17
Color Superconductivity Ra´ ul Santos Nov. 8 2010 Ra´ ul Santos () Color Superconductivity Nov. 8 2010 1 / 17

Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Color Superconductivity

Raul Santos

Nov. 8 2010

Raul Santos () Color Superconductivity Nov. 8 2010 1 / 17

Page 2: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Outline

1 1. Introduction

2 2. Normal Superconductivity

3 3. QCD at finite Baryon density

4 4. Color Superconductivity in Neutron Stars

5 5. Summary

Raul Santos () Color Superconductivity Nov. 8 2010 2 / 17

Page 3: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Introduction

QCD is asymptotically free at large energies (T , µ)

T µ→ Quark Gluon Plasma (QGP), Appropriate regime forpQCD, testeable with current experiments, RHIC and LHC.

µ T → New phase, Condensation of quarks, forming a Colorsuperconductor (CSC)

Why it is important?

Natural scenario in Neutron Stars,→ Consequences of CSC in their evolution

Raul Santos () Color Superconductivity Nov. 8 2010 3 / 17

Page 4: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Phase diagram in QCD

Figure: Different phases of nuclear matter (Schematic) [Alford]

Raul Santos () Color Superconductivity Nov. 8 2010 4 / 17

Page 5: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Phenomenology of (usual) Superconductivity

A superconductor can behave as if it had no measurable DC electricalresistivity & 2 years.

A superconductor can behave as a perfect diamagnet → MeissnerEffect.

A superconductor usually behaves as if there were a gap in energy ofwidth 2∆ centered about the Fermi energy, in the set of allowedone-electron levels. The energy gap ∆ increases in size as thetemperature drops.

Raul Santos () Color Superconductivity Nov. 8 2010 5 / 17

Page 6: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

BCS superconductivity revisited

Coupling between phonons and electrons can create an overall attractiveinteraction between fermions → Cooper pairs.

H =∑σk

εknkσ −g

Ld

∑kk ′

c†k+q↑c†−k↓ck ′+q↓c−k ′↑ (1)

Defining the order parameter ∆ = gLd

∑k〈Ω|ck↑c−k↓|Ω〉, and after some

manipulations we can diagonalize the Hamiltonian, obtaining

H =∑σk

λk

(α†k↑αk↑ − α−k↓α

†−k↓

)(2)

with λk =√ε2k + ∆2, and the self-consistency condition for ∆ gives

∆ = ωDsinh 1/gν(EF ) ≈ ωD exp

(−1

gν(Ef )

)

Raul Santos () Color Superconductivity Nov. 8 2010 6 / 17

Page 7: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Inevitability of Color Superconductivity

Why we expect a similar phenomena in QCD at high µ?

Atractive interaction in the antitriplet channel.

TAabT

Aa′b′ = −Nc + 1

4Nc(δabδa′b′− δaa′δbb′) +

Nc + 1

4Nc(δabδa′b′ + δaa′δbb′).

Effective interaction mediated by Instanton vaccum.

L = −G

16Nc (Nc − 1)[(ψT Cτ2λ

nAψ)(ψτ2λ

nAC ψT ) + (ψT Cτ2λ

nAγ5ψ)(ψCτ2λ

nAγ5C ψ

T )]

+G

32Nc (Nc + 1)(ψT Cτ2λ

nSσµνψ)(ψτ2λ

nSσµνC ψT )

Raul Santos () Color Superconductivity Nov. 8 2010 7 / 17

Page 8: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

But, who pairs with whom?

Structure of the condensate

When µ mu,md ,ms we can treat them in equal footing.

〈ψaαiL (p)ψbβ

jL (−p)〉 = −〈ψaαiR (p)ψbβ

jR (−p)〉 = ∆(p)εabεαβρεijρ

Solution of the consistency equation which minimizes the energy.

Local minimum of the ground state energy functional.

Global minimum? not rigorously proved (yet).

This pattern involves quarks of all 9 color-flavor combinations,providing a gap for all of them. This makes the energy of such aground state lower than that of the other possibilities, which leavesome quarks ungapped.

Raul Santos () Color Superconductivity Nov. 8 2010 8 / 17

Page 9: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Color Flavor Locked Phase

〈ψaαi (p)ψbβ

j (−p)〉 ∝ ∆(p)εabεαβρεijρ = ∆(p)εab(δαi δβj − δ

αj δ

βi ).

Color and Flavor are ’Locked’ together.

Breaks chiral symmetry (up to arbitrarily high densities).

It is a Color superconductor (Meissner Effect).

It is a superfluid.

Structure of the symmetry breaking

[SU(3)c ]× SU(3)R × SU(3)L × U(1)B → SU(3)c+L+R × Z2

Raul Santos () Color Superconductivity Nov. 8 2010 9 / 17

Page 10: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Gauge symmetry breaking and electromagnetism

[SU(3)c ]× SU(3)R × SU(3)L × U(1)B → SU(3)c+L+R × Z2

One of the generators of SU(3)L+R is the electric charge, which generatesthe U(1)Q gauge symmetry. This means

SU(3)L+R+c ⊃ [U(1)Q ]

which is unbroken and correspond to a simultaneous electromagnetic andcolor rotation.7 gluons and one gluon-photon linear combination become massive via theMeissner effect. The mixing angle is

cos θ =g√

g2 + 4e2/3.

Raul Santos () Color Superconductivity Nov. 8 2010 10 / 17

Page 11: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Consecuences of Sym. Breaking.

cos θ =g√

g2 + 4e2/3, e g → θ ∼ 0.

Q photon ∼ original photon with a small admixture of gluon.

The Q-electric and magnetic fields satisfy Maxwell’s equations with adielectric constant and index of refraction

n = 1 +e2 cos θ2

9π2

∆CFL

)2

.

CFL phase is a transparent insulator,Massive Gluons → Color Superconductor.

Raul Santos () Color Superconductivity Nov. 8 2010 11 / 17

Page 12: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Intermediate densities

What about µ below ms?.

2 Color pairing is the most symmetrical form of nuclear matter.

〈ψαi Cγ5ψβj 〉 ∝ ∆2SC εαβ3εij3

[SU(3)c ]× SU(2)R × SU(2)L × U(1)B × U(1)S| z ⊃ [U(1)Q ]

→ [SU(2)rg ]× SU(2)R × SU(2)L × U(1)B × U(1)S| z ⊃ [U(1)Q ].

2SC quark matter is therefore a color superconductor but is neither asuperfluid nor an electromagnetic superconductor.

Raul Santos () Color Superconductivity Nov. 8 2010 12 / 17

Page 13: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Color Superconductivity in Neutron Stars

Figure: Neutron Star expected structure

ρ0 ∼ 2.8× 1014g cm−3 density of atomic nucleus.

Raul Santos () Color Superconductivity Nov. 8 2010 13 / 17

Page 14: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Mass- Radius Relation

Raul Santos () Color Superconductivity Nov. 8 2010 14 / 17

Page 15: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Cooling

Neutrino Emissivity

Ordinary dense matter (proton fraction higher than 0.1).

εIν ' (4 · 1025 erg cm−3 s−1)αs

0.5

( µ

500MeV

)2(

T

109K

)6

.

Ordinary dense matter → proton fraction lower than 0.1.

εIIν ' (1.2 · 1020 erg cm−3 s−1)×(

n

n0

)2/3( T

109K

)8

CFL phase

εIIIν ∝(

T

109K

)15

Raul Santos () Color Superconductivity Nov. 8 2010 15 / 17

Page 16: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

Summary

High Density in nuclear matter → new phases of matter: ColorSuperconductivity.

µ ms , Color flavor locked phase

µ ∼ ms , 2 Flavor Color Superconductivity

Effects in Neutron star evolution.

Open problems

Nuclear equation of state.

Explicit determination of transition density.

Lattice approach, new algorithms.

Raul Santos () Color Superconductivity Nov. 8 2010 16 / 17

Page 17: Color Superconductivity - Stony Brook Universityinsti.physics.sunysb.edu/~meade/phy599/santosslides.pdf · Outline 1 1. Introduction 2 2. Normal Superconductivity 3 3. QCD at nite

References

M. G. Alford, A. Schmitt, K. Rajagopal and T. Schafer, “Color superconductivity indense quark matter,” Rev. Mod. Phys. 80, 1455 (2008) [arXiv:0709.4635 [hep-ph]].

“The Phases of Quantum Chromodynamics: From Confinement to ExtremeEnvironments”; John B. Kogut and Mikhail A. Stephanov. Cambridge UniversityPress

“Quark matter and the masses and radii of compact stars”; M. Alford, D. Blaschke,A. Drago, , Kl hn, T.2, G. Pagliara, J. Schaffner-Bielich, [astro-ph/0606524]

“Soft equations of state for neutron-star matter ruled out by EXO 0748 - 676”; F.

Ozel, Nature 441, 1115-1117.

“Hybrid stars that masquerade as neutron stars”; M. Alford, M. Braby , M. Paris,S. Reddy.

“High-Density QCD and Instantons”; R. Rapp, T. Schfer, E. V. Shuryak and M.Velkovsky, Annals of Physics Volume 280, Issue 1.

Raul Santos () Color Superconductivity Nov. 8 2010 17 / 17