31
Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 1 . Coherence of light and matter: from basic concepts to modern applications Part III Vorlesung im GrK 1355 SS 2011 A. Hemmerich & G. Grübel Location: SemRm 052, Gebäude 69, Bahrenfeld Tuesdays 10.15 – 11.45 G.Grübel (GR), A.Hemmerich (HE), M.Yurkov (YU)

Coherence of light and matter: from basic concepts to ...photon-science.desy.de/sites/site_photonscience/content/e62/e... · 1 Coherence of light and matter: from basic concepts to

Embed Size (px)

Citation preview

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 1

. Coherence of light and matter:

from basic concepts to modern applications

Part III

Vorlesung im GrK 1355

SS 2011

A. Hemmerich & G. Grübel

Location: SemRm 052, Gebäude 69, Bahrenfeld

Tuesdays 10.15 – 11.45

G.Grübel (GR), A.Hemmerich (HE), M.Yurkov (YU)

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 2

. Coherence of light and matter:

from basic concepts to modern applications

12.4. Introduction (HE)

19.4+3.5. Coherence of classical light , basic concepts and examples (HE)

10.+17.5. Coherence of quantized light, basic concepts and examples (HE)

24.5. Coherence of matter waves (HE)

31.5. Coherence properties of the radiation from

x-ray free electron lasers (YU)

7.6. Coherence based X-ray techniques: Introduction (GR)

21+28.6. Imaging techniques (GR)

5.+12.7. X-ray Photon Correlation Spectroscopy (GR)

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 3

.

Literature Basic concepts: The quantum theory of light

Rodney Loudon, Oxford University Press (1990)

Quantum Optics

Marlan O. Scully, M. Suhal Zubairy, Cambridge

University Press (1997)

Dynamic Light Scattering with Applications

B.J. Berne and R. Pecora, John Wiley&Sons (1976)

Elements of Modern X-Ray Physics

J. A. Nielsen and D. McMorrow, J. Wiley&Sons (2001)

Matter Waves: Bose-Einstein Condensation in Dilute Gases

C. J. Pethick and H. Smith, Cambridge University Press (2002)

Lecture Notes Part I: http://www.photon.physnet.uni-hamburg.de/ilp/

hemmerich/teaching.html

Part II+III: http://hasylab.desy.de/science/studentsteaching/lectures/ss11/

graduiertenkolleg/……

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 4

. Coherence of light and matter:

from basic concepts to modern applications

Part III: G. Grübel Script 1

Coherence based X-ray techniques

Overview, Introduction to X-ray Scattering, Sources of Coherent X-rays,

Speckle pattern and their analysis

Imaging techniques

Phase Retrieval, Sampling Theory, Reconstruction of Oversampled Data,

Fourier Transform Holography, Applications

X-ray Photon Correlation Spectroscopy (XPCS)

Introduction, Equilibrium Dynamics (Brownian Motion), Surface Dynamics,

Non-Equilibrium Dynamics

Imaging and XPCS at FEL Sources

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 5

.

Coherence based X-ray techniques:

Introduction

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 6

. Introduction: Experimental Set-Up

50 100 150 200 250 300

50

100

150

200

250

300

source (visible light, x-rays,..)

source parameters: source

size, λ, λ/λ, ...

coherence properties:

(incoherent, partially coherent,

coherent)

sample

interacts with radiation

(e.g. x-rays)

L

detector

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 7

. Introduction: Scattering with coherent X-rays If coherent light is scattered from a disordered system it gives rise to a

random (grainy) diffraction pattern, known as “speckle”. A speckle pattern

is an interference pattern and related to the exact spatial arrangement of

the scatterers in the disordered system.

I(Q,t) ~ Sc(Q,t) ~ | e iQRj(t) |2

j in coherence volume c= ξ t2ξ l

Incoherent Light:

S(Q,t) = < Sc(Q,t)>V>>c ensemble

average

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 8

. Introduction: Speckle Pattern

A speckle pattern contains information on both, the source and sample

that produced it.

If the source is fully coherent and the scattering amplitudes and phases of

the scattering are statistically independent and distributed over 2π one

finds for the probability amplitude of the intensities:

P(I) = (1/<I>) exp (- I/<I>)

Mean: <I>

Std.Dev. ζ: sqrt (<I2> -<I>2) = <I>

Contrast: ß = ζ2/<I>2 = 1

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 9

. The Linac Coherent Light Source (LCLS)

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 10

. The Linac Coherent Light Source (LCLS)

The Linac Coherent Light Source (LCLS)

Single pulse hard X-ray speckle

pattern captured from nano-particles

in a colloidal liquid (photon wave-

length = 1.37 Å

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 11

. Introduction: Scattering with coherent X-rays If coherent light is scattered from a disordered system it gives rise to a

random (grainy) diffraction pattern, known as “speckle”. A speckle pattern

is an interference pattern and related to the exact spatial arrangement of

the scatterers in the disordered system.

I(Q,t) ~ Sc(Q,t) ~ | e iQRj(t) |2

j in coherence volume c= ξ t2ξ l

Incoherent Light:

S(Q,t) = < Sc(Q,t)>V>>c ensemble

average

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 12

Introduction: Speckle Reconstruction

Reconstruction (phasing) of a speckle pattern: “oversampling” technique

gold dots on SiN membrane =17Å coherent beam at X1A reconstruction

(0.1 m diameter, 80 nm thick) (NSLS), 1.3.109 ph/s 10 m pinhole “oversampling” technique

24 m x 24 m pixel CCD

Miao, Charalambous, Kirz, Sayre, Nature, 400, July 1999

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 13

Incident FEL pulse:

25 fs, 32 nm,

4 x 1014 W cm-2 (1012

ph/pulse)

H. Chapman et al.,

Nature Physics,

2,839 (2006)

.

Model structure in 20 nm SiN

membrane

Speckle pattern recorded

with a single (25 fs) pulse

Reconstructed image

Reconstruction of “oversampled” data

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 14

. Introduction: Scattering with coherent X-rays If coherent light is scattered from a disordered system it gives rise to a

random (grainy) diffraction pattern, known as “speckle”. A speckle pattern

is an interference pattern and related to the exact spatial arrangement of

the scatterers in the disordered system.

I(Q,t) ~ Sc(Q,t) ~ | e iQRj(t) |2

j in coherence volume c= ξ t2ξ l

Incoherent Light:

S(Q,t) = < Sc(Q,t)>V>>c ensemble

average

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 15

. Introduction: X-ray Photon Correlation

Spectroscopy (XPCS)

colloidal silica particles

undergoing Brownian

motion in high viscosity

glycerol

V. Trappe and A. Robert

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 16

. quantify dynamics in terms of the intensity correlation function g2(Q,t):

I(Q,t) =|E(Q,t)|2 = | bn(Q) exp[iQ rn(t)|2

Note: E(Q,t) = dr’ ρ(r’) exp [iQ r’(t)] ρ(r’): charge density

g2(Q,t) = <I(Q,0) I(Q,t)> / <I(Q)>2

if E(Q,t) is a zero mean, complex gaussian variable:

g2(Q,t) = 1 + ß(Q) <E(Q,0)E*(Q,t)>2 / <I(Q)>2

<> ensemble av.; ß(Q) contrast

g2(Q,t) = 1 + ß(Q) |f(Q,t)|2 with f(Q,t) = F(Q,t) / F(Q,0) F(Q,0): static structure factor

N: number of scatterers

F(Q,t) = [1/N{b2(Q)} |N

m=1

N

n=1 <bn(Q)bm(Q) exp{iQ[rn(0)-rm(t)]}>

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 17

.

Coherence based X-ray techniques:

An X-ray Scattering Primer

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 18

. Experimental Set-Up for Scattering Experiments

50 100 150 200 250 300

50

100

150

200

250

300

source (visible light, x-rays,..)

source parameters: source

size, λ, λ/λ, ...

coherence properties:

(incoherent, partially coherent,

coherent)

sample

interacts with radiation

(e.g. x-rays)

L

detector

scattering angle 2

k

k’

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 19

. Scattering of X-rays: A primer

consider a monochromatic plane (electromagnetic) wave with

wavevector k:

E(r,t) = ε Eo exp{i(kr-ωt)} with |k|=2π/λ, λ[Å]=hc/E, ω=2π/

elastic scattering:

ħ k’ =ħ k+ħQ

Scattering by a single electron:

Erad(R,t)/Ein =

-(e2/4πεomc2)exp(ikR)/R cosψ

thomson scattering length ro

(=2.82*10-5 Å)

k

k’ Q

spherical wave

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 20

.

scattered intensity:

IS/Io = |Erad|2 R2 / |EIn|

2 Ao R2 : solid angle seen by detector

Ao incident beam size

Is = (dζ/d ) (Io/Ao)

with the differential cross section (for Thomson scattering)

1 vertical

(dζ/d ) = ro2 P P = cos2ψ horizontal

½(1+cos2ψ) unpolarized

note: ζtotal = (dζ/d ) = (8π/3) ro2

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 21

. scattering by a single atom:

scattering amplitude by -rofo(Q) = –ro rj exp(iQ.rj)

an ensemble of electrons

fo(Q0) = Z, fo(Q ) = 0

form factor of an atom: f(Q,ħω) = fo(Q) +f ’ (ħω) + i f ’’ (ħω)

scattering intensity: Is = ro2 f(Q) f *(Q) P

(atomic) formfactor position of scatterers

dispersion corrections: level structure absorption effects

phase factor

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 22

. scattering by a crystal:

rj’ = Rn + rj

lattice vector + atomic position in lattice

Fcrystal (Q) = rj fj(Q)exp(iQrj) Rnexp(iQRn)

Is = ro2 F(Q) F*(Q) P

lattice sum phase factor of order unity or N (number of unit cells) if

Q Rn =2π x integer ($)

unit cell structure factor lattice sum

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 23

.

evaluation of lattice sums:

construct reciprocal space such that: ai aj* = 2π δij

with ai defining a

reciprocal lattice such that G = h a1* + k a2* + l a3*

and G fullfills ($) for Q = G (Laue condition)

k + Q = k’

Ewald sphere

sin (θ/2) = (Q/2) / k

Laue condition Bragg’s law

lattice sum: | Rn exp(iQRn) |2

N vc* δ (Q-G)

N number of unit cells; vc* unit cell volume in reciprocal space

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 24

.

construction of reciprocal space:

(real space lattice constants a1, a2, a3); vc = a1 (a2 x a3)

a1* = 2π/vc (a2 x a3) a2* = 2π/vc (a3 x a1) a3* = 2π/vc (a1 x a2)

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel

25

. The unit cell structure factor

Fuc(Q) = rj Fjmol(Q) exp(iQrj)

example: fcc lattice (use conventional cubic unit cell)

r1 = 0, r2 = ½ a (y + z), r3 = ½ a (z + x), r4 = ½ a(x + y)

G = ha1* + ka2* + la3*

a1* = 2π/vc (a2xa3) = 2π/a3 [ay x az] = 2π/a [y x z] = 2π/a x

a2* = 2π/vc (a2xa3) = 2π/a3 [az x ax] = 2π/a [z x x] = 2π/a y

a3* = 2π/vc (a2xa3) = 2π/a3 [ax x ay] = 2π/a [x x y] = 2π/a z

vc = a1 (a2 x a3)

G r1 = 2π/a ( hx + ky + lz) 0 = 0

G r2 = 2π/a ( hx + ky + lz) 1/2a(y + z) = π (k+l)

G r3 = 2π/a ( hx + ky + lz) 1/2a(z + x) = π (h+l)

G r4 = 2π/a ( hx + ky + lz) 1/2a(x + y) = π (h+k)

x

y

z

r4

r2

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel

26

. The unit cell structure factor for a fcc lattice

Fhklfcc(Q) = j=1- 4 f(Q) exp(iQrj) = f(Q) [ exp(iGr1) + … exp(iGr4)]

Fhkl fcc(Q)= f(Q) [ 1 + exp(iπ(k+l)) + exp(iπ(h+l)) + exp(iπ(h+k))]

4 if h,k,l are all even or odd

=

0 otherwise

Ihkl fcc (Q) = F(Q) F*(Q)

Reflections:

100 forbidden

111 allowed

200 allowed

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 27

.

From a measurement of a (large) set of crystal reflections |Fhkl|2 it is

possible to deduce the positions of the atoms in the unit cell.

Limitations:

phaseproblem: | F(Q )| = | F(-Q) |

| F(Q) | = | F(Q)e iΦ |

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 28

. Coherence

Longitudinal coherence:

Two waves are in phase at point P. How far

can one proceed until the two waves have

a phase difference of π:

l = (λ/2) (λ/ λ)

Transverse coherence:

Two waves are in phase at P. How far does

one have to proceed along A to produce a

phase difference of π:

2 t θ =λ

t = (λ/2) (R/D)

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel

29

. Fraunhofer Diffraction

Fraunhofer diffraction of a

rectangular aperture 8 x 7 mm2,

taken with mercury light λ=579nm (from Born&Wolf, chap. 8)

Fraunhofer diffraction of a

circular aperture, taken with

mercury light λ=579nm (from Born&Wolf, chap. 8)

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel

30

. Fraunhofer Diffraction (λ=0.1nm)

Coherence of light and matter: from basic concepts to modern applications, Vorlesung im GrK 1355, SS 2011 A. Hemmerich & G. Gruebel 31

. Speckle pattern

random arrangement of

apertures: speckle

regular arrangement of

apertures