84
Climate Change, Directed Innovation and Energy Transition: The Long-run Consequences of the Shale Gas Revolution Daron Acemoglu (MIT), Philippe Aghion (CollLge de France, LSE), Lint Barrage (UCSB) and David HØmous (University of Zurich) Climate Economics Workshop FRB Richmond November 19, 2020 AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 1 / 84

Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Climate Change, Directed Innovation and EnergyTransition: The Long-run Consequences of the Shale

Gas Revolution

Daron Acemoglu (MIT), Philippe Aghion (Collège de France, LSE),Lint Barrage (UCSB) and David Hémous (University of Zurich)

Climate Economics WorkshopFRB Richmond

November 19, 2020

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 1 / 84

Page 2: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

U.S. Shale Gas Revolution

1500

020

000

2500

030

000

3500

0Pr

oduc

tion

(bcf

)

1980 1990 2000 2010 2020Year

Data source: EIA.

U.S. Natural Gas Production

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 2 / 84

Page 3: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

The Rise of Gas

.1.2

.3.4

.5.6

1990 2000 2010 2020Year

Coal GasData source: EIA.

Fuel Shares in U.S. Electricity Generation

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 3 / 84

Page 4: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Emissions and Emissions Intensity

1800

2000

2200

2400

2600

CO

2Em

issi

ons

(mm

t)

.000

45.0

005

.000

55.0

006

.000

65C

O2

Inte

nsity

(mt/k

Wh)

1990 2000 2010 2020Year

CO2 Intensity CO2 EmissionsData sources: EIA and EPA.

CO2 Emissions in U.S. Electricity Generation

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 4 / 84

Page 5: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

This Paper: Shale Impacts on Innovation, Long-Run

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 5 / 84

Page 6: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

This Paper: Shale Impacts on Innovation, Long-Run

1 Empirically document decline in green / fossil electricity innovation

2 Theoretically analyze boom in directed technical change model:I ↓ CO2 in short-run if gas suffi ciently clean compared to coalI ↓ Green innovation at t = 1, for all t ≥ 1 under suitable conditionsI Can increase long-run emissions through several scenarios

3 Quantify shale boom, policy impacts in calibrated U.S. economyI Boom increases emissions in the long-runI Boom calls for stronger climate policy↑ clean research subsidies, carbon price (weakly)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 6 / 84

Page 7: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Literature ContextIAMs: Nordhaus (1980 ... 2019); Anthoff, Tol (e.g., 2014), Hope (2011), etc.

I Macro Effects: Golosov et al. (2014), Hassler, Krusell, Smith (2016), etc.

Endogenous technical change IAMs: Goulder, Mathai (2000), Nordhaus(2002), Popp (2004); Bosetti et al. (2007), Bretschger et al. (2017), etc.Directed technical change IAMs: Acemoglu et al. (2012 "AABH", 2016),Hémous (2016), Fried (2018), Lemoine (2018), Casey (2019), etc.

I AABH ’12: path dependence in clean versus dirty innovation; optimalpolicy relies on carbon tax and clean research subsidies

ETC Empirical evidence: Newell, Jaffe and Stavins (1999), Popp (2002),Calel and Dechezleprêtre (2012), Aghion et al. (2016), Meng (2019)CGE Energy Sector models: Manne (1977) ... Goulder, Hafstead (2013)

I Shale boom simulations: Burtraw et al. (2012), Venkatesh et al. (2012),Brown and Krupnick (2010), McJeon et al. (2014)

Empirical shale boom electricity studies: Linn, Muehlenbachs (2018),Fell, Kaffi ne (2018), Cullen, Mansur (2017), Holladay, LaRiviere (2017),Knittel, Metaxoglou, Trinade (2015)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 7 / 84

Page 8: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Roadmap

1 Empirical Motivation2 Analytic Model3 Quantitative Model4 Conclusion

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 8 / 84

Page 9: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Empirical Motivation

Data

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 9 / 84

Page 10: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Empirical Motivation

05

1015

1995 2000 2005 2010 2015 2020year

U.S. EuropeData sources: World Bank, BLS. Real $2010.

Natural Gas Prices: U.S. vs. Europe

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 10 / 84

Page 11: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Renewables over fossil fuel patents

Domestic patents by patent offi ces

Green all Renewable / Total Patents Fossil fuel / Total Patents Gov RD Citations

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 11 / 84

Page 12: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Wind / Fossil Fuel

solar storage Energy saving

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 12 / 84

Page 13: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Price regressions

Panel regression of patenting over natural gas prices with 2-yr lagI Period 1978-2015.

Data:I Natural gas price indexes by country: International Energy AgencyI GDP per capita: OECDI Public R&D support for fossil vs. green: International Energy Agency

Country fixed effects; Year fixed effects

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 13 / 84

Page 14: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Natural Gas Prices

Granted Weights Domestic Diff-in-diff Pre-2005 Sample Tax Controls

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 14 / 84

Page 15: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Roadmap

1 Empirical Motivation2 Analytic Model3 Quantitative Model4 Conclusion

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 15 / 84

Page 16: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Production: 3 types of energy

Discrete time economy.

Final good produced according to:

Yt =((1− ν)Y

λ−1λ

Pt + ν(AEtEt

) λ−1λ

) λλ−1

,

I YPt ∼ production input produced via YPt = APtLPtI APt , AEt ∼ productivity in goods production, energy effi ciency

Energy composite Et :

Et =(

κcEε−1

εc ,t + κsE

ε−1ε

s ,t + κgEε−1

εg ,t

) εε−1.

I Ec ,t ,Es ,t , and Eg ,t ∼ coal, natural gas, and green energy, resp.

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 16 / 84

Page 17: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Energy production

Production of energy i ∈ {c, s, g} is given by:

Ei ,t = min (Qit ,Rit ) ,

I Qit ∼ energy input (e.g., power plant); Rit ∼ resource (e.g., coal)I Green resource is free but extraction of natural gas and coal is costly

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 17 / 84

Page 18: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Energy production

Production of energy i ∈ {c, s, g} is given by:

Ei ,t = min (Qit ,Rit ) ,

I Qit ∼ energy input (e.g., power plant); Rit ∼ resource (e.g., coal)I Green resource is free but extraction of natural gas and coal is costly

Energy input i (“power plant”) is produced according to:

Qit = exp(∫ 1

0ln qijtdj

)qijt : Intermediate inputs (e.g., steam turbine, boiler, etc.)

I Produced by monopolist j in energy sector i via qijt = Aijt lqijt

I Monopolist’s technology γ times more productive than fringe

→ Avg. productivity in power plant type i : lnAit =∫ 10 lnAijtdj

→ Endogenous

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 18 / 84

Page 19: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Resource production

Extracting 1 unit of coal or gas requires 1 unit of extraction inputI Extraction input is produced symmetrically to power plant inputI E.g., gas well is aggregate of intermediates (drill, proppants, etc.)

Denote Bit the extraction productivity (exogenous).I Shale gas boom = increase in Bst .

Coal and gas in infinite supply: resource price = extraction cost

Resource use leads to pollution with Pi ,t = ξ iRi ,t and

ξc > ξs > 0 = ξg

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 19 / 84

Page 20: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Short-Run Impacts of the Shale Gas Boom

Consider a one time increase in gas extraction technology Bst

∂ ln Emissions∂ lnBst

=∂ ln Emissions Intensity

∂ lnBst︸ ︷︷ ︸Substition out ofcoal, green

+∂ ln Energy

∂ lnBst︸ ︷︷ ︸Scale Effect

PropositionThe shale gas boom leads to a decrease in emissions in the short-runprovided that natural gas is suffi ciently clean compared to coal.

Details

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 20 / 84

Page 21: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Innovation

There is a mass 1 of scientists who can decide in which sector to workI sft∼ share working on fossil fuels generation technologyI sgt∼ share working on green generation technology

Each scientists has a probability of success given by: ηi s−ψit

A successful innovator obtains a technology γ times more productiveI Patents last for 1 period onlyI If there is no innovation, monopoly rights are allocated randomly

Marginal scientist indifferent btwn. innovating in fossil fuels or green

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 21 / 84

Page 22: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Innovation allocation

The sector with the largest profits attract most scientists. (up to anadjustment for ηi ) Details

More advanced sector gets a larger market ⇒ Larger profits fromfurther innovation

I Better green technology Ag (t−1) leads to more green innovationI Better gas technology As(t−1) leads to more fossil innovation (undersome regularity conditions).

Improvement in gas extraction technology Bst :I Extraction and power plant are complements ⇒ Higher gas extractiontechnology Bst encourages innovation in gas generation Ast

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 22 / 84

Page 23: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Shale gas boom and innovation

Propositioni) A shale gas boom (an increase in Bs1) leads to reduced innovation ingreen technologies at t = 1 (i.e., to a decrease in sg1).

ii) Green innovation declines for all t ≥ 1 under suitable conditions.

Details

Effect of the shale boom on innovation builds on itself over time

Endogenous B

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 23 / 84

Page 24: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Long-run equilibrium (constant extraction technologies).

Long-run equilibrium depends on future extraction technology

1) If fossil fuel extraction productivities (Bct , Bst) remain constant afterthe boom, then:

Fossil resources become relatively more expensive over time

Eventually, innovation moves to the clean sector

⇒ Shale gas boom (i) delays clean energy transition and(ii) increases emissions in the long-run*

Prop.

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 24 / 84

Page 25: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Long-run equilibrium (growing extraction technologies)

2) If fossil fuel extraction productivities (Bct , Bst) grow at constant rateafter the boom, then:

Path dependence dominates and innovation allocation is bang-bang

⇒ Shale gas boom makes fossil-fuel path more likely Prop.

Three cases depending on initial green generation technology AgtI Low Agt : Shale boom hastens transition to all-fossil economyI Interm. Agt : Shale boom pushes economy from green to fossil pathI High Agt : Shale boom delays transition to green economy

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 25 / 84

Page 26: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Roadmap

1 Empirical Motivation2 Analytic Model3 Quantitative Model4 Conclusion

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 26 / 84

Page 27: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Benchmark Setup

Production inputs now capital-labor aggregates:

YPt = APtLϕPtK

1−ϕPt

qijt = Aijt(lqijt)φ (

kqijt)1−φ

and rijt = Bijt(l rijt)φ (k rijt)1−φ

Different elasticities of substitution between (coal, gas), green:

Et =

((κcE

σ−1σ

c ,t + κsEσ−1

σs ,t

) σσ−1

ε−1ε

+ κgEε−1

εg ,t

) εε−1

Account for local pollutants (e.g., SO2) and abatement costs Λi :

pit︸︷︷︸Energy price i

= prit︸︷︷︸Resource price i

+ pqit︸︷︷︸Input price i

(1+Λi )

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 27 / 84

Page 28: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Calibration (1)

Obtain micro-data of U.S. electricity generators’costs and outputs.

Item Data Source(s)

Plant capital, Labor, O&M, output Federal Energy Regulatory Commission

-> Annualized KL-costs/MWh pqit (1+Λi ) (FERC) "Form 1" Filings

Local pollution abatement capital, O&M EIA Form 767, 923

expenditures -> costs/MWh pqitΛi

Fuel resource costs/MWh prit FERC Form 423

EIA Forms 423, 923

For renewables, supplement with Lazard (2008-2010) cost estimates

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 28 / 84

Page 29: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Calibration (2)

Parameters from the literature:I ε = 1.8561, Papageorgiou et al. (2013)I σ = 2, Bosetti et al. (2007), Ko and Dahl (2001), Sonderholm (1991)I λ = 0.5, Chen et al. (2017), Van der Werf (2008), Bosetti et al. (2007)I Labor shares: φ = 0.403 (Barrage, 2019) and ϕ = 0.67

γ = 1.07, Match 2004-2014 industry profits data (U.S. Census)I Petroleum and Coal, Durable Manufacturing, Wholesale

Base period: 2006-2010I We get initial aggregate capital K0 (BEA).

Shale boom effect on Bs :I Based on relative coal, gas resource price changes: +100%I Alternative based on simple gas price change: +54%

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 29 / 84

Page 30: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Calibration (4)

Solve for initial technology levels (Ag0,Ac0,As0,Bc0,Bs0,AP ,0, AE ,0)and energy aggregator distribution parameters (κc , κs , κg ) to jointlymatch data moments:

I GDP (BEA)I Electricity generation (coal, gas, green) (EIA)I Generation costs (coal, gas, green) (FERC, EIA, NREL)I Employment share in extraction, electricity, gen. manuf. (BLS)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 30 / 84

Page 31: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Short-Run Impact Estimates

Total Effects of Improved Shale Extraction Technology Bs0%∆Emiss. %∆Energy %∆CO2Intensity Consumption Emissions

Baseline Parameters+50% Increase in Bs0 -9.2% +5.8% -4.0%+100% Increase in Bs0 -13.5% +10.3% -4.5%

Sensitivity

Cullen and Mansur (2017) empirically estimate 10% CO2 emissionsintensity declines in short-run for a 67% decline in gas prices.

Data: 2006-10 vs. 2011-15: Emissions intensity decline 11.35%.

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 31 / 84

Page 32: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Calibration (5): Dynamics

1 period = 5 years

Recall scientists’probability of success: ηi s−ψit

Set ηf = ηg and growth rate of production input technology APt tomatch balanced long-run growth of 2%/year

⇒ Set ψ = 0.552 to match empirical estimates of price elasticity ofgreen innovation w.r.t. natural gas price (0.35)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 32 / 84

Page 33: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Calibration (5): Dynamics

1 period = 5 years

Recall scientists’probability of success: ηi s−ψit

Set ηf = ηg and growth rate of production input technology APt tomatch balanced long-run growth of 2%/year

⇒ Set ψ = 0.552 to match empirical estimates of price elasticity ofgreen innovation w.r.t. natural gas price (0.35)

Carbon cycle and damages from Golosov et al. (2014)I ROW, U.S. non-electricity emissions from RICE (exogenous here)I ρ = 1.5% per year and elasticity of intertemporal substitution = 1/2

Let K grows exogenously (orthogonal to our analysis).

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 33 / 84

Page 34: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Unmanaged boom (constant extraction technology)Effect of one-time 100% increase in gas extraction technology Bst :

2050 2100 2150 2200 2250Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shar

e

Panel A: Share of scientists in fossil fuels

without the boomwith the boom

2050 2100 2150 2200 2250Year

­10

­5

0

5

10

15

20

perc

ent

emissions (left)

2050 2100 2150 2200 2250­2

­1.5

­1

­0.5

0

0.5

1

1.5

2

perc

ent

Panel B: % change

output (right)net output (right)net output, high dam. (right)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 34 / 84

Page 35: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Unmanaged boom results (growing extraction technology)Effect of one-time 100% increase in gas extraction technology BstBenchmark ∼ "Low Agt"

2100 2200 2300Year

0

0.2

0.4

0.6

0.8

1

shar

e

Panel A: Share of scientists in fossil fuels

without the boomwith the boom

2100 2200 2300Year

­20

­15

­10

­5

0

5

10

15

20

25

perc

ent

Panel B: % change

outputemissionsnet outputnet output (high dam.)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 35 / 84

Page 36: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Data vs. Model: Emissions Intensity

Time Model ∆ξE Actual ∆ξE Scenario

2006-2010vs. -13.46% -11.35% Static2011-2015 -14.09% Constant B

-13.17% Growing B

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 36 / 84

Page 37: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Data vs. Model: Innovation Ratio

Time Model Patentsgr εnPatentsfossilData Patentsgr εn

PatentsfossilScenario

2006-2010 1.31 1.47 Constant B2011-2015 0.98 0.99 Constant B

2006-2010 1.31 1.47 Growing B2011-2015 0.95 0.99 Growing B

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 37 / 84

Page 38: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Optimal policy: Setup

Consider a social planner who maximizes US welfare but takesemissions from ROW (and outside electricity) as given

I Free-riding ⇒ policy is not ambitious enough.I Optimal tax level higher with emissions spillovers, but unmanagedboom impacts similar. Details

Two externalities ⇒ two instruments:I Carbon tax to correct for environmental externality.I Clean research subsidy to take into account that private value ofinnovation is too short-sighted.

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 38 / 84

Page 39: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Optimal Policy Levels (No Boom, Const. Extr. Tech.)

2050 2100 2150 2200 2250Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shar

e

Panel A: Share of scientists in fossil fuels

laissez­faireoptimum

2050 2100 2150 2200 2250Year

102

103

104

dolla

rs

carbon tax (left)

2050 2100 2150 2200 2250­20

­10

0

10

20

30

40

50

60

perc

ent

Panel B: Carbon tax and research subsidy

clean research subsidy (right)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 39 / 84

Page 40: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Effect of shale gas boom on optimal policy

2050 2100 2150 2200

Year

0

0.2

0.4

0.6sh

arePanel A: Share of scientists in fossil fuels

no boom

boom

no boom & high dam.

boom & high dam.

2050 2100 2150 2200

Year

0

0.2

0.4

0.6

0.8

1

perce

nt

Panel B: Effect of the boom on the carbon tax (% )

regular damagehigh damage

2050 2100 2150 2200

Year

0

2

4

6

8

10

perce

nt

Panel C: Effect of the boom on green research subs. (p.p. )

regular damagehigh damage

⇒ Shale gas boom calls for more ambitious policies.

Growing Extraction Tech. Results

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 40 / 84

Page 41: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

SummaryMotivating stylized fact: Green innovation decline after shale boom

⇒ Directed technical change model; find theoretically & quantitatively:I Boom decreased CO2 emissions in short-run, but:I But increase CO2 emissions in long-run through innovation channels

⇒ Call for stronger policy responses to address climate change.

Qunatitivate results similar in Extended Model with:

I Distinct coal and natural gas innovationI BAU policies

Open questions: Cross-country differences in baseline shale boomimpacts, rising extraction costs from depletion (Schwerhoff and Stuermer,2019), ... Stephie’s comments!

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 41 / 84

Page 42: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Extended version: Overview

So far: All fossil innovation advances coal, gas proportionally

⇒ Allow for distinct innovation in gas vs. coal

So far: zero base period innovation subsidies

⇒ Allow initial subsidies for innovation in coal qc , gas qs , and green qg

So far: zero base period generation subsidies, taxes

⇒ Allow initial subsidies for generation w/ coal τc , gas τs , and green τg

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 42 / 84

Page 43: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Separating coal vs gas innovation (1)

Background (Lanzi et al., 2011):

‘Shared component’specification also in EIA NEMS model Details

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 43 / 84

Page 44: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Separating coal vs gas innovation (2)

Distinguish R&D in coal vs. gas generation:I Fraction (1− χ) of coal innovation specific to coal (and v.v.)I Fraction χ of coal innovation useful for gas generation (and v.v.)

Scientists can work in three sectors: sct , sst , sgt

Quantification:I Set χ = 0.855 to match USPTO 2006-10 green-fossil patent ratio.I Set ηg = ηf (1+ χ

1ψ )ψ to ensure equal long-run growth potential.

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 44 / 84

Page 45: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Base period innovation subsidies

Allow for base period innovation to already have been subsidized.

Equilibrium allocation now determined by Details :

Πct

Πst=1− qc1− qs

andΠct1−qc +

Πst1−qs

Πgt1−qg

= 2

Quantification:I NSF "Industrial Research and Development" Survey.I "Federal Sources Share" for most recent years available (2000-07).I Fossil: 3.9% = qc = qsI Renewables: 9.1%, Nuclear: 45.3% → Total R&D spending-weightedqg = 21.05%

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 45 / 84

Page 46: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Base period generation subsidies

Allow for base period generation to already have been taxed

Quantification:I Lazard renewables levelized cost estimates with vs. without subsidiesI Generation-weighted avg. green generation tax τg = −3.23%I Small because of large nuclear generation share

I Consider τc = τs = 0I Even by 2015 < 8% of U.S. electricity-based carbon emissions subjectto a price (OECD, 2018)

I But: Renewable portfolio standards hard to captureI Robustness: τg = 2× (−3.23%), τc = τs = 5%

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 46 / 84

Page 47: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Extended model results overview

Static Effects%∆Emiss. %∆Energy %∆CO2Intensity Consumption Emissions

Benchmark Model -13.5% +10.3% -4.5%Extended Model -12.8% +10.3% -3.8%2× τg , τc , τs 5% -13.5% +10.6% -4.4%

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 47 / 84

Page 48: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Extended model results overview

Static Effects%∆Emiss. %∆Energy %∆CO2Intensity Consumption Emissions

Benchmark Model -13.5% +10.3% -4.5%Extended Model -12.8% +10.3% -3.8%2× τg , τc , τs 5% +10.6% -4.4%

Dynamic Effects2016 2066

%∆Innovg %∆CO2 %∆Innovg %∆CO2Benchmark Model -13.6% -4.2% -12.0% -0.0%Extended Model -21.6% -3.4% -14.3% +0.9%2× τg , τc , τs 5% -23.6% -4.0% -16.1% +0.1%

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 48 / 84

Page 49: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

BAU Results (constant extraction technology)

2050 2100 2150 2200 2250

Year

0

0.2

0.4

0.6

shar

e

Panel B: Share of scientists in coal

without the boomwith the boom

2050 2100 2150 2200 2250

Year

0

0.2

0.4

0.6

shar

e

Panel A: Share of scientists in natural gas

without the boomwith the boom

2050 2100 2150 2200 2250

Year

0

0.5

1

shar

e

Panel C: Share of scientists in green

without the boomwith the boom

2050 2100 2150 2200 2250

Year

0

10

20

perce

nt

Panel D: % changeoutput

emissions

net output

net output (high dam.)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 49 / 84

Page 50: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

BAU Results (growing extraction technology)

2050 2100 2150 2200Year

0

0.2

0.4

0.6

shar

e

Panel B: Share of scientists in coal

without the boomwith the boom

2050 2100 2150 2200Year

0

0.2

0.4

0.6

shar

e

Panel A: Share of scientists in natural gas

without the boomwith the boom

2050 2100 2150 2200Year

0

0.5

1

shar

e

Panel C: Share of scientists in green

without the boomwith the boom

2050 2100 2150 2200Year

0

10

20

perc

ent

Panel D: % changeoutputemissionsnet outputnet output (high dam.)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 50 / 84

Page 51: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

BackAABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 51 / 84

Page 52: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Renewables over fossil fuel patentsDomestic + foreign patents by patent offi ces

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 52 / 84

Page 53: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Renewables over total patents

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 53 / 84

Page 54: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Fossil-fuel / total patents

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 54 / 84

Page 55: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

R&D public expenditures

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 55 / 84

Page 56: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Renewable / Fossil fuel (citations-weighted)

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 56 / 84

Page 57: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Solar / Fossil-fuel

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 57 / 84

Page 58: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Storage / Fossil-fuel (all)

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 58 / 84

Page 59: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Energy-saving / Fossil-fuel (all)

BackAABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 59 / 84

Page 60: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Natural Gas Prices: granted patents

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 60 / 84

Page 61: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Natural Gas Prices: weighted regressions

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 61 / 84

Page 62: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Natural Gas Prices: Domestic Inventors Only (weighted)

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 62 / 84

Page 63: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

"Diff-in-Diff" ComparisonShale boom: 2009 + 2 year lag (US and Canada) (Holladay and JacobLaRiviere, 2017)

I Construct panel of shale boom bans across countries. Period2001-2016.

BackAABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 63 / 84

Page 64: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

"Diff-in-Diff" Comparison: Domestic Patents

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 64 / 84

Page 65: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Short-Run Impacts of the Shale Gas Boom

∂ lnP∂ lnBs

=CsBs

ε

(ξsEs

ξcEc + ξsEs− psEspEE

)︸ ︷︷ ︸

substitution effect

+psEspEE

(λ+ (1− λ)

LEL

)︸ ︷︷ ︸

scale effect

.Proposition 1: A shale boom (one-time increase in Bs ) decreasesemissions in the short-run provided that natural gas is suffi ciently cleancompared to coal, that is, provided that the following condition is satisfied:

ξsξc

<

κεcC

εc

[ε−

(λ+ (1− λ)

νλAλ−1Et C λ−1

E

νλAλ−1Et C λ−1

E +(1−ν)λ−1Aλ−1P

)]κεsC εs

(λ+

(1−λ)νλAλ−1Et C λ−1

E

νλAλ−1Et C λ−1

E +(1−ν)λ−1Aλ−1P

)+ εCs

(κεcC

ε−1c + κε

gCε−1g)

BackAABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 65 / 84

Page 66: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Shale gas boom and innovation

Propositioni) A shale gas boom (an increase in Bs1) leads to reduced innovation ingreen technologies at t = 1 (i.e., to a decrease in sg1).

ii) Green innovation declines for all t ≥ 1 ifmin

(Bct/Ac (t−1), Bst/As(t−1)

)> γηf / (ε− 1) for all t > 1.

If Bct/Ac (t−1) and Bst/As(t−1) are too low, improving generationtechnology As(t−1) or Ac (t−1) has little effect on overall coal, gastechnology Cct or Cst , and thus on attractiveness of fossil innovation.

Imagine power plant burning moon rocks as fuelI Extremely costly extraction (low Bmoonrock )I Improving moon rock boiler (Amoonrock ) does little to help reduceoverall cost of moon rock power generation!

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 66 / 84

Page 67: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Long-run equilibrium

PropositionAssume that Bct and Bst are constant over time and thatln (γ) η < ψ/ ((ε− 1) (1− ψ)).i) Then there exists a time tswitch such that for all t > tswitch, sgt > 1/2and eventually all innovations occurs in green technologies. If ε ≥ 2, ashale gas boom at t = 1 delays the time tswitch and reduces greeninnovation until then. ii) In addition for ε ≥ 2 and for lnγ small, emissionsare increased in the long-run.

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 67 / 84

Page 68: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Long-run equilibrium

PropositionAssume that (i) Bct and Bst grow exogenously at factor γη,(ii) ln (γ) η < ψ/ ((ε− 1) (1− ψ)) , and (iii)min (Bc1/Ac0, Bs1/As0) > γη/ (ε− 1). Then a shale gas boom at t = 1decreases green innovations for all t ≥ 1. For small enough initial greenproductivity Ag0, emissions will grow forever regardless the boom, and forlarge enough initial Ag0, emissions converge to zero regardless.For an intermediate range of Ag0, emissions grow forever following ashale boom but converge to zero absent the boom.

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 68 / 84

Page 69: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Equilibrium innovation in extended model (1)

Equilibrium innovation allocation sct , sst , sgt now satisfies:

1. After-subsidy returns equated between coal, gas:

Πct

Πst=1− qc1− qs

⇔(sctsst

=(1− qs )

(κσc

(1+τct )σ(1+Λct (µct ))C

σct

Act+ χ κσ

s(1+τst )

σ(1+Λst (µst ))C

σst

Ast

)(1− qc )

(χ κσ

c(1+τct )

σ(1+Λct (µct ))C

σct

Act+ κσ

s(1+τst )

σ(1+Λst (µst ))C

σst

Ast

)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 69 / 84

Page 70: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Equilibrium innovation in extended model (2)

Equilibrium innovation allocation sct , sst , sgt now satisfies:1. After-subsidy returns equated between coal, gas:

Πct

Πst=1− qc1− qs

2. After-subsidy returns equated between fossil, green:

(Πct/(1− qc )) + (Πst/(1− qs ))(Πgt/(1− qg ))

= 2

⇔ηf C

ε−σft

(s−ψct

1−qc +χs−ψst

1−qs

)κσc

(1+τct )σ(1+Λct (µct ))C

σct

Act+

ηgs−ψgt

1−qgκεg

(1+τgt )εC ε−1gt

...

(χs−ψct

1−qc +s−ψst1−qs

)κσs

(1+τst )σ(1+Λst (µst ))C

σst

Ast

ηgs−ψgt

1−qgκεg

(1+τgt )εC ε−1gt

= 2

3. sct + sst + sgt = 1. Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 70 / 84

Page 71: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Endogenous innovation in extraction technologiesAllow for endogenous innovation in extraction technologies.

I sgt scientists improve green technology Agt ,I sAf t scientists improve both fossil fuel power plant technologies Actand Ast

I sBs t scientists improve natual gas extraction technology and sBc timprove coal gas extraction technology.

Assume equal potential growth on the green path and on the fossilfuel path: ηBs = ηBc = ηAf = 2

1−ψηg .

1 There is path dependence in green innovation vs fossil fuelinnovations.

2 If on a fossil fuel path and if ε ≥ 2, there is path dependence betweencoal and natural gas extraction.

3 On impact, a shale gas boom reduces green innovation relative tofossil fuel power plant innovation.

I If εCs ≥ Bs , it also reduces green innovation absolutely.Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 71 / 84

Page 72: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Optimal Policy Levels (No Boom, growing extractionproductivity)

2050 2100 2150 2200Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shar

e

Panel A: Share of scientists in fossil fuels

laissez­faireoptimum

2050 2100 2150 2200Year

102

103

104

dolla

rs

carbon tax (left)

2050 2100 2150 2200Year

0

10

20

30

40

50

60

70

perc

ent

Panel B: Carbon tax and research subsidy

clean research subsidy (right)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 72 / 84

Page 73: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Shale Boom Impacts on Optimal Policy (growingextraction productivity)

2050 2100 2150 2200Year

0

0.2

0.4

0.6

shar

ePanel A: Share of scientists in fossil fuels

no boomboomno boom & high dam.boom & high dam.

2050 2100 2150 2200Year

0

0.2

0.4

0.6

0.8

1

perc

ent

Panel B: Effect of the boom on the carbon tax (% )

regular damagehigh damage

2050 2100 2150 2200Year

0

5

10

15

20

25

perc

ent

Panel C: Effect of the boom on green research subs. (p.p. )

regular damagehigh damage

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 73 / 84

Page 74: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Comparing optimal policy outcomes vs laissez-faire

Growing extraction tech., boom and low damages.

2050 2100 2150 2200Year

­50

­40

­30

­20

­10

0

10

20

30

40

50

perc

ent

Panel A: % change relative to laissez­faire

emissions (boom)

2050 2100 2150 2200Year

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

perc

ent

Panel B: % change relative to laissez­faire

output (boom)net output (boom)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 74 / 84

Page 75: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Effect of shale gas boom under optimal policyCase with growing extracting technologies and low damages

2050 2100 2150 2200Year

­10

0

10

20

30

40

perc

ent

Panel A: % change in optimumrelative to no boom

emissions (boom)

2050 2100 2150 2200Year

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

perc

ent

Panel B: % change in optimumrelative to no boom

output (boom)net output (boom)

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 75 / 84

Page 76: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Natural Gas Prices: Pre-Boom Sample

BackAABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 76 / 84

Page 77: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 77 / 84

Page 78: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Emissions Spillovers

Benchmark: Only U.S. electricity emissions endogenousI U.S. non-electric, global emissions exogenous (RICE, Nordhaus, 2011)

First-pass proxy for technology spillovers: emissions responseelasticities

Emissionst = EUS ,Elect + EROW ,Elec

t · (1+%∆EUS ,Elect · εElec )

+[EUS ,N .Elect + EROW ,N .Elec

t

]· (1+%∆EUS ,Elect · εN .Elec )

Consider εElec = 1 and εN .Elec = 0.1

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 78 / 84

Page 79: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Emissions Spillovers

Unmanaged boom, constant extraction tech.:

2050 2100 2150 2200 2250Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shar

e

Panel A: Share of scientists in fossil fuels

without the boomwith the boom

2050 2100 2150 2200 2250Year

­10

­5

0

5

10

15

20

25

perc

ent

Panel B: % change

outputemissionsnet outputnet output (high dam.)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 79 / 84

Page 80: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Emissions Spillovers

Unmanaged boom, growing extraction tech.:

2050 2100 2150 2200 2250 2300Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

shar

e

Panel A: Share of scientists in fossil fuels

without the boomwith the boom

2050 2100 2150 2200 2250 2300Year

­20

­15

­10

­5

0

5

10

15

20

25

perc

ent

Panel B: % change

outputemissionsnet outputnet output (high dam.)

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 80 / 84

Page 81: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Emissions Spillovers

Optimal carbon tax (constant extraction tech.)

2010 2020 2030 2040 2050 2060 2070 2080 2090Year

0

500

1000

1500O

ptim

al C

arbo

n Ta

x ($

2015

)Optimal Carbon Tax Levels

BenchmarkEmissions Spillovers

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 81 / 84

Page 82: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Empirical Motivation: Patent Data

World Patent Statistical Database (PATSTAT): All patents 1970-2015I "Fossil fuel" electricity patents: Lanzi, Verdolini and Hascic (2011)I "Green" electricity patents: Y02E/10 (renewables); Y02E/50(biofuels), Y02E/30 (nuclear).

Allocate patents to the country where they are applied for.I Possibly restrict to patents by local inventors as well.

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 82 / 84

Page 83: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Short-Run Impact Estimates: Sensitivity

Total Effects of Improved Shale Extraction Technology Bs0%∆Emiss. %∆Energy %∆CO2Intensity Consumption Emissions

+100% Increase in Bs0Baseline Parameters -13.5% +10.3% -4.5%Higher ε = 3 -7.2% +10.7% +2.8%Lower ε = 1.5 -15.6% +10.2% -7.0%Higher σ = 2.2 -15.9% +10.6% -7.0%Lower σ = 1.8 -11.0% +10.0% -2.1%Lower λ = 0.3 -13.5% +6.2% -8.1%Lower pg0 (NREL) -15.9% +11.2% -6.5%

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 83 / 84

Page 84: Climate Change, Directed Innovation and Energy Transition ......U.S. Shale Gas Revolution 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0 3 5 0 0 0 P r o d u c t i o n (b c f) 1980 1990 2000

Innovation allocation: details

Denote effective productivity of energy type i asCit ≡

(A−1it + B

−1it

)−1I Let pit = γwt/Cit be the price input of type i .

An innovator in the green sector obtains expected profits:

Πgt = ηgts−ψgt

(1− 1

γ

)pgtEgt

An innovator in the fossil fuel sector obtains expected profits:

Πft = ηfts−ψft

(1− 1

γ

)(CctActpctEct +

CstAstpstEst

)In equilibrium, innovators must be indifferent so that Πgt = Πft ⇒(

sgtsft

≈κεgA

ε−1gt−1

1Act−1

κεc

(1

Act−1+ 1

Bct

)−ε+ 1

Ast−1κεd

(1

Ast−1+ 1

Bst

)−ε

Back

AABH (Climate Economics Workshop FRB Richmond) Shale revolution November 19, 2020 84 / 84