37
Cluster structure of the quantum Coxeter–Toda system Gus Schrader Columbia University CAMP, Michigan State University May 10, 2018 Slides available at www.math.columbia.edu/schrader Gus Schrader Cluster structure of quantum Coxeter–Toda system

Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Cluster structure of the quantum Coxeter–Todasystem

Gus Schrader

Columbia University

CAMP, Michigan State University

May 10, 2018

Slides available atwww.math.columbia.edu/∼ schrader

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 2: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Motivation

I will talk about some joint work with Alexander Shapiro on anapplication of cluster algebras to quantum integrable systems.

Motivation: a conjecture from quantum higher Teichmullertheory.

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 3: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Setup for higher Teichmuller theory

S = a marked surface

G = PGLn(C)

XG ,S := moduli of framed G–local systems on S

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 4: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

XG ,S is a cluster Poisson variety

Fock–Goncharov: XG ,S is a cluster Poisson variety: it’scovered up to codimension 2 by an atlas of toric charts

TΣ : (C∗)d −→ XG ,S

,

labelled by quivers QΣ. The Poisson brackets are determined bythe adjacency matrix εjk of QΣ:

{Yj ,Yk} = εkjYjYk .

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 5: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Canonical quantization of cluster varieties

Letq = eπib

2, b2 ∈ R>0 \Q.

Promote each cluster chart to a quantum torus algebra

T qΣ =

⟨Y1, . . . , Yd

⟩/{Yj Yk = q2εkj Yk Yj}.

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 6: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Positivity for quantum cluster varieties

Embed each quantum cluster chart T q into a Heisenberg algebraH generated by y1, . . . , yd with relations

[yj , yk ] =i

2πεjk ,

by the homomorphism

Yj 7→ e2πbyj .

H has irreducible Hilbert space representations in which thegenerators Yj act by positive self-adjoint operators.

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 7: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Representations of X qG ,S

The quantum cluster algebra X qG ,S has positive representations

Vλ[S ]

labelled by all possible real eigenvalues λ of monodromies aroundthe punctures of S .

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 8: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Quantum mutation

The non–compact quantum dilogarithm function ϕ(z) is theunique solution of the pair of difference equations

ϕ(z − ib±1/2) = (1 + e2πb±1z)ϕ(z + ib±1/2)

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 9: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Quantum mutation

Sincez ∈ R =⇒ |ϕ(z)| = 1,

and each yk is self–adjoint we have unitary operators

ϕ(yk)↔ quantum mutation in direction k

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 10: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Representation of cluster modular group

The quantum dilogarithm satisfies the pentagon identity:

[p, x ] =1

2πi

=⇒ ϕ(p)ϕ(x) = ϕ(x)ϕ(p + x)ϕ(p).

So we get a unitary representation of the cluster modulargroup(oid).

For XG ,S , this group contains the mapping class group of thesurface (realized by flips of ideal triangulation)

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 11: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Modular functor conjecture

So we have an assignment:

marked surface S 7−→{algebra X qG ,S , representation of X q

G ,S on V ,

unitary action of MCG(S) on V}.

Conjecture: (Fock–Goncharov ‘09) This assignment is functorialunder gluing of surfaces.

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 12: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Modular functor conjecture

i.e. if S = S1 ∪γ S2, there should be a mapping–class–groupequivariant isomorphism

V [S ] '∫ ⊕ν

Vν [S1]⊗ Vν [S2]

ν = eigenvalues of monodromy around loop γ

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 13: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Relation with quantum Toda system

So we need to understand the spectral theory of the operatorsH1, . . . , Hn quantizing the functions on XG ,S sending a localsystem to its eigenvalues around γ.

If we can find a complete set of eigenfunctions for H1, . . . , Hn

that are simultaneous eigenfunctions for the Dehn twist around γ,we can construct the isomorphism and prove the conjecture.

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 14: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Relation with quantum Toda system

Theorem (S.–Shapiro ’17)

There exists a cluster for XG ,S in which the operators H1, . . . , Hn

are identified with the Hamiltonians of the quantumCoxeter–Toda integrable system.

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 15: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Classical Coxeter–Toda system

Fix G = PGLn(C), equipped with a pair of opposite Borelsubgroups B±, torus H = B+ ∩ B−, and Weyl group W ' Sn.

We have Bruhat cell decompositions

G =⊔u∈W

B+uB+

=⊔v∈W

B−vB−.

The double Bruhat cell corresponding to a pair (u, v) ∈W ×Wis

Gu,v := (B+uB+) ∩ (B−vB−) .

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 16: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Double Bruhat cells

Berenstein–Fomin–Zelevinsky: the double Bruhat cells Gu,v ,and their quotients Gu,v/AdH are a cluster varieties.

e.g. G = PGL4, u = s1s2s3, v = s1s2s3. The quiver for Gu,v/AdHis

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 17: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Poisson structure on G

There is a natural Poisson structure on G with the following keyproperties:

Gu,v ⊂ G are all Poisson subvarieties, whose Poissonstructure descends to quotient Gu,v/AdH .

The algebra of conjugation invariant functions C[G ]AdG

(generated by traces of finite dimensional representations ofG ) is Poisson commutative:

f1, f2 ∈ C[G ]AdG =⇒ {f1, f2} = 0

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 18: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Cluster Poisson structure on G

Gekhtman–Shapiro–Vainshtein: the Poisson bracket onC[Gu,v ] is compatible with the cluster structure: ifY1, . . . ,Yd are cluster X–coordinates,

{Yj ,Yk} = εjkYjYk ,

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 19: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Classical Coxter–Toda system

Now suppose u, v are both Coxeter elements in W (each simplereflection appears exactly once in reduced decomposition)e.g. G = PGL4, u = s1s2s3, v = s1s2s3.

Then

dim(Gu,v/AdH) = l(u) + l(v)− dim(H)

= 2dim(H),

and we have dim(H)–many independent generators of our Poissoncommutative subalgebra C[G ]G

=⇒ we get an integrable system on Gu,v/AdH , called theCoxter–Toda system.

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 20: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Quantization of Coxeter–Toda system

Consider the Heisenberg algebra Hn generated by

x1, . . . , xn; p1, . . . , pn,

[pj , xk ] =δjk2πi

acting on L2(Rn), via

pj 7→1

2πi

∂xj

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 21: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Quantization of Coxeter–Toda system

A representation of the quantum torus algebra for theCoxeter–Toda quiver:

e.g. Y2 acts by multiplication by e2πb(x2−x1).

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 22: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Construction of quantum Hamiltonians

Let’s add an extra node to our quiver, along with a “spectralparameter” u:

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 23: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Construction of quantum Hamiltonians

Theorem (S.–Shapiro)

Consider the operator Qn(u) obtained by mutating consecutively at0, 1, 2, . . . , 2n. Then

1 The quiver obtained after these mutations is isomorphic to theoriginal;

2 The unitary operators Qn(u) satisfy

[Qn(u),Qn(v)] = 0,

3 If A(u) = Qn(u − ib/2)Qn(u + ib/2)−1, then one can expand

A(u) =n∑

k=0

HkUk , U := e2πbu

and the commuting operators H1, . . . ,Hn quantize theCoxeter–Toda Hamiltonians.

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 24: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Example: G = PGL4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 25: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Example: G = PGL4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 26: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Example: G = PGL4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 27: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Example: G = PGL4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 28: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Example: G = PGL4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 29: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Example: G = PGL4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 30: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Example: G = PGL4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 31: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Example: G = PGL4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 32: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

The Dehn twist

The Dehn twist operator Dn from quantum Teichmuller theorycorresponds to mutation at all even vertices 2, 4, . . . , 2n:

We have[Dn,Qn(u)] = 0

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 33: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Construction of the eigenfunctions

Problem: Construct complete set of joint eigenfunctions (i.e.b–Whittaker functions) for operators Qn(u),Dn.

e.g. n = 1.Q1(u) = ϕ(p1 + u)

If λ ∈ R,Ψλ(x1) = e2πiλx1

satisfiesQ1(u)Ψλ(x1) = ϕ(λ+ u)Ψλ(x1).

(equivalent to formula for Fourier transform of ϕ(z))

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 34: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Recursive construction of the eigenfunctions

Recursive construction: let

Rn+1n (λ) = Qn (λ∗)

e2πiλxn+1

ϕ(xn+1 − xn),

where λ∗ = i(b+b−1)2 − λ.

Pengaton identity =⇒

Qn+1(u) Rn+1n (λ) = ϕ(u + λ) Rn+1

n (λ) Qn(u).

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 35: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Recursive construction of the eigenfunctions

So given a gln eigenvector Ψλ1,...,λn(x1, . . . , xn) satisfying

Qn(u)Ψλ1,...,λn =n∏

k=1

ϕ(u + λk) Ψλ1,...,λn ,

we can build a gln+1 eigenvector

Ψλ1,...,λn+1(x1, . . . , xn+1) := Rn+1n (λn+1) ·Ψλ1,...,λn

satisfying

Qn+1(u)Ψλ1,...,λn+1 =n+1∏k=1

ϕ(u + λk) Ψλ1,...,λn+1 .

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 36: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

A modular b–analog of Givental’s integral formula

Writing all the Rn+1n (λ) as integral operators, we get an explicit

Givental–type integral formula for the eigenfunctions:

Ψ(n)λ (x) = e2πiλnx

∫ n−1∏j=1

(e2πi t j (λj−λj+1)

j∏k=2

ϕ(tj ,k − tj ,k−1)

j∏k=1

dtj ,kϕ(tj ,k − tj+1,k − cb)ϕ(tj+1,k+1 − tj ,k)

),

where tn,1 = x1, . . . , tn,n = xn.e.g. n = 4 we integrate over all but the last row of the array

t11

t21 t22

t31 t32 t33

x1 x2 x3 x4

Gus Schrader Cluster structure of quantum Coxeter–Toda system

Page 37: Cluster structure of the quantum Coxeter Toda systemmath.columbia.edu/~schrader/camp.pdf · Cluster structure of the quantum Coxeter{Toda system Gus Schrader Columbia University CAMP,

Unitarity of the b–Whittaker transform

Using the cluster construction of the b–Whittaker functions, wecan prove

Theorem (S.–Shapiro)

The b–Whittaker transform

(W[f ])(λ) =

∫Rn

Ψ(n)λ (x)f (x)dx

is a unitary equivalence.

This completes the proof of the Fock–Goncharov conjecture forG = PGLn.

Gus Schrader Cluster structure of quantum Coxeter–Toda system