89
Clocks and Gravity Claus L¨ ammerzahl and Hansj¨ org Dittus Zentrum f¨ ur Angewandte Raumfahrttechnologie und Mikrogravitation Center for Applied Space Technology and Microgravity (ZARM) University of Bremen Airlie From Quantum to Cosmos, May 22. – 24. 2006 C. L¨ ammerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 1 / 55

Clocks and Gravity - UCLA Physics & AstronomyThe situation of standard physics The status Universal tool Clocks are a universal tool for testing space–time properties GR: Physics

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

  • Clocks and Gravity

    Claus Lämmerzahl and Hansjörg Dittus

    Zentrum für Angewandte Raumfahrttechnologie und MikrogravitationCenter for Applied Space Technology and Microgravity(ZARM)

    University of Bremen

    AirlieFrom Quantum to Cosmos, May 22. – 24. 2006

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 1 / 55

  • Clocks and Gravity

    Well known issues

    Gravitational redshift

    Important effect within Einstein’s General RelativityNeeded for clock synchronization on EarthNeeded for GPS

    Universality of gravitational redshift

    Important for the structure of General Relativity

    Points made here

    Clocks are a universal tool

    Clocks have many important practical applications

    Most space missions may profit from clocks onboard

    Time and position are independent observables

    Technology and Fundamental Physics

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 2 / 55

  • Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 3 / 55

  • Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 3 / 55

  • Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 3 / 55

  • Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 3 / 55

  • Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 3 / 55

  • Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 3 / 55

  • Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 3 / 55

  • The situation of standard physics

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 4 / 55

  • The situation of standard physics The status

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 5 / 55

  • The situation of standard physics The status

    Structure of standard physics

    Einstein Equivalence Principle

    Universalityof Free Fall

    Universality ofGravitat. Redshift

    LorentzInvariance

    General Relativity

    Gravity = MetricEinstein–equations

    Equations of motion for matter

    Maxwell–equationDirac–equation

    Matter determinesgravity

    Gravity determinesdynamics

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 6 / 55

  • The situation of standard physics The status

    The present situation

    All aspects of Lorentz invariance are experimentally well tested and confirmed

    Foundations

    Postulates

    c = constPrinciple of Relativity

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 7 / 55

  • The situation of standard physics The status

    The present situation

    All aspects of Lorentz invariance are experimentally well tested and confirmed

    Foundations

    Postulates

    c = constPrinciple of Relativity

    Tests = Clock tests

    Independence of c fromvelocity of the source

    Universality of c

    Isotropy of c

    Independence of c fromvelocity of the laboratory

    Time dilation

    Isotropy of physics(Hughes–Dreverexperiments)

    Independence of physics fromthe velocity of the laboratory

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 7 / 55

  • The situation of standard physics The status

    The present situation

    Many aspects of the Universality of Free Fall are experimentally well tested andconfirmed

    Postulate

    In a gravitational field allstructureless test particles fall inthe same way

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 8 / 55

  • The situation of standard physics The status

    The present situation

    Many aspects of the Universality of Free Fall are experimentally well tested andconfirmed

    Postulate

    In a gravitational field allstructureless test particles fall inthe same way

    Tests

    UFF for

    Neutral bulk matter

    Charged particles

    Particles with spin

    No test so far for

    Anti particles

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 8 / 55

  • The situation of standard physics The status

    The present situation

    Many aspects of the Universality of the Gravitational Redshift are experimentallywell tested and confirmed

    Postulate

    In a gravitational field all clocksbehave in the same way

    g

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 9 / 55

  • The situation of standard physics The status

    The present situation

    Many aspects of the Universality of the Gravitational Redshift are experimentallywell tested and confirmed

    Postulate

    In a gravitational field all clocksbehave in the same way

    g

    Tests (= Clock tests)

    UGR for

    Atomic clocks: electronic

    Atomic clocks: hyperfine

    Molecular clocks: vibrational

    Molecular clocks: rotational

    Resonators

    Nuclear transitions(Mössbauer effect)

    No test so far for

    Anti clocks

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 9 / 55

  • The situation of standard physics The status

    Universal tool

    Clocks are a universal tool for testing space–time properties

    GR: Physics of position and time (trajectories of particles and light rays)

    SR: Based solely on clock camparison experiments

    UGR: clock comparison experiment

    Clock 1ν1

    Clock with hypotheticanomal dependence on

    position, orientation, and velocity

    Clock 2ν2

    Clock with different hypotheticanomal dependence on

    position, orientation, and velocity

    ×

    comparisonν2 − ν1

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 10 / 55

  • The situation of standard physics The status

    Clocks

    Clocks of different nature exhibit a different dependence on fundamental constants

    Scaling of transition energies (in units of Rydberg energy)

    Hyperfine energies g(me/mp)α2f(α)

    Vibrational energies in molecules√

    me/mp

    Rotational energies in molecules me/mp

    Fine-structure energies α2

    Electronic energies (incl. relativistic effects) f(α)Cavity frequency 1/αWeak interaction splitting/Zeeman frequency GF

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 11 / 55

  • The situation of standard physics The status

    Test of time–dilation: Transport of clocks

    Development of good clocks ⇒ clocks on aircraft: Experiment byHafele and Keating 1968 to test time dilation

    We shall do the same today: Put the best clocks on spacecraft and test clockeffects!

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 12 / 55

  • The situation of standard physics The status

    The present situation

    All predictions of Einstein’s General Relativity are experimentally well tested andconfirmed

    Foundations

    The Einstein EquivalencePrinciple

    Universality of Free Fall

    Universality of GravitationalRedshift

    Local Lorentz Invariance

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 13 / 55

  • The situation of standard physics The status

    The present situation

    All predictions of Einstein’s General Relativity are experimentally well tested andconfirmed

    Foundations

    The Einstein EquivalencePrinciple

    Universality of Free Fall

    Universality of GravitationalRedshift

    Local Lorentz Invariance

    Predictions from GR

    Solar system effects

    Perihelion shiftGravitational redshiftDeflection of lightGravitational time delayLense–Thirring effectSchiff effect

    Strong gravitational fields

    Binary systemsBlack holes

    Gravitational waves

    Cosmology

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 13 / 55

  • The situation of standard physics Applications

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 14 / 55

  • The situation of standard physics Applications

    Metrology

    s

    m

    A

    mol

    cd

    K

    kg

    GR ensuresuniqueness oftimekeeping in

    gravitational fields

    SR ensuresuniqueness oftimekeeping inmoving frames

    GR ensuresuniqueness of

    definition of mass

    SR: Constancy ofspeed of light

    3 · 10−15

    10−124 · 10−8

    8 · 10−8

    10−4

    3 · 10−7unknown ageingof prototype

    SR & GR = Physics of space and time ≡ fundamental metrologyC. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 15 / 55

  • The situation of standard physics Applications

    Metrology

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 16 / 55

  • The situation of standard physics Applications

    TAI

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 17 / 55

  • The situation of standard physics Applications

    Time scales

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 18 / 55

  • The situation of standard physics Applications

    Practical application: Clocks and climate research

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 19 / 55

  • The situation of standard physics Applications

    Practical application: Clocks and climate research

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 20 / 55

  • The situation of standard physics Applications

    Practical application: Clocks and Earth dynamics

    .

    .

    Clocks are of help tomeasure:

    warming of oceans

    motion of Earth’scrust, ...

    ...

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 21 / 55

  • The situation of standard physics Applications

    Practical application: Clocks and positions

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 22 / 55

  • The situation of standard physics Problems?

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 23 / 55

  • The situation of standard physics Problems?

    Problems?

    Issues to be resloved

    Need for Quantum Gravity

    Gravity ”anomalies”

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 24 / 55

  • Search for Quantum Gravity

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 25 / 55

  • Search for Quantum Gravity Need for Quantum Gravity

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 26 / 55

  • Search for Quantum Gravity Need for Quantum Gravity

    The need for Quantum Gravity

    Frame theories Interactions

    Quantum theory Electrodynamics

    Special Relativity Gravity

    General Relativity Weak interaction

    Statistical mechanics Strong interaction

    Problem Wish

    Incompatibility of quantumtheory and General Relativity

    Unification of all interactions

    Avoiding Singularities

    Resolving the problem of time

    Need of modifications of standard physics → search for modifications

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 27 / 55

  • Search for Quantum Gravity Need for Quantum Gravity

    Possible effects

    Possible geometry relevant effects

    Anisotropic speed of light

    Anisotropy in quantum fields

    Violation of UFF, UGR

    Birefringence

    Anomalous spin–coupling

    Anomalous coupling of charge

    Anomalous dispersion

    Newton / Coulomb potential

    Nonlinearities

    Charge non–conservation

    Active – passive mass andcharge

    Other possible effects

    Decoherence

    Modified interference

    Non–localities

    Structure of parameters

    Usually: parameters are asumedto be constant

    In unification scenarios:parameters depend on time andposition, through scalar fields(dilaton, quintessence, varyinge) → scalar–tensor theories

    Many of them typically clock tests

    Clocks are an important device in the search for QGC. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 28 / 55

  • Search for Quantum Gravity On strategies for the search for QG effects

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 29 / 55

  • Search for Quantum Gravity On strategies for the search for QG effects

    Strategy: Exploration of new regimes

    Standard physics experimentally well proven for standard energies, velocities,distances, ...Search for new effects ⇒ need to go to non–standard situations:

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 30 / 55

  • Search for Quantum Gravity On strategies for the search for QG effects

    Strategy: Exploration of new regimes

    Standard physics experimentally well proven for standard energies, velocities,distances, ...Search for new effects ⇒ need to go to non–standard situations:Non–standard situations

    Extreme high energies. Deviations from the standard dispersion relation

    Extreme low energies. Space–time fluctuations, decoherence may affect quantumsystems at temperatures lower than 500 fK achieved in BECs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 30 / 55

  • Search for Quantum Gravity On strategies for the search for QG effects

    Strategy: Exploration of new regimes

    Standard physics experimentally well proven for standard energies, velocities,distances, ...Search for new effects ⇒ need to go to non–standard situations:Non–standard situations

    Extreme high energies. Deviations from the standard dispersion relation

    Extreme low energies. Space–time fluctuations, decoherence may affect quantumsystems at temperatures lower than 500 fK achieved in BECs

    Extreme large distances.

    Dark energy, dark matter, Pioneer anomalyUltra–low frequency gravitational waves (early universe)

    Extreme small distances. Higher dimensional theories: violation of Newton’s lawat small (sub–mm) distances

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 30 / 55

  • Search for Quantum Gravity On strategies for the search for QG effects

    Strategy: Exploration of new regimes

    Standard physics experimentally well proven for standard energies, velocities,distances, ...Search for new effects ⇒ need to go to non–standard situations:Non–standard situations

    Extreme high energies. Deviations from the standard dispersion relation

    Extreme low energies. Space–time fluctuations, decoherence may affect quantumsystems at temperatures lower than 500 fK achieved in BECs

    Extreme large distances.

    Dark energy, dark matter, Pioneer anomalyUltra–low frequency gravitational waves (early universe)

    Extreme small distances. Higher dimensional theories: violation of Newton’s lawat small (sub–mm) distances

    Extreme long timescales.

    Search for space–time fluctuations in terms of 1/f–noiseTime dependence of constants

    Extreme short timescales. Short time scales ↔ large energiesC. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 30 / 55

  • Search for Quantum Gravity Observation vs. Experiment

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 31 / 55

  • Search for Quantum Gravity Observation vs. Experiment

    Observations vs. Experiment

    Comparison: high energy cosmic ray observation ↔ low energy laboratory exp.

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 32 / 55

  • Search for Quantum Gravity Observation vs. Experiment

    Observations vs. Experiment

    Comparison: high energy cosmic ray observation ↔ low energy laboratory exp.Astrophysical observations

    + Availability of ultra high energies of more than 1021 eV– No systematic repeatability

    – No unique interpretation

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 32 / 55

  • Search for Quantum Gravity Observation vs. Experiment

    Observations vs. Experiment

    Comparison: high energy cosmic ray observation ↔ low energy laboratory exp.Astrophysical observations

    + Availability of ultra high energies of more than 1021 eV– No systematic repeatability

    – No unique interpretation

    Laboratory search (including space)

    – Only small energies are available

    + Repeatability of the experiment, systematic variation of initial and boundaryconditions, used for:

    Identification of causeImprovement of precision of result

    + Ultra–low temperatures, ultrastable devices like optical resonators can beobtained in the laboratory / in space only

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 32 / 55

  • Search for Quantum Gravity Observation vs. Experiment

    Observations vs. Experiment

    Comparison: high energy cosmic ray observation ↔ low energy laboratory exp.Astrophysical observations

    + Availability of ultra high energies of more than 1021 eV– No systematic repeatability

    – No unique interpretation

    Laboratory search (including space)

    – Only small energies are available

    + Repeatability of the experiment, systematic variation of initial and boundaryconditions, used for:

    Identification of causeImprovement of precision of result

    + Ultra–low temperatures, ultrastable devices like optical resonators can beobtained in the laboratory / in space only

    Due to stability and repeatability of experiments, laboratory searches for quantumgravity effects may be as promising as astrophysical observations

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 32 / 55

  • Space conditions

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 33 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Tests

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Tests

    Test of Universality of Free Fall

    Long time for accumulatingsmall forces

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Large differences in thegravitational potential

    Tests

    Test of Universality of Free Fall

    Long time for accumulatingsmall forces

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Large differences in thegravitational potential

    Tests

    Test of Universality of Free Fall

    Test of Universality ofGravitational Redshift

    Measurement of absolutegravitational redshift

    Long time for accumulatingsmall forces

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Large differences in thegravitational potential

    Huge distances

    Tests

    Test of Universality of Free Fall

    Test of Universality ofGravitational Redshift

    Measurement of absolutegravitational redshift

    Long time for accumulatingsmall forces

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Large differences in thegravitational potential

    Huge distances

    Tests

    Test of Universality of Free Fall

    Test of Universality ofGravitational Redshift

    Measurement of absolutegravitational redshift

    Long time for accumulatingsmall forces

    Newton at large distances

    low frequency gravitationalwaves

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Large differences in thegravitational potential

    Huge distances

    Large velocities

    Tests

    Test of Universality of Free Fall

    Test of Universality ofGravitational Redshift

    Measurement of absolutegravitational redshift

    Long time for accumulatingsmall forces

    Newton at large distances

    low frequency gravitationalwaves

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Large differences in thegravitational potential

    Huge distances

    Large velocities

    Tests

    Test of Universality of Free Fall

    Test of Universality ofGravitational Redshift

    Measurement of absolutegravitational redshift

    Test of Lorentz invariance

    Long time for accumulatingsmall forces

    Newton at large distances

    low frequency gravitationalwaves

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Space conditions

    Free fall – no gravitational force

    Large differences in thegravitational potential

    Huge distances

    Large velocities

    Low noise

    Well–defined clocks

    Tests

    Test of Universality of Free Fall

    Test of Universality ofGravitational Redshift

    Measurement of absolutegravitational redshift

    Test of Lorentz invariance

    Long time for accumulatingsmall forces

    Newton at large distances

    low frequency gravitationalwaves

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 34 / 55

  • Space conditions

    Space conditions

    Particular space conditions and corresponding tests

    Free fall – no gravit. force

    Large diff. in grav. pot.

    Huge distances

    Large velocities

    Low noise

    Well–defined time

    Test of UFF

    Long accumul. small forces

    Test of UGR

    absolute gravitat. redshift

    Relativistic gravity

    Newton at large distances

    low frequency gravit. waves

    Test of LI

    MICROSCOPESTEP, GG, HYPER

    GP-BHYPER

    ACES, OPTIS, PARCS,SUMO, SPACETIME, RAC

    ACES, GP-AOPTIS

    LLR, CassiniLATOR, ASTROD

    DSGE

    LISAASTROD

    ACES, OPTIS, PARCS,SUMO, RACE

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 35 / 55

  • Space conditions

    Example: OPTIS

    OPTIS = OPtical Tests of the Isotropy of SpaceOPTIS = Mission for improved tests of Special and General Relativity

    Objectives: Michelson–Morley, Kennedy–Thorndike, time dilation, UGR, absoluteredshift, perihelion shift, Lense–Thirring, Yukawa (→ poster)

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 36 / 55

  • Gravity anomalies (in Universe and within Solar system)

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 37 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 38 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    But: Dark clouds over General Relativity?

    Unexplained observations

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 39 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    But: Dark clouds over General Relativity?

    Unexplained observations

    Dark Matter (Zwicky 1933)Needed to describe galactic rotation curves, lensing, structure formation

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 39 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    But: Dark clouds over General Relativity?

    Unexplained observations

    Dark Matter (Zwicky 1933)Needed to describe galactic rotation curves, lensing, structure formation

    Dark Energy (Turner 1999)Needed to describe the accelerated expansion of our universe

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 39 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    But: Dark clouds over General Relativity?

    Unexplained observations

    Dark Matter (Zwicky 1933)Needed to describe galactic rotation curves, lensing, structure formation

    Dark Energy (Turner 1999)Needed to describe the accelerated expansion of our universe

    Pioneer Anomaly (Anderson et al 1998, 2002)Non–Newtonian acceleration of Pioneer spacecraft toward the Sun

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 39 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    But: Dark clouds over General Relativity?

    Unexplained observations

    Dark Matter (Zwicky 1933)Needed to describe galactic rotation curves, lensing, structure formation

    Dark Energy (Turner 1999)Needed to describe the accelerated expansion of our universe

    Pioneer Anomaly (Anderson et al 1998, 2002)Non–Newtonian acceleration of Pioneer spacecraft toward the Sun

    Flyby anomaly (ESA and NASA communications)Satellite velocities are too large by a few mm/s after fly–bys

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 39 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    But: Dark clouds over General Relativity?

    Unexplained observations

    Dark Matter (Zwicky 1933)Needed to describe galactic rotation curves, lensing, structure formation

    Dark Energy (Turner 1999)Needed to describe the accelerated expansion of our universe

    Pioneer Anomaly (Anderson et al 1998, 2002)Non–Newtonian acceleration of Pioneer spacecraft toward the Sun

    Flyby anomaly (ESA and NASA communications)Satellite velocities are too large by a few mm/s after fly–bys

    Increase of Astronomical Unit (Krasinski & Brumberg 2005, Pitjeva 2005)Distance Earth–Sun increases by ∼ 10 m/cy

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 39 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    But: Dark clouds over General Relativity?

    Unexplained observations

    Dark Matter (Zwicky 1933)Needed to describe galactic rotation curves, lensing, structure formation

    Dark Energy (Turner 1999)Needed to describe the accelerated expansion of our universe

    Pioneer Anomaly (Anderson et al 1998, 2002)Non–Newtonian acceleration of Pioneer spacecraft toward the Sun

    Flyby anomaly (ESA and NASA communications)Satellite velocities are too large by a few mm/s after fly–bys

    Increase of Astronomical Unit (Krasinski & Brumberg 2005, Pitjeva 2005)Distance Earth–Sun increases by ∼ 10 m/cy

    Quadrupole and octopole anomaly (Tegmark et al 2004, Schwarz et al 2005)Quadrupole and octopole of CMB are correlated with Solar system ecliptic

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 39 / 55

  • Gravity anomalies (in Universe and within Solar system) Anomalies

    But: Dark clouds over General Relativity?

    Unexplained observations

    Dark Matter (Zwicky 1933)Needed to describe galactic rotation curves, lensing, structure formation

    Dark Energy (Turner 1999)Needed to describe the accelerated expansion of our universe

    Pioneer Anomaly (Anderson et al 1998, 2002)Non–Newtonian acceleration of Pioneer spacecraft toward the Sun

    Flyby anomaly (ESA and NASA communications)Satellite velocities are too large by a few mm/s after fly–bys

    Increase of Astronomical Unit (Krasinski & Brumberg 2005, Pitjeva 2005)Distance Earth–Sun increases by ∼ 10 m/cy

    Quadrupole and octopole anomaly (Tegmark et al 2004, Schwarz et al 2005)Quadrupole and octopole of CMB are correlated with Solar system ecliptic

    Is the gravitational physics in the Solar system really well understood?Gravity on large scales? ↔ influence of DM and/or DE?Additional exploration with clocks!

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 39 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 40 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    The Pioneer anomaly

    The observation (Anderson et al 1998, 2002)

    Measured constant acceleration

    aPioneer = (8.74 ± 1.33) · 10−10 m/s2

    Acceleration constant and toward the Sun

    New information from

    Clock on new DSGE

    Drift of clocks on Earth may simulate the effect → clock comparison

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 41 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    Theory

    Theoretical considerations

    Cosmological influence orders of magnitude too small in order to explain thePioneer anomaly (e.g. C.L. & Dittus 2005, Giulini & Matteo 2006)

    Yukawa describing galactic rotation curve can be used to describe Pioneeranomaly (Dittus & C.L. 2005)

    Cosmological constant cannot be responsible for Pioneer anomaly(Kagramanova, Kunz & C.L. 2006)

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 42 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    Outlook: New mission

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 43 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    Outlook: New mission

    Active spacecraft, passive test mass

    Accurate tracking of test mass

    2–step–tracking

    Radio: Earth — spacecraftLaser: spacecraft — test mass

    Flexible formation: varying distance

    Test mass is at environmentally quietdistance from spacecraft ∼ 200 mOccasional manoeuvres to maintainformation

    New Pioneer Explorer should be equippedwith stable clockFor Pioneer anomaly:

    ΔPioneerνν

    =1c2

    ∫ 90 AUJupiter

    aPioneerdx = 10−13

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 43 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    The flyby anomaly

    Observation

    After satellite flybys at Earth the velocity is too large by a few mm/s

    First Galileo flyby 1990, NEAR flyby 1998, Cassini flyby 1999, Rosetta flyby2005,Messenger flyby 2005

    GEGA1:Two–way S–bandDoppler residuals &range residuals

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 44 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    The flyby anomaly

    Observation

    After satellite flybys at Earth the velocity is too large by a few mm/s

    First Galileo flyby 1990, NEAR flyby 1998, Cassini flyby 1999, Rosetta flyby2005,Messenger flyby 2005

    NEGA:Two–way X–bandDoppler residuals &range residuals

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 44 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    The flyby anomaly

    Observation

    After satellite flybys at Earth the velocity is too large by a few mm/s

    First Galileo flyby 1990, NEAR flyby 1998, Cassini flyby 1999, Rosetta flyby2005,Messenger flyby 2005

    NEGA:Two–way X–bandDoppler residuals &range residuals

    New information from:

    Better time resolution of velocity increase: continuous observation

    Clock on spacecraft

    Observation of Mars flyby (Rosetta)

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 44 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    Increase of Astronomical Unit

    Observation

    Various groups reported

    Krasinsky & Brumberg 2005: 15 ± 4 m/cyPitjeva 2005: 7 ± 1 m/cy

    Remarks / Questions

    Ġ excluded by LLR

    Mass loss of Sun leads only to 1 m/cy

    Influence of cosmic expansion by many orders of magnitude too small

    Interplanetary plasma?

    Effect can again be simulated by drift of clocks

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 45 / 55

  • Gravity anomalies (in Universe and within Solar system) Solar system anomalies

    Summary

    Possible questions

    Influence of cosmic expansion? (aPioneer ≈ cH)Something wrong with weak gravity?

    Do clocks on Earth behave properly?

    Clocks

    Clocks are essential in helping to explore

    Pioneer anomaly

    Flyby anomaly

    Secular increase of AU

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 46 / 55

  • Clocks and orbits

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 47 / 55

  • Clocks and orbits

    Gravity, geometry, clocks, and particle motion

    Gravity = geometry = metric + connection = clock and particle motionFor the full exploration of gravity one needs position and time

    Measurement of time

    Clocks measure proper time related to dxμ

    T =∫

    worldline

    ds with ds2 = g(x, dx) , g(x, λdx) = λ2g(x, dx)

    For Riemanian space–time metric ds2 = gμνdxμdxν

    T =∫

    worldline of clock

    √gμνdxμdxν ≈

    ∫ (1 − U + ẋ2)dx0 +

    ∫g0idx

    i

    Two clocks at different positions: gravitational redshift

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 48 / 55

  • Clocks and orbits

    Gravity, geometry, clocks, and particle motion

    Motion of particles

    Equation of motion for particles: Weak Equivalence Principle ⇒

    0 = vν∂μvν + Hμ(x, v) = { μρσ } vμvσ + hμ(x, v)

    3–acceleration

    ẍi = ∂iU︸︷︷︸Newton

    + (∂ihj − ∂jhi)ẋj︸ ︷︷ ︸Lense−Thirring

    +Υi + Υij ẋj + Υijkẋ

    j ẋk + . . .

    Equation of motion respects UFF but violates Einstein’s elevator

    Such terms may play a role in Pioneer anomaly or flyby anomaly

    Need of precise clocks for tracking of satellites in oder to determine theseterms

    Time and orbit of spacecraft are independent observablesOnly in Einstein’s General Relativity both are governed by the space–time metricSpacecraft should carry clocks onboard

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 49 / 55

  • Summary and Outlook

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 50 / 55

  • Summary and Outlook

    Summary

    Summary

    Clocks are needed for most space projects

    Clocks are essential for the search of quantum gravity effects

    Clocks will play an important role in resolving current gravity puzzles

    C.L. & Dittus 2000

    Dittus & C.L. (eds) 2003: Special Issue of Gen. Rel. Grav. on FundamentalPhysics on the ISS

    Dittus, C.L & Turyshev 2007 (forthcoming book (Springer) on spacetechnologies and missions)

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 51 / 55

  • Summary and Outlook

    Gravity plays a major role in modern physics

    Outlook: experiment/observation in gravitational physics

    Data basis improves

    New gravitating systems: binary pulsar → new tests of GR, non–linearities, ...Longer data span: LLR → Ġ/G, equivalence principle, ...Longer data span: ephemerides → increase of AUImproved data from new measurements: Planck → cosmology, quadrupole, ...UHECR: Auger, .... → dispersion relation, search for QG, ...Gravitational waves → black holes, binary systems, ...Satellite navigation → flybyNew Horizon mission

    New Pioneer mission ....

    Vastly increasing knowledge about gravity ...

    Gravity is a very dynamic field – new important applications for daily life

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 52 / 55

  • Final remark: Technology and Fundamental Phyiscs

    Outline

    1 The situation of standard physicsThe statusApplicationsProblems?

    2 Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    3 Space conditions

    4 Gravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    5 Clocks and orbits

    6 Summary and Outlook

    7 Final remark: Technology and Fundamental Phyiscs

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 53 / 55

  • Final remark: Technology and Fundamental Phyiscs

    Technology vs. Fundamental Phyiscs

    From Philosophy of Science:

    ⇒ ”Fundamental Physics makes technological progress possible”⇐ ”Technology stimulates scientific inventiveness”, e.g. Einstein–Poincaré

    simultaneity (Gallison 2003)

    Not possible: To have solely technological development (Carrier 2006):

    ⇔ ”... practical challenges cannot appropriately be met without treatingproblems in basic science ... applied research naturally grows into basicscience ... Applied research tends to transcend applied questions formethodological reasons. A lack of deeper understanding of a phenomenoneventually impairs the prospects of its technological use. ... Uncovering therelevant mechanisms and embedding them in a theoretical framework is ofsome use typically for ascertaining or improving the applicability of a finding.Scientific understanding makes generalizations robust ... Treating appliedquestions appropriately requires not treating them exclusively as appliedquestions.”

    Even the demand of mere technology needs Fundamental Physics.

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 54 / 55

  • Final remark: Technology and Fundamental Phyiscs

    Final Conclusion

    C. Lämmerzahl (ZARM, Bremen) Clocks and Gravity Airlie, May 23, 2006 55 / 55

    The situation of standard physicsThe statusApplicationsProblems?

    Search for Quantum GravityNeed for Quantum GravityOn strategies for the search for QG effectsObservation vs. Experiment

    Space conditionsGravity anomalies (in Universe and within Solar system)AnomaliesSolar system anomalies

    Clocks and orbitsSummary and OutlookFinal remark: Technology and Fundamental Phyiscs

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice