierre DesclésParis-Sorbonne University

LaLICC « Languages, Logic, Informatics, Cognition and Communication », CNRS / Paris-Sorbonne

Jean-Pierre. [email protected]

Swiss Society for Logic and Philosophy of Science, Berne, 14-15 october 2004

Jean-Pierre Desclés, Berne oct. 2004 2

Summary

1. Combinatory Logic

2. Differences between Combinatory Logic and λλλλ-calculus

3. Categorization : a naive approach

4. Categorization : a new approach

5. Typical object and specification operator

6. Typical and atypical instances ; inheritance property

7. « Star » quantifiers vs fregean quantifiers

Page 2: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

2

Jean-Pierre Desclés, Berne oct. 2004 3

1. Combinatory Logic1. Combinatory Logic

Jean-Pierre Desclés, Berne oct. 2004 4

• with different compositions of operators ;

• where a composition is expressed by an abstract operator, called a Combinator;

• without using bound variables ;

• defined insidethe applicative language, without interpreting in specific domains.

COMBINATORY LOGIC = a logic of operators

Page 3: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

3

Jean-Pierre Desclés, Berne oct. 2004 5

Combinatory expressions (e.c.)

The result of the application is presented by a simple concatenation of operator ‘X’ and operand ‘Y’, hence :

XY = def <X,Y>

We suppose left association: XYZ = (XY)Z ≠≠≠≠ X(YZ)

Rules:

(i) Basic expressions are e.c. ;

(ii) If ‘X’ and ‘Y’ are e.c. then <X,Y> is a e.c.

Jean-Pierre Desclés, Berne oct. 2004 6

Church’s Functional Types

Rules: (i) The basic types are functional types ;

(ii) If ‘ αααα’ and ‘ ββββ’ are functional types then ‘Fαβαβαβαβ’ is a functional type.

Rule of application : @ < [Fαβαβαβαβ : X] , [αααα : Y] > =>ββββ [ββββ : Z]

When an operator ‘X’, with the type ‘Fαβαβαβαβ’, is aplying to an operand ‘Y’

with the type ‘αααα’, then the type of the type of the result ‘Z’ is ‘ββββ’.

Page 4: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

4

Jean-Pierre Desclés, Berne oct. 2004 7

Application , Abstraction

[Fαβαβαβαβ : X], [αααα : Y] [ ββββ : XY], [αααα : Y]

--------------------------- -------------------------

[ββββ : XY] [F αβαβαβαβ : X]

Application Abstraction

Analogy with proposition calculus:

Modus Ponens ( ⊃⊃⊃⊃ - elimination ) ( ⊃⊃⊃⊃ - introduction )

αααα αααα hyp.

⊃⊃⊃⊃ αβαβαβαβ ββββ

-------- --------------

ββββ ⊃⊃⊃⊃ αβαβαβαβ

Jean-Pierre Desclés, Berne oct. 2004 8

What is a combinator ? (1)

A combinator is an abstract operator which produces a new complex operatorfrom given operators.

Examples of elementary combinators :

IX ⇒⇒⇒⇒ββββ X identity

BXYZ ⇒⇒⇒⇒ββββ X(YZ) functional composition

WXY ⇒⇒⇒⇒ββββ XYY diagonalization

KXY ⇒⇒⇒⇒ββββ X cancellation

Page 5: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

5

Jean-Pierre Desclés, Berne oct. 2004 9

What is a combinator ? (3)

X u1 u2 ….. un

X u1u2…un

a1 ap

Complex operator Successive operands

@@

@

@

. . .

« Equivalent » λλλλ-expressions

Every combinator can be expressed by a λλλλ -expression :

I =def λλλλf [ f ]

K =def λλλλf . λλλλx [ f ]

S =def λλλλg . λλλλf . λλλλx [ gx(fx) ]

C =def λλλλf . λλλλx . λλλλy [ fyx ]

B =def λλλλg. λλλλf . λλλλx [ g(fx) ]

W =def λλλλf . λλλλx [ fxx ]

C* = def λλλλx. λλλλf [ fx ]

Page 6: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

6

Jean-Pierre Desclés, Berne oct. 2004 11

Properties of combinators• A combinator can be expressed by a λλλλ-expression ;

• A combinator is self-applicative ;

• There are basic combinators ;

• All combinators are defined from basic combinators ;

• Two basic combinators are sufficient, for instance : Sand K ;

• There is an « algebra » of combinators, generated from basic combinators ;

• For every combinator, there is a type schema (polymorphism).

Jean-Pierre Desclés, Berne oct. 2004 12

Negation of a conceptLet ‘N 0’ the operator of proposition negation. From ‘N 0’ , we define the negation operator ‘N1’ of a concept :

1. N0(fa) hyp.2. BN0 fa B int. 3. [ N1 =def BN0 ] def. of N1

4. (N1f) a rempl.

The types of ‘N0’ = ‘FHH’; The type of ‘N1’ = ‘FFJHFJH’.

Page 7: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

7

Jean-Pierre Desclés, Berne oct. 2004 13

Twice = def WB

Define the operator « twice » : twice f x = f(fx)

1. f(f x)2. Bff x B-intr.3. WBfx W-intr.4. [ twice = WB ] def.5. twice fx rempl.

Jean-Pierre Desclés, Berne oct. 2004 14

2. Differences between 2. Differences between Curry’s Combinatory Logic and Curry’s Combinatory Logic and

Church’s Church’s λλλλλλλλ--CalculusCalculus

Page 8: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

8

Jean-Pierre Desclés, Berne oct. 2004 15

No « intensional » equivalence

Combinatory Logic is an applicative language

• without bound variables, hence its more synthetic power ;

• wit an extensional equivalence with λλλλ-calculus ;

• but non « intensional » equivalence.

Jean-Pierre Desclés, Berne oct. 2004 16

Example : Sxyz = xz(yz)

but, by an abstracting process (in Combinatory Logic) in introducing the combinators Sand K :

[x] Sxyz = S(SS(Ky))(Kz)[x] xz(yz) = S(SI(Kz))(K (yz))

hence : S(SS(Ky))(Kz) ≠≠≠≠ S(SI(Kz))(K (yz))

However, for all U : ([x] Sxyz)U = ([x] xz(yz))U

So, we get extensional equality but not an intensional equality.

Page 9: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

9

Jean-Pierre Desclés, Berne oct. 2004 17

3. CATEGORIZATION :« naive » approach

Jean-Pierre Desclés, Berne oct. 2004 18

Concept / Objects (in Frege’s tradition)

We start with concept in the sense of Frege.

A concept ‘f’ is a function from a domain D into true values :

f : D -> { T, ⊥⊥⊥⊥ }

In Frege’s work, individual entities are objects

but also classes of entities (extensions), truth values, courses-of-values … are objects.

Page 10: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

10

Jean-Pierre Desclés, Berne oct. 2004 19

Logical types

We consider only :

J = type of individual entities ;

H = type of true values

FJH = type of concepts (unary predicates)

FJFJH = type of relations (or binary predicates)

FHFHH = type of conjunctive operators

FJJ = type of specification operators

FFJHH = type of fregean quantifiers

Jean-Pierre Desclés, Berne oct. 2004 20

Concept and instances• A concept ‘f’ is an operator with the type ‘FJH’ ;

• An instance ‘x’ of the concept ‘f’ is an object, with type ‘J’, such that : f(x) = T.

• To every concept ‘f’ with the type FJH are associated its Extension and its Intension.

Page 11: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

11

Jean-Pierre Desclés, Berne oct. 2004 21

Intension / Extension :a naive approach

There is a duality between intension and extension

=> Intension can be reduced to Extension

Int(f) ⊇⊇⊇⊇ Int(g) ���� f -> g ���� Ext(f) ⊆⊆⊆⊆ Ext(g)���� (∀∀∀∀x) [ (f(x) = T) => (g(x) = T) ]

Extensional equality : Ext(f) = Ext(g) => f = g

Jean-Pierre Desclés, Berne oct. 2004 22

Inheritance in Semantic NetworkInheritance in Semantic Network

[ x -> f ] <=> [ Int(x) ⊇⊇⊇⊇ Int(f) ] <=> [ x ∈∈∈∈ Ext(f) ] <=> [ f ∈∈∈∈ Int(x) ]

if ‘x’ belongs to the extension of ‘f’, and if‘g’ is in the intension of ‘f’, then ‘x’ inherits ‘g’ and belongs to the extension of ‘g’, that is:

[Inher ] [ x ∈∈∈∈ Ext(f) ] & [ g ∈∈∈∈ Int(f)] => [ x ∈∈∈∈ Ext(g) ][ x ∈∈∈∈ Ext(f) ] & [ g ∈∈∈∈ Int(f)] => [ g ∈∈∈∈ Int(g) ]

Transitivity of inheritance :[ f(x) = true ] & [ g ∈∈∈∈ Int(f)] => [ g(x) = true ]

Page 12: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

12

be-man

be-mortal-beinghave-two-legs

Socrates

Jean-Pierre Desclés, Berne oct. 2004 24

Inheritance Principle Inheritance Principle in Semantic Network (in AI)in Semantic Network (in AI)

Socrates -> “be-a-man” -> “be-a-mortal-being” in a semantic Network

Socrates ∈∈∈∈ Ext (“be-a-man”) ⊆⊆⊆⊆ Ext (“be-a-mortal-being”) Int (Socrates) ⊇⊇⊇⊇ Int (“be-a-man”) ⊇⊇⊇⊇ Int (“be-a-mortal-being”)

[ Socrates ∈∈∈∈ Ext(“be-a-man”) ]<=>[ “be-a-man” ∈∈∈∈ Int(Socrates) ][ Socrates ∈∈∈∈Ext(“be-a-mortal-being”) ]<=>[“be-a-mortal-being” ∈∈∈∈Int(Socrates) ]

It is clear that Socrates inherits all properties that are in the intension of the extension it belongs :

Socrates -> “be-a-man” -> “be-a-mortal-being” ------------------------------------------------------------------∴∴∴∴ Socrates -> “be-a-mortal-being”

Page 13: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

13

Jean-Pierre Desclés, Berne oct. 2004 25

Problems with the naive Problems with the naive approach approach

of categorisationof categorisation

Jean-Pierre Desclés, Berne oct. 2004 26

Indetermination in Natural Languages

A referential object is not at all always fully specified.

Natural Languages express no specification of reference by means of articles, quantifiers, relative clauses …:

a dog,

a whitedog,

a dog which belongs to Tintin

Page 14: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

14

Jean-Pierre Desclés, Berne oct. 2004 27

A problem of InheritanceA problem of Inheritance‘Good’ Deduction: ‘Bad’ Deduction:

(1) All men have two feet (4) A man has two feet(2) Aristotle is a man (5) John is a man

------------------------------ (6) John has only one foot(3) (3) (3) (3) ∴∴∴∴ Aristotle has two feet ----------------------------

(7) * John has two feet

If we accept this general knowledge:(8) the property “to have two feet”

which is “incompatible” with :(9) the property “to have only one foot”

then arises the following contradiction:(9) John has only one footand John has two feet.

Jean-Pierre Desclés, Berne oct. 2004 28John

to-be-a-man

have two feet

have only one foot

Int (be-a-man)

Int (John) contradiction

John cannot inherit the property «John cannot inherit the property « havehave--twotwo--feetfeet »»

Page 15: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

15

Jean-Pierre Desclés, Berne oct. 2004 29

Port Royal’s Logic (Arnauld and Nicole)

The « compréhension » of a general term is the set of attributes which it implies, or, the set of attributes which could not removed without destruction of idea.

The extenion (« étendue ») [here : « Expansion »] of a term is the set of things to which it is applicable, or what older logicians called inferiors. It is the set of its inferiors.

=> The confusion of their expositioin seems to be due to their use of the word « inferiors » which is itself metaphorical and unclear.

Jean-Pierre Desclés, Berne oct. 2004 30

Is Frege an extensional logician ?

« One may perhaps get the impression from these explanations that the conflict between extensional and intensional logicians I am taking the side of latter. In fact I do hold that the concept is logically prior to its extension, and I regard as futile the attempt to base the extension of a concept as a class not on the concept but on individual things. »

« Kritische Beleuchtung einiger Punkte in E. Schröders Vorlesungen über die Algebra of Logik, p. 455

From introduction of Montgomery Furth to The Basic Laws of Arithmetic, p. xl.

Page 16: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

16

Jean-Pierre Desclés, Berne oct. 2004 31

f

a1, a2, ai, aj, an, …..

concept

Ext(f)

In Frege’s approach and « classic » set theory : every object in Ext(f) is fully specified.

f(ai) = Tfor i = 1,2, …n, …

Jean-Pierre Desclés, Berne oct. 2004 32

f

a1, a2, ai, aj, an, …..

concept

Ext(f)

In this new approach : every ai in Ext(f) is also fully specified but exist no fully specified objects in Expansion.

Expans(f) ττττ(f)

Int (f)

typical object

x = no specified object

Page 17: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

17

Jean-Pierre Desclés, Berne oct. 2004 33

4. CATEGORIZATION :4. CATEGORIZATION :a new approacha new approach

Jean-Pierre Desclés, Berne oct. 2004 34

Notion of expansionInstances are specific or no specific.

• Following Port Royal’s Logic, we introduce Expansion of a concept (in French : « Etendue »)• Expansion contains all instances, specific or no specific :

Expans(f) = { x ; f(x) = T }

• Expansion generalizes extension to no specified instances; • Extension contains all specified instances• Extension is a part of expansion : Ext(f) ⊆⊆⊆⊆ Expans(f)

Page 18: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

18

Jean-Pierre Desclés, Berne oct. 2004 35

Intension / Essence

The essenceof a concept is the class of all concepts such that

all objects which fall under the concept inherit necessarly these concepts.

=> Essence is a part of the intension

A concept in the intension is not necessarly inherited by an object at which is applied this concept, with the value « true ».

Characterizing and defining a concept is always a discussion about intension and essence of this concept.

Jean-Pierre Desclés, Berne oct. 2004 36

Specification and Typicality

⇒All instances of a concept are not homogeneous :

• there are typical and atypical instances ;

• there are specified and no specified instances,;

• instances are more or less specified …

Page 19: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

19

Jean-Pierre Desclés, Berne oct. 2004 37

More or less specified instances

A dog is less specified than this dog

A whitedog is more specified than a dog

=> «a white dog » is an inferior of « a dog »

We get a sequence of more specified instances :

a dog -> a whitedog

-> a whitedog which belongs to Tintin

-> this dog = Milou

Jean-Pierre Desclés, Berne oct. 2004 38

Typical and atypical instances

In a category, all instances are not homogeneous :

• some instances are « good representations » of the concept ; as an object : these objects are prototypes of the concept ;

• others instances may be atypical, they cannot be « good representations », as objects, of the concept ;

• typical instances inherit all conceptsof intension

• atypical instances does not inherit all conceptsof intension

Page 20: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

20

Jean-Pierre Desclés, Berne oct. 2004 39

Prototypes : Examples

• « Adam » is a prototype of « to be an human » ;

• « Eve » is a prototype of « to be a woman » ;

• « Doctor Fautus » is the prototype of the concept

« to be a very old scientist who is falling in love

with a young lady » ;

Jean-Pierre Desclés, Berne oct. 2004 40

Expansion /Extension Intension / Essence

An object of Expansion is not necessarly fully specified. Only, the objects of Extensionare fully specified.

All objects of Expansiondo not inherit all concepts of Intension

but :

1) All objects of Expansioninherit all concepts of Essence;

2) All typical objects inherit all concepts of Intension.

Page 21: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

21

Jean-Pierre Desclés, Berne oct. 2004 41

Problems

=> How to define and to handle

• specified instancesand no specified instances ?

• typical and a typical instances ?

=> How capture the relations « more typical than » and « more specified than » ?

⇒ How to reformulate Extensionand Intensionwith this new approach of categorization ?

⇒ How to relate Extensionto the notion of Expansion?

Jean-Pierre Desclés, Berne oct. 2004 42

5. Typical object and 5. Typical object and specification operatorspecification operator

Page 22: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

22

Jean-Pierre Desclés, Berne oct. 2004 43

Typical object : ττττ(f)

To every concept ‘f’ with the type ‘FJH’, we associate :

an object ττττ(f), which is « the best representation » as no specified object, of the concept ‘f’, :

ττττ(f) is the typical objectsuch that :

ττττ(f) is a the less specified object among instances of ‘f’;

ττττ(f) inherits all concepts contained in the intension of ‘f’ ;

ττττ(f) generates all typical (specified or not) instances of ‘f’.

Jean-Pierre Desclés, Berne oct. 2004 44

Typical Object

The typical Object ττττ(f) of the concept ‘f’ is such that

∀∀∀∀g ∈∈∈∈ Int(f) :

1) It inherits all concepts ‘g’ which belong to Int(f) : g(ττττf) = T

2) It is a fixpoint : δδδδ(g)(ττττ(f)) = ττττ(f)

3) It generates all typical instances of Expans(f) by means of specifications associated to other concepts

Page 23: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

23

Jean-Pierre Desclés, Berne oct. 2004 45

Specification operator : δδδδ(g)

Let ‘g’ a concept with the type FJH.

To ‘g’ is associated a function ‘d(g)’, with the type FJJ : ‘δδδδ(g)’ builds a more specified object ‘y’ from an object ‘x’

• If ‘x’ is an object, then the object ‘y’ is specified by the concept ‘g’:

y = δδδδ(g)(x) ;

• The object ‘y’ inherits the concept ‘g’ :

g(y) = g( δδδδ(g)(x) ) = T

Jean-Pierre Desclés, Berne oct. 2004 46

Path of successive specifications

The object ‘y’ is specified, by means of a path ‘∆∆∆∆’ of successive determinations, from ‘x’ :

y = ∆∆∆∆(x) = ( δδδδ(gn) 0 …0 δδδδ(g2) 0 δδδδ(g1) ) (x)

The concepts and associated specifications δδδδ(gi) (i=1, 2, …,n) are the components of the path ‘∆∆∆∆’.

The successive specifications builds the object ‘y’ from ‘x’ and successive assertions :

g1(y) = g2 (y) = …= gn (y) = T

Page 24: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

24

Jean-Pierre Desclés, Berne oct. 2004 47

The instance ‘y’ is more specified than the instance ‘x’

1) x and y are instances of the expansion :

x ∈∈∈∈ Expans(f) and y ∈∈∈∈ Expans(f)

2) Exist concepts g1, g2, …, gn such that :

y = (δδδδ(gn) 0 …0 δδδδ(g2) 0 δδδδ(g1)) (x)

with some conditions on specifications.

Jean-Pierre Desclés, Berne oct. 2004 48

x1 = δδδδ(g1)(ττττ(f))

x2 = δδδδ(g2)(δδδδ(g1)(ττττ(f))

y = δδδδ(gn) (…. (δδδδ(g2)(δδδδ(g1)(ττττ(f)) …)

δδδδ(g1)

δδδδ(g2)

δδδδ(gn)

.

.

.

x

Expans(f)

In Expans(f) :

‘y’ is an inferior of ‘x’

Page 25: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

25

Jean-Pierre Desclés, Berne oct. 2004 49

Fully specified or no specified instances of a concept ‘f’

‘x’ is fully specified iff the specification of ‘x’ is maximal : the object ‘x’ can be designated by a deictic operator : « this x »

=> ‘x’ belongs to the Extension : x ∈∈∈∈ Ext(f)

‘x’ is not (fully) specified when it cannot be designated by a deictic operator => ‘x ∉∉∉∉ Ext(f)

but a part Ext(x) of ‘Ext(x)’ may be associated to the object ‘x’ ∈∈∈∈ Expans(f)

Jean-Pierre Desclés, Berne oct. 2004 50

x = a no specified instance of ‘f’

a1 a2 a3 … … an }

Fully specified instances of ‘f’

Ext(f) ⊇⊇⊇⊇ Ext(x) {=

Page 26: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

26

Jean-Pierre Desclés, Berne oct. 2004 51

To every concept ‘f’, with type FJH, are associated :

(i) the object ‘ττττ(f)’, called « typical object », with the type ‘J’;

(ii) the specification operator ‘δδδδ(f)’, with the type ‘FJJ’.

• ‘ττττ’ is a constructive operator of a representative object of concept ; its type is : FFJHJ ;

• ‘δδδδ’ is a constructive operator of specification ; its type is : FFJHFJJ.

Constructive operators ττττ and δδδδ

Jean-Pierre Desclés, Berne oct. 2004 52

The operator ‘ττττ’ is a fixpoint for ‘ Sδδδδ’

1. (δδδδ(f))(ττττ(f))

2. Sδδδδ ττττ f intr. Combinator S

3. [δδδδ(f)(ττττ(f)) = ττττ(f) ] pointfix property

4. [Sδδδδ ττττ (f) = ττττ (f ) ]

5. [Sδδδδ ττττ = ττττ ] by abstraction

Combinatory relation between ττττ and δδδδ

Page 27: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

27

Jean-Pierre Desclés, Berne oct. 2004 53

6. Conflicts by specifications6. Conflicts by specifications

Jean-Pierre Desclés, Berne oct. 2004 54

ττττ(f)

∆∆∆∆’

x = ∆∆∆∆(ττττ(f))

δδδδ(g)

y = δδδδ(g)(x)

A concept ‘g’ can conflict with a concept ofInt(f) - Ess(f)or with other specifications, in the path ‘∆∆∆∆’.

Page 28: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

28

Jean-Pierre Desclés, Berne oct. 2004 55

Conflict with Intension

Let a concept ‘f’ with its Intension Int(f).

Let ‘g’ a concept such that ‘y = (δδδδg)(x)’ is an instance of ‘f’ (with ‘x’ ∈∈∈∈ Expans(f) and ‘x’ inherits all properties of Int (f)) .

If exists a concept ‘h’ of Int(f) – Ess(f) such that :

h = N1(g)

then ‘g’ conflicts with Int (f) .

In this case :[ h(y) = (N1g)(y) = N0(g(y)) = T ] ∧∧∧∧ [ g(y) = T ]

=> a contradiction about the object ‘y’ specified by ‘δδδδ(g)’ .

Jean-Pierre Desclés, Berne oct. 2004 56

ττττ(f)

f

h = N1(g)

∆∆∆∆

δδδδ(g)

ττττ

Int (f)

Expans(f)

x

Page 29: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

29

Jean-Pierre Desclés, Berne oct. 2004 57

Conflict in a path of specifications

Let a path ‘∆∆∆∆’ :

y = ∆∆∆∆(x) = (δδδδ(gn) 0 …0 δδδδ(gj) 0 … 0 δδδδ(gi) 0… δδδδ(g1)) (x)

The concept gi conflicts with the concept gj

when gj is the negation of gi (gj = N1(gi)) or the inverse (gj = N1(gi)) :

there is a contradiction in the components of the path ‘∆∆∆∆’ .

Jean-Pierre Desclés, Berne oct. 2004 58

x1 = δδδδ(g1)(ττττ(f))

x2 = δδδδ(g2)(δδδδ(g1)(ττττ(f))

y = δδδδ(gn) (…. (δδδδ(g2)(δδδδ(g1)(ττττ(f)) …)

δδδδ(g1)

δδδδ(g2)

δδδδ(g i)

.

ττττ(f)

Expans(f)

δδδδ(g j)

xi

xj

with g j = N1(g i)

Page 30: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

30

Jean-Pierre Desclés, Berne oct. 2004 59

Conflict with Essence

Let ‘f’ a concept with Ess(f) ⊆⊆⊆⊆ Int(f).

If a concept ‘g’ conflicts with a concept of Ess(f),

then exists ‘h’ in Ess(f) such that :

h = N1(g) ,

If ‘u = ( δδδδg)(x)’ is an instance of ‘f’,

then a contradiction arizes :

[ g(u) = T ] ∧∧∧∧ [h(u) = (N1(g))(x) = N0(gu) = T]

=> ‘u’ does not belong to Expans(f).

Jean-Pierre Desclés, Berne oct. 2004 60

f

ττττ(f)

x u = δ δ δ δ(g)(x) δ δ δ δ(g)

ττττ

Ess(f)

h = N1(g)

Int (f)

Expans(f)

Page 31: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

31

Jean-Pierre Desclés, Berne oct. 2004 61

Structured Class of Concepts and Objects

Let < FF , ->, ττττ, δ, δ, δ, δ, OO > where :

•• FF is a class of individual concepts structured by a preorder ‘->’ between concepts ;•• OO is a class of objects such that the concepts of FFcan be applied to;• ττττ is an operator which relates a concept to its associatestypical object ;• δδδδ is an operator which gives a specification to the objects.

Jean-Pierre Desclés, Berne oct. 2004 62

f

ττττ(f)

x

y = δ δ δ δ(g1)(x)

δ δ δ δ(g1)

y = δ δ δ δ(g2)(x)

y = δ δ δ δ(g3)(x) δ δ δ δ(g2) δ δ δ δ(g3)

ττττ

Typical instances

g1∉∉∉∉Int(f)g2∉∉∉∉Int(f) ∧∧∧∧(∃∃∃∃ h2∈∈∈∈Int(f) -Ess(f); h2= Ng2g3∉∉∉∉Int(f) ∧∧∧∧(∃∃∃∃ h3∈∈∈∈ Ess(f) ⊆⊆⊆⊆ Int(f) ; h3 = Ng3

All instances

Ess(f)

h3 = Ng3

Int(f)h2 = Ng2

Page 32: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

32

Jean-Pierre Desclés, Berne oct. 2004 63

Typical / atypical instances of a concept

Any instance of ‘f’ belongs to Expans(f) and it inherits all concepts of Ess(f).

• Any typical instanceof ‘f’ inherits every concept of Int(f).

• Any atypical instanceof ‘f’ does not inherit every concept of Int( f).

Jean-Pierre Desclés, Berne oct. 2004 64

Typical / atypical instances of a concept (2)

Let a object ‘y’ specified from an instance ‘x’ of ‘f’ :

y= (δδδδg)(x))

• If ‘g’ does not conflict with any concept of Int(f), then ‘y’ belongs to Expans(f) and is a typical instanceof ‘f’ ;

• If ‘g’ conflicts with some concept of Int(f) – Ess(f), then ‘y’ belongs to Expans(f) but it is an atypical instanceof ‘f’ ;

• If ‘g’ conflicts with some concept of Ess(f), then ‘y’ does not belong toExpans(f) : ‘y’ is out of the category genrated by ττττ(f).

Page 33: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

33

Jean-Pierre Desclés, Berne oct. 2004 65

A typical / atypical instance of an atypical instance

Let ‘x’ an atypical instance of a concept ‘f’.

Let y = ∆∆∆∆(x) an instance of ‘f’ (=> ‘y’ belongs to Expans(f) )

The object ‘y’ is a typical instance of ‘x’when every concept in the path ‘∆∆∆∆’ does not conflict with the other concepts in the path «∆∆∆∆’ » from ‘ ττττ(f)’ to ‘x’.

The object ‘y’ is an atypical instance of ‘x’when there is a concept ‘g’ in the path ‘∆∆∆∆’ which conflicts with a concept « g’ » in the path «∆∆∆∆’ » from ‘ ττττ(f)’ to ‘x’.

Jean-Pierre Desclés, Berne oct. 2004 66

ττττ(f)

∆∆∆∆’

x = ∆∆∆∆’(ττττ(f))

∆∆∆∆

y = ∆∆∆∆ (x)

Let x an atypical instance of f

1) If ‘g’, in the path ‘ ∆∆∆∆’, conflicts with a concept « g’ » inin the path «∆∆∆∆’ »,then ‘y’ is an atypical instance of ‘x’.

2) The instance ‘y’ can be a typical instance of the instance ‘x’, but ‘x’ is an atypical instance of ‘f’.

δδδδ(g)

δδδδ(g’)

Page 34: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

34

Jean-Pierre Desclés, Berne oct. 2004 67

7. «7. « StarStar » quantifiers» quantifiers

Jean-Pierre Desclés, Berne oct. 2004 68

« Classical » quantifiers versus « star » quantifiers

• A « classical » quantifier is an operator whose the operand is a predicate and the result is a proposition or a predicate

• A « star » quantifier is a specification operator which apply to a term.

Page 35: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

35

Jean-Pierre Desclés, Berne oct. 2004 69

Illative quantifiers « classic » An illative quantifier is a version of fregean quantifiers (or classical quantifiers) without using bound variables

Classical quantifiers Illative quantifiers Logicalwith bound without bound Types variables variables∀∀∀∀x [ f(x) ] ΠΠΠΠ1 f FFJHH∃∃∃∃x [ f(x) ] ΣΣΣΣ1 f

∀∀∀∀x [ f(x) => g(x) ] ΠΠΠΠ2 fg FFJHFJHH∃∃∃∃x [ f(x) ∧∧∧∧ g(x) ] ΣΣΣΣ2 fg

Jean-Pierre Desclés, Berne oct. 2004 70

Rules for illative quantifiers

FFJHH : ΣΣΣΣ1111 FJH : f FFJHH : ΠΠΠΠ1 FJH : f

----------------------------- ---------------------------

H : ΣΣΣΣ1 f H : ΠΠΠΠ1 f

« Something is f » « Anything is f »

Page 36: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

36

Jean-Pierre Desclés, Berne oct. 2004 71

Illative quantifiers ΣΣΣΣ2 and ΠΠΠΠ2

FFJHFFJHH : ΣΣΣΣ2222 FJH : f FFJHFFJHH : ΠΠΠΠ2222 FJH : f

------------------------------------ -------------------------------------

FFJHH : ΣΣΣΣ2f FJH : g FFJHH : ΠΠΠΠ2f FJH : g

-------------------------------------------- ---------------------------------------------

H : ΣΣΣΣ2fg H : ΠΠΠΠ2fg

« Some f is g » « Any f is g »

Jean-Pierre Desclés, Berne oct. 2004 72

« Star » Quantifiers ΣΣΣΣ* and ΠΠΠΠ*

A « star » quantifier is an operator which builds up a no specified object from an object :

FJJ : ΣΣΣΣ* J : a FJJ : ΠΠΠΠ * J : a

----------------------- -----------------------

FJH : g J : ΣΣΣΣ*a FJH : g J : ΠΠΠΠ*a

--------------------------------------------- ---------------------------------------------

H : g (ΣΣΣΣ*f) H : g ( ΠΠΠΠ*f)

« Some f is g » « Any f is g »

Page 37: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

37

Jean-Pierre Desclés, Berne oct. 2004 73

No specified /Any object

a

ΣΣΣΣ*a ΠΠΠΠ*a

No specified Object, abstract from a

Any objectabstract from a

object

Jean-Pierre Desclés, Berne oct. 2004 74

ττττ(f)

ΣΣΣΣ *(ττττ (f))

{a1 a2 … … an}Ext(f)

ΣΣΣΣ*

Typical instances of f

ΣΣΣΣ*(ττττ (f)) is an no specifiedobject such that :f (ΣΣΣΣ*(ττττ (f))) = T

a1, a2, …, an are completely determinate Objects, such that

f(a1) = f(a2) = …= f(an) = T

Abstractionby no specification

Page 38: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

38

Jean-Pierre Desclés, Berne oct. 2004 75

ττττ(f)

ΠΠΠΠ*(ττττ (f))

{a1 a2 … … an}Ext((ΠΠΠΠ*(ττττ (f)))

ΠΠΠΠ*

Typical instances of f

ΠΠΠΠ*(ττττ (f)) is an object whatever such thatf (ΠΠΠΠ*(ττττ (f))) = T

a1, a2, …, an are completely determinate objects, substituable to the no determinate object ΠΠΠΠ*(ττττ (f)).

Jean-Pierre Desclés, Berne oct. 2004 76

Rules for « star » quantifiers

g(ΠΠΠΠ*(ττττ(f))) g(x)

------------- [e-ΠΠΠΠ*] -------------- [i- ΣΣΣΣ*]

g(x) g(ΣΣΣΣ*(ττττ(f)))

‘x’ is any typical instance ‘x’ is a no specified instanceof ‘f’ of ‘f’

ΠΠΠΠ*(ττττ(f)) is whatever ; ΣΣΣΣ*(ττττ(f)) is no specified

It is an object. It is an object.

Page 39: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

39

Jean-Pierre Desclés, Berne oct. 2004 77

« Classical » Universal QuantifierΠΠΠΠ2

reduces to the « Star » Quantifier ΠΠΠΠ*

[ ΠΠΠΠ2 = BC* ΠΠΠΠ* ] (law) ΠΠΠΠ2 is defined in terms of the quantifier ΠΠΠΠ*

(ΠΠΠΠ2f)g =>ββββ g(ΠΠΠΠ*f)

1. (ΠΠΠΠ2f)g hyp.

2. [ ΠΠΠΠ2 = BC* ΠΠΠΠ* ] def. of ΠΠΠΠ2

3. BC* ΠΠΠΠ* fg rempl.

4. C* (ΠΠΠΠ* f) g [B-e]

5. g(ΠΠΠΠ* f) [C*-e]

Jean-Pierre Desclés, Berne oct. 2004 78

The classical existential Quantifier ΣΣΣΣ2 reduces to the existential Star Quantifier ΣΣΣΣ*

[ ΣΣΣΣ2 = BC* ΣΣΣΣ* ] (law) Reduction of ΣΣΣΣ2 to ΣΣΣΣ*

(ΣΣΣΣ2f)g =>ββββ g(ΣΣΣΣ*f)

1. (ΣΣΣΣ2f)g hyp.

2. [ ΣΣΣΣ2 = BC* ΣΣΣΣ* ] def. of ΣΣΣΣ2

3. BC* ΣΣΣΣ* fg rempl.

4. C*(ΣΣΣΣ* f) g [B-e]

5. g(ΣΣΣΣ* f) [C*-e]

Page 40: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

40

Jean-Pierre Desclés, Berne oct. 2004 79

Π2fg

Σ2fg

(Π2 f) (N1g)

(Σ2f )(N1g)

Σ1f

g(Π∗Π∗Π∗Π∗f)

g(ΣΣΣΣ*f)

(N1g)(ΠΠΠΠ*f)

(N1g)(ΣΣΣΣ*f)

f(ΣΣΣΣ*)

contrary

disjunction

Jean-Pierre Desclés, Berne oct. 2004 80

ττττ(f)

f

δδδδ(g1) (ττττ(f))

Int (f)

Expans(f)

z

δδδδ(g2) (ττττ(f)) u

Typical object

Ext (f)Extττττ (f)Typical fully specified instances

does not belongto Expans(f)

Page 41: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

41

Jean-Pierre Desclés, Berne oct. 2004 81

Power of Combinatory Logic

A very flexible and sound language for expressing :

• Complex concepts from given operators ;

• Intrinsic properties of operators ;

• Relations between operators (with isotypicality principle) ;

• Without using bound variables : no telescopage of bound variables, no side effects…

Jean-Pierre Desclés, Berne oct. 2004 82

Using Combinatory Logic• Logic : Study of paradoxes, recursive functions, quantification, semiotic analysis of variables; new developments for alternative logics;

• Computer Sciences: Study of the semantics of programming languages; Applicative style of programming : ML, CAML, HASKELL …

• Linguistics : Formal expression of relations between grammatical and lexical operators; Cognitive and Applicative Grammar (CAG); relations (analysis and synthesis) between levels of representations;

• Cognitive Sciences and AI: Representations of knowledges; representation of meaning for lexical predicates (verbs, prepositions…);

• Analysis of philosophical concepts: Combinatory analysis of the Unum Argumentumof Anselme of Cantorbery’s Proslogion…

Page 42: Combinatory Logic, Categorization and Typicalitylalic.paris-sorbonne.fr/PUBLICATIONS/2004/presentation... · 2012-02-16 · Combinatory Logic, Categorization and Typicality Jean-Pierre

42

Jean-Pierre Desclés, Berne oct. 2004 83

DESCLES, Jean-Pierre, “De la notion d’opération à celle d’opérateur ou à la recherche deformalismes intrinsèques”,Mathématiques et sciences humaines, Paris, 1981, pp. 5-32.

DESCLES, Jean-Pierre, « Approximation et typicalité », L’a-peu-près, Aspects anciens etmodernes de l’approximation, Editions de l’Ecole des Hautes Etudes en Sciences Sociales,Paris, 1988, pp. 183-195.

DESCLES, Jean-Pierre,Langages applicatifs, langues naturelles et cognition, Paris, Hermès,1990.

DESCLES, Jean-Pierre, « La double négation dans l'Unum Argumentum analysé à l'aide dela logique combinatoire"Travaux du Centre de Recherches Semiologiques, n°59, pp. 33-74,Université de Neuchâtel, septembre, 1991.

DESCLES, Jean-Pierre, « La logique combinatoire typée est-elle un « bon » formalismed’analyse des langues naturelles et des représentations cognitives ? » in LENTIN, 1997, pp.179-223.

DESCLES, Jean-Pierre, « Logique combinatoire, types, preuves et langage naturel »,inTravaux de logique, Introduction aux logiques non classiques, Centre de Recherchessémiologiques, Université de Neuchâtel, 1997, pp. 91-160.

DESCLES, Jean-Pierre, « Categorization : A Logical Approach of a Cognitive Problem”,Journal of Cognitive Science, Vol. 3, n° 2, 2002, pp. 85-137.

DESCLES, Jean-Pierre, “Analyse non frégéenne de la quantification”, in Pierre Jorday(éditeur) Quantification dans la logique moderne, L’Harmattan, Paris, pp. 264-312.

Jean-Pierre Desclés, Berne oct. 2004 84

DESCLES, Jean-Pierre, « Combinatory Logic, Language, and Cognitive Representations », in Paul Weingartner (editor) Alternative Logics. Do Sciences Need Them ?, Springer, 2003, pp. 115-148.

DESCLES, Jean-Pierre, et Zlatka GUENTCHEVA, « Quantification Without Bound Variables », in Böttner, Thümmel (editors), Variable-free Semantics, Secolo Verlag, Rolandsmauer, 13-14, Osnabrück, 2000, pp. 210-233.

FREUND Michael, Jean-Pierre DESCLES, Anca PASCU, Jérôme CARDOT, « Typicality, Contextual Inferneces and Object Determination Logic », soumis à publication, 2004, 26 pages.