31
Collimator Wakefields Igor Zagorodnov BDGM, DESY 25.09.06

Collimator Wakefields

  • Upload
    miriam

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

Collimator Wakefields. Igor Zagorodnov BDGM, DESY 25.09.06. ECHO CST MS ABCI MAFIA GdfidL VORPAL PBCI Tau3P. K. Yokoya, CERN-SL/90-88, 1990 F.-J.Decker et al., SLAC-PUB-7261, 1996 G.V. Stupakov, SLAC-PUB-8857, 2001 P. Tenenbaum et al, PAC’01, 2001 - PowerPoint PPT Presentation

Citation preview

Page 1: Collimator Wakefields

Collimator Wakefields

Igor Zagorodnov

BDGM, DESY

25.09.06

Page 2: Collimator Wakefields

Codes

• ECHO• CST MS• ABCI• MAFIA• GdfidL• VORPAL• PBCI• Tau3P

• K. Yokoya, CERN-SL/90-88, 1990• F.-J.Decker et al., SLAC-PUB-7261, 1996• G.V. Stupakov, SLAC-PUB-8857, 2001• P. Tenenbaum et al, PAC’01, 2001• B. Podobedov, S. Krinsky, EPAC’06, 2006• I. Zagorodnov, K.L.F. Bane, EPAC‘06, 2006• K.L.F. Bane, I.A. Zagorodnov, SLAC-PUB-

11388, 2006• I. Zagorodnov et al, PAC‘03, 2003• and others

References

Used by me

Page 3: Collimator Wakefields

Outline

• Round collimators– Inductive regime– Diffractive regime– Near wall wakefields– Resistive wakefields

• 3D collimators (rectangular, elliptical)– Diffractive regime– Inductive regime

• Simulation of SLAC experiments• XFEL collimators

– Effect of tapering and form optimization– Kick dependence on collimator length

Page 4: Collimator Wakefields

Effect of the kick

Page 5: Collimator Wakefields

d

1b2b

d

1b2b

Figure 1: Top half of a symmetric collimator.

Round collimator. Regimes

Inductive

11 2 1b

Diffractive

1 1

2/ bd

1b2b

d

1b2b

Figure 1: Top half of a symmetric collimator.

Round collimator. Regimes

Inductive

11 2 1b

Diffractive

1 1

2/ b

Page 6: Collimator Wakefields

d

1b2b

d

1b2b

|| 0k

Inductive 11 2 1b

0

2 1

2 1 1

4

Z ck

b b

202

iZ f dz

c

2

1 2i fZ dz

c f

0 4Z c

2

k Ob

Round collimator. Inductive

d

1b2b

d

1b2b

|| 0k

Inductive 11 2 1b

0

2 1

2 1 1

4

Z ck

b b

202

iZ f dz

c

2

1 2i fZ dz

c f

0 4Z c

2

k Ob

Round collimator. Inductive

Page 7: Collimator Wakefields

d

1b2b

d

1b2b

  [mrad]

a [mm] b [mm] l [mm] Q [nC]

[mm]

TESLA 20 17.5 0.4 20 1. 0.3

NLC 20 17.5 0.2 20 1. 0.1

-5 0 5-20

-10

0

10

200

/

W

V pC

-5 0 5-1

0

1

2

3

4

analytical

/s

1

/ /

W

V pC mm

/ 5h / 10h / 20h

analytical

/ 5h / 10h / 20h

/s -5 0 5-20

-10

0

10

200

/

W

V pC

-5 0 5-1

0

1

2

3

4

analytical

/s

1

/ /

W

V pC mm

/ 5h / 10h / 20h

analytical

/ 5h / 10h / 20h

/s

Inductive

Round collimator. Inductive

Page 8: Collimator Wakefields

0 2 0 4 0 6 0

5 0

1 0 0

1 5 0

2 0 0

2 0 4 0 6 00

1 0 0

2 0 0

3 0 0

4 0 0

0

/L

V p C

/ 5 ( )h A B C I a n a l y t i c a l

/ g r a d / g r a d

1

2 20

/

W

V p C

/ 1 0 ( )h A B C I / 2 0 ( )h A B C I

/ 5 ( )h E C H O

A B C I

/ 5 ( )h E C H O

0 2 0 4 0 6 0

5 0

1 0 0

1 5 0

2 0 0

2 0 4 0 6 00

1 0 0

2 0 0

3 0 0

4 0 0

0

/L

V p C

/ 5 ( )h A B C I a n a l y t i c a l

/ g r a d / g r a d

1

2 20

/

W

V p C

/ 1 0 ( )h A B C I / 2 0 ( )h A B C I

/ 5 ( )h E C H O

A B C I

/ 5 ( )h E C H O

0 2 0 4 0 6 0 8 00

2 0

4 0

6 0

8 0

2 0 4 0 6 0 8 00

1 0

2 0

3 0

4 01

/ /

L

V p C m m

12 21

/ /

W

V p C m m

a n a l y t i c a l

/ g r a d

/ 5 ( )h E C H O

a n a l y t i c a l

/ g r a d

/ 5 ( )h E C H O

0 2 0 4 0 6 0 8 00

2 0

4 0

6 0

8 0

2 0 4 0 6 0 8 00

1 0

2 0

3 0

4 01

/ /

L

V p C m m

12 21

/ /

W

V p C m m

a n a l y t i c a l

/ g r a d

/ 5 ( )h E C H O

a n a l y t i c a l

/ g r a d

/ 5 ( )h E C H O

Round collimator. Inductive

Page 9: Collimator Wakefields

0.5 longshortk k

1.5 1 1|| 0 1 20.5 log( )k cZ b b

02 2

2 1

1 1

2long Z c

kb b

20 2

2 42 1

1

4short Z c b

kb b

|| 2(log( ))k O b2

2

1k O

b

Round collimator. Diffractive

I. Zagorodnov, K.L.F. Bane, EPAC‘06, 2006

d

1b2b

d

1b2b

0.5 longshortk k

1.5 1 1|| 0 1 20.5 log( )k cZ b b

02 2

2 1

1 1

2long Z c

kb b

20 2

2 42 1

1

4short Z c b

kb b

|| 2(log( ))k O b2

2

1k O

b

Round collimator. Diffractive

I. Zagorodnov, K.L.F. Bane, EPAC‘06, 2006

d

1b2b

d

1b2b

Page 10: Collimator Wakefields

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

Figure 2:Kick factor vs. collimator length. A round collimator(left), a square or rectangular collimator ( = 0.3 mm, right).

Round collimator. Diffractive

Page 11: Collimator Wakefields

|| 2(log( ))k O b

22

1k O

b

|| 0k

2

k Ob

d

1b2b

d

1b2b

Inductive

11 2 1b

Diffractive

1 1

Round collimator. Regimes

|| 2(log( ))k O b

22

1k O

b

|| 0k

2

k Ob

d

1b2b

d

1b2b

Inductive

11 2 1b

Diffractive

1 1

Round collimator. Regimes

Page 12: Collimator Wakefields

Round collimator

Page 13: Collimator Wakefields

Round collimator. Near-wall wakes

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

/r mm

/V pC

( )aL r

1 ( )L r

13( )L r

2

2 12

2

log 1( )a

r bL r L b

r b

1313 2 1

1

( ) m m

m

L r L r

References1. F.-J.Decker et al.,

SLAC-PUB-7261, Aug 1996.

2. I. Zagorodnov et al.,TESLA 2003-23, 2003.

Round collimator. Near-wall wakes

0 0.2 0.4 0.6 0.8 10

2

4

6

8

10

/r mm

/V pC

( )aL r

1 ( )L r

13( )L r

2

2 12

2

log 1( )a

r bL r L b

r b

1313 2 1

1

( ) m m

m

L r L r

References1. F.-J.Decker et al.,

SLAC-PUB-7261, Aug 1996.

2. I. Zagorodnov et al.,TESLA 2003-23, 2003.

Page 14: Collimator Wakefields

Round collimator. Resistive wall wakes

Analytical estimations are available. To be studied.

Can the total wake be treated as the direct sum of the geometric and the resistive wakes? Numerical modeling is required.

Discrepancy between analytical estimations and measurements.Transverse geometric kick for long collimator is approx. two times larger as for the short one.

Page 15: Collimator Wakefields

3D collimators. Regimes

Page 16: Collimator Wakefields

3D collimators. Regimes

0

2 1

2 1 1(1)

4

Z ck

b b

0

2 22 1

1 1(2)

4

Z chk

b b

0.5 1.5 12 02.7 (4 ) (3)k A b Z c

2 1 12 2 1h b Inductive

Intermediate1 1, 2

2

11 2 1b

round rectangular

1 1,

Diffractive 1 1 1 1

0

2 1

2 1 1(1)

4

Z ck

b b

0

2 22 1

1 1(2)

4

Z chk

b b

0.5 1.5 12 02.7 (4 ) (3)k A b Z c

2 1 12 2 1h b Inductive

Intermediate1 1, 2

2

11 2 1b

round rectangular

1 1,

Diffractive 1 1 1 1

Page 17: Collimator Wakefields

3D Collimators. Diffractive Regime

1 2

2 21 22

0

1(5)eZ ds ds

Q Z

1 2

212

0

1(6)eZ ds

Q Z

long short

Diffractive Regime 0.5 longshortk k || 2 (4)eZ Z

0 0( ) ( )i x Z Q x x

i ix

( ) 0i x

i ix 1, 2i

1

2

1 2

2 21 22

0

1(5)eZ ds ds

Q Z

1 2

212

0

1(6)eZ ds

Q Z

long short

Diffractive Regime 0.5 longshortk k || 2 (4)eZ Z

0 0( ) ( )i x Z Q x x

i ix

( ) 0i x

i ix 1, 2i

1

2

Diffractive Regime 0.5 longshortk k || 2 (4)eZ Z

0 0( ) ( )i x Z Q x x

i ix

( ) 0i x

i ix 1, 2i

1

2

S.Heifets and S.Kheifets, Rev Mod Phys 63,631 (1991)I. Zagorodnov, K.L.F. Bane, EPAC‘06, 2006

Page 18: Collimator Wakefields

3D collimators. Diffractive Regime

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

4.251.997874square

6.112.437256rect.

5.012.507878round

longshortlongshort

ktr [V/pC/mm]k|| [V/pC]Type

Figure 2:Kick factor vs. collimator length. A round collimator(left), a square or rectangular collimator (= 0.3 mm, right).

Table1: Loss and kick factors as estimated by 2D electrostatic calculation. The bunch length 0.3 mm. ``Short'' means using Eq. 6, ``long'' Eq. 5

The good agreement we have found between direct time-domain calculation [1] and the approximations (5, 6), suggests that the latter method can be used to approximate short-bunch wakes for a large class of 3D collimators.

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2

3

4

5[V/pC/mm]k

[cm]d

short

long

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

0.01 0.1 1 10

2.5

3

3.5

4

4.5

5

σ=0.1mm

=0.5mm=0.3mm

long

in+out

[V/pC/mm]k

[cm]d

short

4.251.997874square

6.112.437256rect.

5.012.507878round

longshortlongshort

ktr [V/pC/mm]k|| [V/pC]Type

Figure 2:Kick factor vs. collimator length. A round collimator(left), a square or rectangular collimator (= 0.3 mm, right).

Table1: Loss and kick factors as estimated by 2D electrostatic calculation. The bunch length 0.3 mm. ``Short'' means using Eq. 6, ``long'' Eq. 5

The good agreement we have found between direct time-domain calculation [1] and the approximations (5, 6), suggests that the latter method can be used to approximate short-bunch wakes for a large class of 3D collimators.

Page 19: Collimator Wakefields

3D collimators. Inductive Regime

Page 20: Collimator Wakefields

3D collimators. Inductive Regime

ECHO

GdfidL

Page 21: Collimator Wakefields

3D collimators. Inductive Regime

ECHO

GdfidL

Page 22: Collimator Wakefields

3D collimators. Inductive Regime

-4 -2 0 2 4 6 8 10 12 14 16

-1000

-500

0

500

1000

-5 0 5 10 15

-20

-15

-10

-5

0

Round: 2D vs.3D

[ ]s cm [ ]s cm

|| [ / / / ]dW V pC m m [ / / ]dW V pC m

3 2

2

( ( ) ( ))100% 5%

( )

D D

D

W s W s ds

W s ds

Blue-3DGreen-2D accurate

Page 23: Collimator Wakefields

3D collimators. Inductive Regime

-5 0 5 10 15 20 25 30 35 40 450.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

-5 0 5 10 15 20 25 30 35 40 451

1.5

2

2.5

3

3.5

4

4.5

[ ]s cm

( )dF s ( )qF s

,

5

,

5

( )

( ) 3

( )

sd el

ds

d round

W x dx

F s

W x dx

,

5

,

5

( )

( ) 0.52

( )

sq el

qs

d round

W x dx

F s

W x dx

Dipolar Quadrupolar

[ ]s cm

1dx dy dz mm

5offset mm

I estimate that error in this numbers is about 5%

Page 24: Collimator Wakefields

Simulations of SLAC experiment 2001Rectangular Collimators

SLAC experiment 2001

-3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1[V/pC/mm]W

round(3D/2D)

square(#2)

rect.(#3)

/s -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

/s

[V/pC/mm]W

square(#2)

rect.(#3)

round

-3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1[V/pC/mm]W

round(3D/2D)

square(#2)

rect.(#3)

/s -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1[V/pC/mm]W

round(3D/2D)

square(#2)

rect.(#3)

/s -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

/s

[V/pC/mm]W

square(#2)

rect.(#3)

round

-3 -2 -1 0 1 2 3 4 5-4

-3

-2

-1

0

/s

[V/pC/mm]W

square(#2)

rect.(#3)

round

298335335168mrad]

3.81.91.91.9b2 [mm]

rect.rect.squarerect.Type

4321Coll. #

Figire 3: Transverse wake of Gaussian bunch, with = 0.65 mm (left) and =0.3 mm (right).

Table 2: Geometry of SLAC collimators of 2001

1 / 2 19 mmb h

Rectangular Collimators

SLAC experiment 2001

-3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1[V/pC/mm]W

round(3D/2D)

square(#2)

rect.(#3)

/s -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

/s

[V/pC/mm]W

square(#2)

rect.(#3)

round

-3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1[V/pC/mm]W

round(3D/2D)

square(#2)

rect.(#3)

/s -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1[V/pC/mm]W

round(3D/2D)

square(#2)

rect.(#3)

/s -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

/s

[V/pC/mm]W

square(#2)

rect.(#3)

round

-3 -2 -1 0 1 2 3 4 5-4

-3

-2

-1

0

/s

[V/pC/mm]W

square(#2)

rect.(#3)

round

298335335168mrad]

3.81.91.91.9b2 [mm]

rect.rect.squarerect.Type

4321Coll. #

Figire 3: Transverse wake of Gaussian bunch, with = 0.65 mm (left) and =0.3 mm (right).

Table 2: Geometry of SLAC collimators of 2001

1 / 2 19 mmb h

Page 25: Collimator Wakefields

Simulations of SLAC experiment 2001

0 .1 0.3 0.5 0.7 0.9 1.11

1.5

2

2.5[V/pC/mm]k

[mm]

square(#2)

round

exper.(#2)

0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

[V/pC/mm]k

rect.(#3)

rect.(#1)

rect.(#4)

[mm]0 .1 0.3 0.5 0.7 0.9 1.1

1

1.5

2

2.5[V/pC/mm]k

[mm]

square(#2)

round

exper.(#2)

0 .1 0.3 0.5 0.7 0.9 1.11

1.5

2

2.5[V/pC/mm]k

[mm]

square(#2)

round

exper.(#2)

0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

[V/pC/mm]k

rect.(#3)

rect.(#1)

rect.(#4)

[mm]0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

[V/pC/mm]k

rect.(#3)

rect.(#1)

rect.(#4)

[mm]

0.622.52.5Eq. 12

1.13.32.4Eq. 3

1.02.51.24Eq. 1

0.54(0.05)1.4(0.1)1.4(0.1)1.2(0.1)meas.

0.501.721.751.28simul.

1.7/431/981.00.5/50

4321Coll. #

0.62.52.5Eq. 12

0.82.41.7Eq. 3

0.51.30.7Eq. 1

0.49(0.15)1.08(0.1)1.2(0.1)0.78(0.13)meas.

0.411.301.350.90simul.

0.9/240.5/530.50.3/27

4321Coll. #

Table 4:Kick factor [V/pC/mm]; = 1.2 mm. Measurement errors are given in parentheses.

Table 3:Kick factor [V/pC/mm]; = 0.65 mm. Measurement errors are given in parentheses.

We note good agreement for rectangular collimators #1 and #4. On the other hand the short bunch results for collimators #2 and #3 agree very well with the calculations of the previous section, but they disagree with the experimental data (by 20 %).

0 .1 0.3 0.5 0.7 0.9 1.11

1.5

2

2.5[V/pC/mm]k

[mm]

square(#2)

round

exper.(#2)

0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

[V/pC/mm]k

rect.(#3)

rect.(#1)

rect.(#4)

[mm]0 .1 0.3 0.5 0.7 0.9 1.1

1

1.5

2

2.5[V/pC/mm]k

[mm]

square(#2)

round

exper.(#2)

0 .1 0.3 0.5 0.7 0.9 1.11

1.5

2

2.5[V/pC/mm]k

[mm]

square(#2)

round

exper.(#2)

0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

[V/pC/mm]k

rect.(#3)

rect.(#1)

rect.(#4)

[mm]0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

[V/pC/mm]k

rect.(#3)

rect.(#1)

rect.(#4)

[mm]

0.622.52.5Eq. 12

1.13.32.4Eq. 3

1.02.51.24Eq. 1

0.54(0.05)1.4(0.1)1.4(0.1)1.2(0.1)meas.

0.501.721.751.28simul.

1.7/431/981.00.5/50

4321Coll. #

0.62.52.5Eq. 12

0.82.41.7Eq. 3

0.51.30.7Eq. 1

0.49(0.15)1.08(0.1)1.2(0.1)0.78(0.13)meas.

0.411.301.350.90simul.

0.9/240.5/530.50.3/27

4321Coll. #

Table 4:Kick factor [V/pC/mm]; = 1.2 mm. Measurement errors are given in parentheses.

Table 3:Kick factor [V/pC/mm]; = 0.65 mm. Measurement errors are given in parentheses.

We note good agreement for rectangular collimators #1 and #4. On the other hand the short bunch results for collimators #2 and #3 agree very well with the calculations of the previous section, but they disagree with the experimental data (by 20 %).

Page 26: Collimator Wakefields

SLAC experiment 2006

2.43.028568

2.73.134607

2.32.924516

6.87.147815

0.770.7424404

5.16.133633

3.13.633602

1.71.928501

0.5mm0.3mm0.5mm0.3mm

ktr [V/pC/mm]k|| [V/pC]Coll. #

Table 5: Loss and kick factors for new set of collimators.

Perhaps the most interesting result in Table 5 is a noticeable difference in the kicks for collimators #2 and #3. In agreement with the analytic models discussed in the paper, a long collimator length results in a kick factor increase by a factor ~2.

SLAC experiment 2006

2.43.028568

2.73.134607

2.32.924516

6.87.147815

0.770.7424404

5.16.133633

3.13.633602

1.71.928501

0.5mm0.3mm0.5mm0.3mm

ktr [V/pC/mm]k|| [V/pC]Coll. #

Table 5: Loss and kick factors for new set of collimators.

Perhaps the most interesting result in Table 5 is a noticeable difference in the kicks for collimators #2 and #3. In agreement with the analytic models discussed in the paper, a long collimator length results in a kick factor increase by a factor ~2.

Page 27: Collimator Wakefields

XFEL collimators. Tapering

2 3 4 50.2

0.4

0.6

0.8

1

d

1b2b

d

1b2b

Inductive

[deg]

2[ ]b mm

When a short bunch passes by an out-transition, a significan reduction in the wake will not happen until the tapered walls cut into the cone of radiation, i.e until

2tan /z b

0.025 mmz

Page 28: Collimator Wakefields

Collimator geometry optimization.Optimum d ~ 4.5mm

200 mm

17 mm

2 mm

100 mm

d

200 mm

17 mm

2 mm

100 mm

d

0 5 10 15 20100

150

200

250

300

350

400

450

1

2 20W

0L

/d mm

/V p C

0 5 10 15 20

1

2

3

4

5

1L

1

2 21W

/ /V pC mm

/d mm

0 5 10 15 20100

150

200

250

300

350

400

450

1

2 20W

0L

/d mm

/V p C

0 5 10 15 20

1

2

3

4

5

1L

1

2 21W

/ /V pC mm

/d mm

Geometry of the “step+taper” collimator for TTF20.05 mmz

XFEL collimators. Tapering

Page 29: Collimator Wakefields

d mm

10 / 20 mm

4.5 mm3.4 mm

25mkm

Loss,

V/pC

Spread,

V/pC

Peak,

V/pC

step 110 43 -156

taper 20mm 38 42 -83

taper 20mm +step

50 (45%)

29 (67%)

-82 (53%)

-0.01 -0.005 0 0.005 0.01

-150

-100

-50

0

50

taper 20 mm

step (d=3.4mm)

taper (d=4.5mm)

step+taper (d=4.1mm)

|| [ / ]W V pC

[ ]s cm

Geometry of the “step+taper” absorber for XFEL

XFEL collimators. Tapering

Page 30: Collimator Wakefields

XFEL collimators. Kick vs. length

1 25mmb

d

2 3mmb

1.041

1.1410

1.3550

1.4890

1.73200

1.9685long

1.98500

0.998short

Kick,

V/pC/mm

d,

mm

02 2

2 1

1 1

2long Z c

kb b

20 2

2 42 1

1

4short Z c b

kb b

10-1

100

101

102

103

0.8

1

1.2

1.4

1.6

1.8

2

[ ]d mm

[ / / ]

Kick

V pC mm

Form optimization?Exponetial tapering?

XFEL collimators. Kick vs. length

1 25mmb

d

2 3mmb

1.041

1.1410

1.3550

1.4890

1.73200

1.9685long

1.98500

0.998short

Kick,

V/pC/mm

d,

mm

02 2

2 1

1 1

2long Z c

kb b

20 2

2 42 1

1

4short Z c b

kb b

10-1

100

101

102

103

0.8

1

1.2

1.4

1.6

1.8

2

[ ]d mm

[ / / ]

Kick

V pC mm

Form optimization?Exponetial tapering?

Page 31: Collimator Wakefields

Acknowledgements to K. Bane,

M. Dohlus,B. Podobedov G. Stupakov, T. Weiland

for helpful discussions on wakes and impedances, and to

CST GmbH for letting me use CST MICROWAVE

STUDIO for the meshing.