23
CMC Materials for Aircraft Brakes Bernhard Heidenreich, Linda Klopsch, Dietmar Koch DLR– German Aerospace Center, Institute of Structures and Design, Stuttgart, Germany 11th International Carbon Festival 2nd Global Carbon Cluster Forum October 5-7, 2016 Jeonju, Korea www.DLR.de Chart 1

CMC Materials for Aircraft Brakes - DLR Portalelib.dlr.de/110001/1/2016_ICF_Heidenreich.pdfCMC Materials for Aircraft Brakes . ... Compact multidisc brake system ... High Performance

Embed Size (px)

Citation preview

CMC Materials for Aircraft Brakes

Bernhard Heidenreich, Linda Klopsch, Dietmar Koch DLR– German Aerospace Center, Institute of Structures and Design, Stuttgart, Germany 11th International Carbon Festival 2nd Global Carbon Cluster Forum October 5-7, 2016 Jeonju, Korea

www.DLR.de • Chart 1

C/C-SiC Materials - From Space to Brakes

www.DLR.de • Chart 2

- High temperature stability (thermal shock, hot spots)

- High abrasion resistance

Expert Reentry Capsule Nosecap

www.DLR.de • Chart 3

Know how in processing and design of

hard and high temperature stable materials and parts

Expert Reentry Capsule Nosecap

C/C-SiC Materials - From Space to Brakes

Why Ceramic Brake Systems are Attractive

Reduced weight 20 – 25 kg per car Density: 2 g/cm³ (cast iron: 7 g/cm³ ) High hardness, low wear rates Improved performance and comfort (short braking distance, no judder, no fading) Corrosion resistance, low dust pruduction

www.DLR.de • Chart 4

Costs

Performance

Advanced braking systems for heavy and fast cars, escalators, trains, planes

Manufacturing Process: Liquid Silicon Infiltration

www.DLR.de • Chart 5

Precursor Additives Fibers Silicon Granules

CFRP

CFRP (Shaping) Pyrolysis Siliconization

T < 250 ºC T > 900 ºC Si + C → SiC T > 1500 ºC

C/C C/C-SiC

Effect of Fiber Reinforcement in Ceramics

www.DLR.de • Chart 6

brittle vs. non catastrophic

XB

XD Variation parameter Raw Materials

• Fibre type • Fibre preform • Fibre orientation • Precursor • Additives • Si type

Processes

• Fibre pretreatment • Process times • Graphitizing • Coatings

Tailorable Material Properties

Tailored C/C-SiC Materials

Strength Stiffness

Thermal expansion Thermal conductivity

Wear Oxidation

Cost

SF

XG

UD

www.DLR.de • Chart 7

MPA Stuttgart

Friction samples Ø 70 mm

Variation of: • SiC, C, Si content • Fibre type • Fibre architecture • …

Tribological Properties of C/C-SiC Materials

0 20 40 60 800

0,2

0,4

0,6

0,8

1

Time [s]

Coe

ffici

ent o

f fric

tion

SiC

C/C-SiC basic material

low energy

C/C

0 20 40 60 800

0,2

0,4

0,6

0,8

1

Time [s]C

oeffi

cien

t of f

rictio

n

SiC

high energy

C/C-SiC basic material

C/C

Low Energy Braking (0.1 MPa; 6 m/s 0.3 W/mm²; 20 kJ)

High Energy Braking (0.35 MPa; 16 m/s, 3 W/mm²; 80 kJ)

MPA

www.DLR.de • Chart 8

Graded C/C-SiC With SiC Rich Friction Surface

www.DLR.de • Chart 9

RTM Autoclave Frieß et al., Adv.Sci.Tech., 2003

SiCralee Coating

www.DLR.de • Chart 10

thick and stable SiCralee coating on segmented brake disc (≈ 290 x 100 x 12 mm³) after high performance testing no spallation visible deposition of sintermetallic brake pad material

Basic research

(from 1990)

Commercial car brakes

(2001)

Other friction application

(2004)

Propeller brake (2012)

Brake Development at DLR

www.DLR.de • Chart 11

Porsche / SGL Schindler / FCT Umbra / SKT ICE brake (Matech-project)

Propeller Brake for A400M

Source:Turboprop_operation.png: Emoscopes

Propeller brake unit Rot

or

Stat

or

Stat

or

Brake pads

Compact multidisc brake system (Umbra). One rotor disc linked with propeller, two stator discs fixed in brake casing. Four C/C-SiC brake pads (Ø 120 mm x 6 mm) rivetted to steel discs.

www.DLR.de • Chart 12

Application

Propeller stopping after landing / blocking during parking (storm) Braking conditions • Ø Propeller = 5.3 m • v max. ≤ 650 rpm = 6.3 m/s • p max. ≤ 3.2 MPa

Requirements • t braking ≤ 8 s COF dynamic ≥ 0.45 • Wear max. ≤ 0.27 mm³/kJ-1

• COF static > 0.25 • E max. > 100 kJ Tmax. > 450 °C CMC brake pads

www.DLR.de • Chart 13

Development of C/C-SiC prake pads

Serial production Schunk

2011 2010 2013

Qualification (Umbra) 10 sets

Technology transfer DLR Umbra,Schunk

2012

Pre-series manufacture 30 sets (DLR)

Firs

t con

tact

Qualification (Umbra)

Lice

nce

agre

emen

t

Mat

eria

l sp

ecifi

catio

n

Mat

eria

l sel

ectio

n C

/C-S

iC X

S

C/C

-SiC

qu

alifi

ed

Screening Test (3 C/C-SiC variants)

www.DLR.de • Chart 14

What is next?

Improved materials based on new fibre preforms • Adjustment of temperature distribution

(thermal conductivity and thermal capacity) • Higher mechanical properties • Reprodrucibility

Sandwich design for lightweight structures and brake discs

Improvement and prediction of corrosion resistance Failure analysis Liefetime prediction

www.DLR.de • Chart 15 > Eurobrake – High Performance Ceramic Brakes > Dietmar Koch > 05-2014

Different Fibre Preforms

Short Fibres Circular Knitted Fabric

Woven Fabric Tufted

Tailored Fibre Placement

Different Fiber Preforms for Ceramic brake disc application

-https://www1.ethz.ch/structures/education/master/intro/compulsory/composites/Skript/151-0307-V4.0-K07_Textile-Halbzeuge.pdf

www.DLR.de • Chart 16

Brake Discs Based on Circular Knitted Fabrics

www.DLR.de • Chart 17

Warm Pressing

Pyrolysis

Siliconization

Tufted Fibre Placement (TFP)

www.DLR.de • Chart 18

Aims: Higher mechanical properties Improved thermal management Reproducible Manufacturing

Mechanical Properties

020406080

100120140160180200

Short Fibers Fabric XS knitted fabric

Bending Strength [Mpa]

0

10

20

30

40

50

60

70

80

Short Fibers Fabric XS knitted fabric

Young´s Modulus [Gpa]

www.DLR.de • Chart 19

Thermal Properties

-2

-1

0

1

2

3

4

0 500 1000 1500

Ther

mal

Exp

ansi

on [1

0-6 /k

]

Temperature [°C]

Short Fibers

Fabric XS

knitted fabric

0

5

10

15

20

25

0 100 200 300 400 500 600

Ther

mal

Con

duct

ivity

[W/(m

K)]

Temperature [°C]

short fibers

Fabric XS

knitted fabric

TFP tufted

www.DLR.de • Chart 20

Foldcore Technology

www.DLR.de • Chart 21

Y. Klett, University of Stuttgart, Institute of Aircraft Design, 2013

> HTCMC-9> B. Heidenreich> 28.06.2016

Isometric folding no internal stresses, deformation or cracks

Ventilated Brake Discs Based on Foldcores

C/C Core

C/C Skin

www.DLR.de • Chart 22

B. Heidenreich, D. Koch (DLR), N. Gottschalk, Y. Klett (IFB), 2016

C/C Skin

Joined C/C structure

Joining paste

C/C-SiC sandwich structure

Ventilated Brake Discs Based on Foldcores

C/C Core

C/C Skin

www.DLR.de • Chart 23

B. Heidenreich, D. Koch (DLR), N. Gottschalk, Y. Klett (IFB), 2016

C/C Skin

Joined C/C structure

Joining paste

C/C-SiC sandwich structure