48
CMB Polariztion B. Winstein Chicago, CfCP • General Introduction to the Problem • The CAPMAP Solution

CMB Polariztion B. Winstein Chicago, CfCP

  • Upload
    dunn

  • View
    19

  • Download
    1

Embed Size (px)

DESCRIPTION

CMB Polariztion B. Winstein Chicago, CfCP. General Introduction to the Problem The CAPMAP Solution. CMB Power Spectra. POLAR. E/B Modes. Energy of Inflation?. Scale of Inflation < 2 x 10 16 GeV (COBE) Ultimate goal of the field No guarantee of a detection - PowerPoint PPT Presentation

Citation preview

Page 1: CMB Polariztion B. Winstein Chicago, CfCP

CMB PolariztionB. Winstein

Chicago, CfCP• General Introduction to the Problem• The CAPMAP Solution

Page 2: CMB Polariztion B. Winstein Chicago, CfCP
Page 3: CMB Polariztion B. Winstein Chicago, CfCP

CMB Power Spectra

POLAR

Page 4: CMB Polariztion B. Winstein Chicago, CfCP

E/B Modes

Page 5: CMB Polariztion B. Winstein Chicago, CfCP

Energy of Inflation?

• Scale of Inflation < 2 x 1016 GeV (COBE)• Ultimate goal of the field

– No guarantee of a detection– Analogous to proton decay searches

• Neutrino physics important “byproduct”• Lensing case needs development

• Ultimate limit (from lensing) appears to be ≈ 3 x 1015 GeV (Knox and Song)

Page 6: CMB Polariztion B. Winstein Chicago, CfCP

Signal Levels, Sensitivities

• Fine Scale Anisotropies– T: 40 K– E: 4 K– B: ≤ 0.2 K

• Pixel Sensitivities (approx. statistical errors only!)– Map: ≈ 70 K– Planck: ≈ 10 K– Planck sensitivity concentrated (30 x 30): ≈ 0.2 K– Polarbear (30 x 30): ≤ 0.1 K

Page 7: CMB Polariztion B. Winstein Chicago, CfCP

Considerations for Detecting Polarization

• HEMT/Bolometer?• Frequency Coverage• Ground, Balloon, Space based?• Scanning Strategy, Coverage?• Foregrounds

– More attention needed– CfCP Workshop?

Page 8: CMB Polariztion B. Winstein Chicago, CfCP
Page 9: CMB Polariztion B. Winstein Chicago, CfCP

Foregrounds• Dust• Synchrotron• Bremsstrahlung• S-Z from clusters• Point sources• Gravitational-lensing

– (non Gaussian)• ????

Page 10: CMB Polariztion B. Winstein Chicago, CfCP

Foregrounds, continued

• Much more important for polarization• None has been fully characterized• Many free parameters to be determined• Excellent studies by a few groups

e.g. Tegmark, Eisenstein, Hu, Oliveira-Costa, astro-ph/9905257

Note: small patch studies can take advantage of especially clean regions

Page 11: CMB Polariztion B. Winstein Chicago, CfCP
Page 12: CMB Polariztion B. Winstein Chicago, CfCP

ForegroundsDe Zotti, Burigana, Baccigalupi

30 GHz

100 GHz

217 GHz

Page 13: CMB Polariztion B. Winstein Chicago, CfCP

Radiometers a la DickeAntenna Noise as a pulse train:

1/is receiver bandwidth

•Tsystem = 100 K

•Tsignal = 1 K = 10-8 of system Temp.need 1016 pulses

•Take10 GHzCount for 106 seconds for 1

•Challenge to keep systematics (amplifier drifts, atmospheric noise, etc.) under control during this large integration time.

Page 14: CMB Polariztion B. Winstein Chicago, CfCP
Page 15: CMB Polariztion B. Winstein Chicago, CfCP

Detector Technology

• Bolometer– Incoherent– Very low system temp– Stable– Systematics

• Several clever schemes look promising

– No doubt the only way to the B-modes

• HEMT– Coherent– Higher system temp.– Systematics

• Most (all) limits today come from HEMT systems

Page 16: CMB Polariztion B. Winstein Chicago, CfCP
Page 17: CMB Polariztion B. Winstein Chicago, CfCP
Page 18: CMB Polariztion B. Winstein Chicago, CfCP
Page 19: CMB Polariztion B. Winstein Chicago, CfCP
Page 20: CMB Polariztion B. Winstein Chicago, CfCP
Page 21: CMB Polariztion B. Winstein Chicago, CfCP
Page 22: CMB Polariztion B. Winstein Chicago, CfCP
Page 23: CMB Polariztion B. Winstein Chicago, CfCP
Page 24: CMB Polariztion B. Winstein Chicago, CfCP

Current Polarization Experiments(representative sample)

• HEMT based: coherent, low sensitivity– PIQUE/CAPMAP– Polar/Compass– DASIPOL– MAP

• Bolometer based: incoherent, high sensitivity– Boomerang 2001– Maxipol– Planck

Experiments distinguished by•Frequency coverage•Sensitivity•Scanning strategy•Systematic controls

Page 25: CMB Polariztion B. Winstein Chicago, CfCP

Frequencies (#) Beam Site TechniquePOLAR 30 (1) 7o WI Correl. Rad., axial spinCOMPASS 30 (1), 90 (1) 20', 7' WI Correl. Rad., NCP scanPIQUE 40 (1), 90 (1) 30', 15' NJ Correl. Rad., NCP chopCAPMAP 40 , 90 13', 6' NJ? Correl. Rad. ArrayDASI 30 (13) 20', 7' S. Pole InterferometerCBI 30 (13), 90 (13)? 3' Atacama InterferometerVLA 8.4 6'' Socorro InterferometerPolatron 90 (1) 2' OVRO Bolo,1/2 λpλateQUEST 150,225(~30) 4',3' Chiλe? BoλoArray,1/2λpλatePOLARBEAR 150…(3000dt'r) 10' S.PoλeorM.Kea BoλoArrayBOOM2K 150(4),240(4),340(4) 10' AtarcticLB BoλoArrayMAXIPOL 150(12),420(4) 10' US-Baλλoo BoλoArray,coλd1/2λpλateBaR-SPOrt 32,90 30',12' AtarcticLB Correλ.Rad.ArrayMAP 22,30,40(2),60(2),90(4) 13' L2,fuλλ-ky Correλ.Rad.Array*

SPOrt 22,32,60,90 7o ISS,fuλλ-ky Correλ.Rad.ArrayPLANCK-LFI 30(4),44(6),70(12),100(34) 33',23',13',

10'L2,fuλλ-ky Correλ.Rad.Array

PLANCK-HFI 100(4),143(12),217(12),353(6),545(8),857(6)

11',8',6',5',5',5'

BoλoArray

Compilation by Peter Timbie

*

Page 26: CMB Polariztion B. Winstein Chicago, CfCP

CAPMAP

• Chicago– M. Hedman, D. Sharaf, D. Samtleben, B. Winstein + 4

undergraduates• Miami

– J. Gundersen, E. Stefanescu + undergraduates• Princeton

– D. Barkats, P. Farese, J. Mcmahon, S. Staggs + lots of undergraduates

• Todd Gaier (JPL)

Page 27: CMB Polariztion B. Winstein Chicago, CfCP

PIQUE 90 GHz Dewar

Page 28: CMB Polariztion B. Winstein Chicago, CfCP
Page 29: CMB Polariztion B. Winstein Chicago, CfCP

Crawford Hill 7mTelescope

Page 30: CMB Polariztion B. Winstein Chicago, CfCP

CAPMAP horn/lens design

Page 31: CMB Polariztion B. Winstein Chicago, CfCP
Page 32: CMB Polariztion B. Winstein Chicago, CfCP

W-band Horn/lens used for preliminary studies(similar)

Page 33: CMB Polariztion B. Winstein Chicago, CfCP
Page 34: CMB Polariztion B. Winstein Chicago, CfCP
Page 35: CMB Polariztion B. Winstein Chicago, CfCP

Tau A Correlator Output vs. Paralactic Angle

Page 36: CMB Polariztion B. Winstein Chicago, CfCP

PIQUE Chopping Plate Correlator Calibrations

Page 37: CMB Polariztion B. Winstein Chicago, CfCP

CAPMAP Strategy

• Concentrate at the best angular scale– 3’ beam

• Map a small cap around the NCP– High sensitivity

• Try a ring scan, like TOPHAT (Dale Fixen)– May fallback on an az-scan

Page 38: CMB Polariztion B. Winstein Chicago, CfCP
Page 39: CMB Polariztion B. Winstein Chicago, CfCP

Single Horn ImprovementsPIQUE CAPMAP Factor

Hours 250 250 1.0

Tsys 130 90 1.44

BW 12 GHz 15 GHz 1.12

Modes Half All 1.41

Signal (expected)

2 K 5 K 2.5

Senfac = 0.8 K, W-band

Over Factor = 5.7

Page 40: CMB Polariztion B. Winstein Chicago, CfCP

SENSITIVITY SIMULATIONS (using CfCP 32-node cluster)

Page 41: CMB Polariztion B. Winstein Chicago, CfCP

CAPMAP Multi-band Sensitivity

Page 42: CMB Polariztion B. Winstein Chicago, CfCP
Page 43: CMB Polariztion B. Winstein Chicago, CfCP

“Typical” CAPMAP HEMT Performance

Page 44: CMB Polariztion B. Winstein Chicago, CfCP
Page 45: CMB Polariztion B. Winstein Chicago, CfCP

Chicago Test Dewar

Page 46: CMB Polariztion B. Winstein Chicago, CfCP

CAPMAP DAQ

– cPCI card– Gain/filtering/offsets– Sigma-delta 32 kHz– 24 bit resolution– Coadding in FPGA

• Digital demodulation• 250 Hz

– 7 GB per day

Page 47: CMB Polariztion B. Winstein Chicago, CfCP

Conclusions

• Polarization is the next frontier in the CMB• We hope that CAPMAP will contribute

– Sensitivity at the most interesting scales (l=1000)

– SENFAC=0.4 K, this winter (4 horns)– SENFAC<0.2 K, after 3 seasons (10 horns)– Q-band sensitivity a bonus (KUPID)– Polarized offsets must be handeled

Page 48: CMB Polariztion B. Winstein Chicago, CfCP