10

cmss.kaist.ac.krcmss.kaist.ac.kr/cmss/papers/2010 초대형 부유식... · 2010-09-24 · 30 3B · 2010 5 317 ë ²ê (hydrostatic) g@ , " m g p; Ï ÍÎ e _ QDB . ý , m `ÍÎ_

  • Upload
    hatuyen

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

  • 30 3B 2010 5 315

    30 3B2010 5

    pp. 315 ~ 324

    Development of a Design Chart for the Initial Design Stage of Very Large Floating Structures

    **********

    Zi, GoangseupKim, Jin GyunLee, Seung OhLee, Phill-Seung

    Abstract

    We developed a design chart for very large floating structures through intensive hydroelastic analysis. Using this chart, one can

    predict the hydroelastic response of very large floating structures preliminarily at design stage without the cost-demanding

    hydroelastic analysis. This paper presents two new design charts based on the theory of VLFS. The purpose of the first design chart

    is to determine RAOs of the maximum longitudinal stress of VLFS considering properties of waves and structures. The design

    chart I can be applied to any sizes of VLFS in same aspect ratios and dimensionless stiffness parameters. The second design chart is

    developed to take into account the actual wave condition by using the Bretschneider spectrum with Beaufort sea state.

    Keywords : VLFS, design chart, hydroelastic analysis, wave spectrum, spectrum analysis

    .

    .

    I, II . I

    . I

    . I II , Beaufort

    Bretschneider .

    : , , , ,

    1.

    (Very Large Floating Structure;

    VLFS)

    , ,

    , , LNG ,

    . VLFS

    MOB (ONR, 1997~2000),

    MHP (NFESC, 1998~2004), (TRAM,

    1995~2001)

    .

    1999 , KAIST

    2009

    (, 2008; KAIST, 2009).

    VLFS , ,

    . VLFS

    VLFS .

    .

    VLFS 1980

    (Ando , 1983; Bishop , 1983).

    .

    2

    ,

    .

    (Webster , 1994; , 2001).

    * (E-mail : [email protected])

    ** () (E-mail : [email protected])

    *** (E-mail : [email protected])

    **** (E-mail : [email protected])

  • 316

    VLFS

    . VLFS

    (Andrianov, 2005) ,

    (2006, 2008)

    .

    , VLFS

    VLFS

    .

    ,

    ,

    (characteristic length, c)

    (Suzuki, Yoshida, 1996). 100

    m (Lw)

    100 m 8

    . VLFS

    50:1 VLFS

    (ISSC,

    2006; , 2008).

    VLFS

    ,

    , .

    .

    ,

    2~3 .

    ,

    .

    VLFS

    ,

    .

    VLFS

    .

    VLFS ,

    .

    2. VLFS

    2.1

    .

    , , ,

    (Newman, 1994).

    I, S,

    R .

    (1)

    ,

    ,

    .

    .

    (a) Laplace :

    (b) (z=0):

    (c) :

    (d) : 0

    (e) :

    p (Reza , 2006).

    (2)

    z t , , g

    . (2)

    F M .

    (3)

    (4)

    , n , r

    . (3) (4)

    .

    (5)

    mij, dij, kij , , , aij,

    bij, cij (added mass), (damping),

    I S R+ +=

    2

    0=

    p gz t=

    F pn Sds=

    M p r n( ) Sds=

    2

    mpq apq+( ) i bpq dpq+( ) cpq kpq+( )+ +[ ]qp

    j 1=

    N

    F pexct

    =

    1. VLFS

  • 30 3B 2010 5 317

    (hydrostatic) ,

    . ,

    , ,

    .

    (6)

    , p . p=1

    .

    ,

    . (3) (4)

    , .

    2.2 VLFS RAO

    VLFS 1

    . VLFS

    1

    . 1

    VLFS

    .

    (1) (6)

    , (6)

    p p

    .

    (7)

    (x, y, z) (6) (7) .

    (Response amplitude operators, RAO)

    (6)

    .

    (8)

    RAO .

    4 RAOp

    RAO . ,

    RAO

    RAO .

    2.3 VLFS

    ( ) .

    VLFS

    , ,

    (Riggs , 2007; , 2008;

    , 2008; Kim , 2009). ,

    .

    ,

    .

    3. VLFS

    3.1

    VLFS

    1 . 1

    qi

    qi

    ui up x y z, ,( )qp

    p 1=

    =

    up x y z, ,( )

    F iexct

    qp up

    qp qp0

    cos t p+( ) isin t p+( )+[ ]=

    RAO x y z, ,( ) up x y z, ,( )qp0cos

    p( )

    p 1=

    2

    up x y z, ,( )qp0sin

    p( )

    p 1=

    2

    +=

    up x y z, ,( ) p x y z, ,( ) Mp x y z, ,( )

    2. (RAO)

    1.

    Lw(T) (wave length)

    S(f) (wave spectrum)

    Ls, Ws, Ds , , a(f)

    (wave amplitude)

    T, f , xx

    (longitudinal stress)

    (wave induced angle)

    Mu (ultimate bending capacity)

    S (section modulus)

    2.

    (aspect ratio)Ss

    (stiffness parameter)

    (dimensionless wave length)

    L

    3.

  • 318

    ,

    . 2

    .

    (aspect ratio, )

    ( 3).

    VLFS

    . (9) Ls

    Ws .

    (9)

    =5 10

    .

    Ls

    Ws------=

    4. I, ( =5)

  • 30 3B 2010 5 319

    VLFS

    VLFS

    . (10) .

    (10)

    , Lw (m), Ls VLFS (m)

    . .

    (11) (Wang

    , 2008).

    (11)

    , T (sec) .

    .

    Lee Newman(2000)

    L

    L

    LLw

    Ls------=

    Lw 1.56T2

    =

    5. I, ( =10)

  • 320

    (12) .

    (12)

    , Ss , E , I

    , s VLFS , g

    , L .

    3.2 I:

    I,

    II . I VLFS

    RAO

    . I

    (wave induced angle, ), (dimen-

    sionless wave length, ),

    (dimensionless stiffness parameter, Ss)

    (aspect ratio, )(Lee, Newman, 2000).

    ,

    . ,

    RAO. 0.70106 4.90106

    . 0o 90o

    . I

    RAO

    .

    4 5 5 10 I

    7 . I

    7 0o 90o

    . I ,

    1/4 .

    I

    RAO .

    RAO ,

    RAO

    . RAO

    5 10 RAO

    5 .

    3.3 II:

    ,

    .

    RAO

    (ultimate bending capacity,

    Mu) .

    Bretschneider

    . Bretschneider (9)

    .

    (13)

    , H1/3 (m), T1 (average wave

    period, sec), f (rad/sec) .

    VLFS

    .

    (13) H1/3 T1

    6a 1 12

    SsEI

    sgL5

    --------------=

    L

    S f( ) 173H1 3

    2T1

    4f

    5exp 692T

    1

    4f

    4( )=

    6. Beaufort

    7.

  • 30 3B 2010 5 321

    Beaufort (Journee Massie,

    2001).

    fi ai (14)

    .

    (14)

    6 VLFS

    I RAO

    ,

    Mu (15) .

    (15)

    , As , Larm

    , , , (fi)s RAO

    .

    8 9 II .

    S fi( )df1

    2---ai

    2=

    Mu AsLarm fi( )a fi( )=

    8. II : Mu ( =5, Ls=300 m)

  • 322

    7 II .

    VLFS , ,

    , VLFS

    Beaufort . VLFS

    II ,

    , (Sreq) .

    (Sdes)

    VLFS .

    .

    .

    9. II: Mu ( =10, Ls=100 m)

  • 30 3B 2010 5 323

    4.

    . VLFS

    5, 300 m, Ss

    =2.80106 , VLFS

    10 .

    Sdes 5.7 m3.

    12

    .

    II

    1600103 kNm . 100

    MPa Sreq 16 m3

    . 400 MPa

    4 m3

    ,

    3.30106 ( 8).

    1750103 kNm .

    400 MPa 4.2 m3

    .

    II

    5% .

    VLFS

    .

    5.

    ,

    . , ,

    ,

    .

    10. , 3D

    11. II

  • 324

    ,

    .

    .

    . Beaufort Bretschneider

    .

    .

    2010 ()

    (2010-0015690)

    (: 05B01)

    .

    , , (2008)

    ,

    , , 18 3, pp. 356-360.

    , , , (2006)

    , ,

    , 16 2, pp. 132-140.

    (2008) .

    (2001)

    ,

    , , 38 4, pp. 39-47.

    , , , , (2008,

    , 2008

    , , pp. 1123-1127.

    (2008) Andrianov, A.I. (2005) Hydroelastic Analysis of Very Large Float-

    ing Structures, Doctorate Thesis, Delft University of Technol-

    ogy, ISBN 90-8559-081-7, p. 188.

    Ando, S., Ohakawa, Y., and Ueno, I. (1983) Feasibility study of a

    floating airport, Report of Ship Research Institute, Japan, Sup-

    plement No. 4.

    Bishop, R.E.D. and Price, W.G. (1983) An introduction to ship

    hydroelasticity, Journal of Sound and Vibration, Vol. 87, No. 3,

    pp. 391-407.

    ISSC (2006) Report of Special Committee VI.2 Very Large Float-

    ing Structures, Proceeding 16th International Ship and Off-

    shore Structure Congress, Vol. 2, pp. 391-442.

    Journee, J.M.J. and Massie, W.W. (2001) Offshore Hydromechan-

    ics, Delf University of Technology.

    KAIST (2009) Mobile Floating Harbor for Jump Increased Con-

    tainer Handling Capacity.

    Kim, Y.I., Kim, K.H., and Kim, Y.H. (2009) Springing analysis of a

    seagoing vessel using fully coupled BEM-FEM in the time

    domain, Ocean Engineering, Vol. 36, pp. 785-796.

    Lee, C.-H. and Newman, J.N. (2000) An assessment of hydroelas-

    ticity for very large hinged vessels, Journal of Fluids and

    Structures, Vol. 14, pp. 957-970.

    Newman, J.N. (1994) Wave effects on deformable bodies, Ocean

    Research, Vol. 16, No 1, pp. 47-59.

    Riggs, H.R., Hideyuki Suzuki, Ertekin, R.C., Kim, J.W., and Iijima,

    K. (2008) Comparison of hydroelastic computer codes based

    on the ISSC VLFS benchmark, Ocean Engineering, Vol. 35,

    Issue 7, pp. 589-597.

    Riggs, H.R., Niimi, K.M., and Huang, L.L. (2007) Two benchmark

    problems for three-dimensional, linear hydroelasticity, Journal

    of Offshore Mechanics and Arctic Engineering, Vol. 129, pp.

    149-157.

    Reza, T., Shixiao, F., and Torgeir, M. (2006) Validated two and

    three dimensional linear hydroelastic analysis using standard

    software, Proceeding of the Sixteenth (2006) International Off-

    shore and Polar Engineering Conference, San Francisco, USA,

    pp. 101-107.

    Suzuki, H. and Yoshida, K. (1996) Design flow and strategy for

    safety of very large floating structure, VLFS'96, pp. 21-27.

    Wang, C.M., Watanabe, E., and Utsunomiya, T. (2008) Very Large

    Floating Structures, Taylor & Francis.

    (: 2009.11.30/: 2010.2.3/: 2010.3.11)