1
Waters TO DOWNLOAD A COPY OF THIS POSTER VISIT WWW.WATERS.COM/POSTERS ©2006 Waters Corporation Abstract Analyses are currently performed with the assistance of hyphenated instruments, especially SPE/LC/MS/MS systems. Many applications utilize electrospray ionization interface (ESI) versus a chemical ioniza- tion interface (APcI). This trend is easy to explain; the ESI interface is easy to use, has a large mass range (up to 100 kDa), a wide polarity range and is also applicable to thermally labile compounds. However, ESI is prone to a phenomena called “ion suppression” 1,2,3 . The mecha- nism of ion suppression is not well understood, but several sources were identified, such as the sample matrix and chromatographic con- ditions. In some cases, the suppression effect results in a 95 % loss of signal; in other situations, enhancement of the signal is observed. Mass spectra (100 – 1000 amu) were acquired for each test solution and ion intensities of each drug were measured against a common ref- erence. The vials were subjected to rigorous testing conditions, such as various percentages of organic, strong acid and strong base. A previous paper 3 reported the effects of sample preparation techniques and mobile phase composition on the signal of ESI in positive mode using a simple setup for the quantification of ion suppression/ enhancement. This work continues that study and focuses on another potential sources of suppression or enhancement, the sample vials. The concern is related to the potential leaching of material from vari- ous compositions of glass, septum and/or the presence of residues left behind from the manufacturing process. [1] Miller-Stein C, Bonfiglio R, Olah TV, King RC, Am. Pharm. Rev., 2000, 3, 54. [2] Matuszewski BK, Constanzer ML, Chavez-Eng CM, Anal. Chem., 2003, 75: 675. [3] Mallet, CR, Lu, Z, Mazzeo, JR, Rapid Commun. Mass Spectrome- try, 2004, 18: 49. Claude R Mallet *, Erin Chambers, Diane M. Diehl, Jeff R. Mazzeo Applied Technology, Waters Corporation, 34 Maple St., Milford, MA 01757-3696 * corresponding author [email protected] What is ion suppression or enhancement ? Experimental setup Conclusions Trace level Minor contaminants Intermediate contaminants Major contaminants Trace level Minor contaminants Intermediate contaminants Major contaminants 5 % methanol + no additive 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Reference Vial 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Reference Vial 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Reference Vial 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Reference Vial 50 % methanol + no additive 50 % methanol + 1 % ammonium hydroxide 95 % methanol + no additive 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 m/z 0 100 % Scan ES+ 9.50e5 Vial Reference The mechanisms of ion suppression/enhancement are not well understood at this time. However, it is clear that in or- der to achieve quality results, it is necessary to identify the major sources of suppression or enhancement. Adding to a previous study of mobile phase additives and sample preparation (protein precipitation), vials were added to see the extent of their contributions. This preliminary study raised many questions, but one stood out: “how much sup- pression/enhancement is acceptable?”. It becomes clear that the contribution from a contaminated vial can have a measurable effect during quantitation. The experiment was conducted with the above two pump con- figuration. Both pumps are connected to the same mobile phase reservoir and both lines are connected to the mass spec- trometer via a tee. An autosampler is inserted in one of the lines as seen in the above diagram. Several mobile phases compositions (5 %, 50 % & 95% methanol) and additives (formic acid & ammonium hydroxide both at 1 %) were evalu- ated to see if a particular condition would be suited for this task. The measurements were done following the following protocol: each vial was filled with 1.5 mL of a solvent mixture and let equilibrate for 4 hours. The measurements were made by re- cording the effluent of both pumps with the injection valve in the load position (reference), followed by the injection valve in the inject position (sample) and back to load position for confirma- tion. Each sequence was measured for 5 minutes for a total of 15 minutes. A hundred scans was combined for the reference and the sample as shown in the diagram below. A B C D E F G H I J K L M N O P Q R S T U A B C D E F G H I J K L M N O P Q R S T U A B C D E F G H I J K L M N O P Q R S T U A B C D E F G H I J K L M N O P Q R S T U A B C D E F G H I J K L M N O P Q R S T U A B C D E F G H I J K L M N O P Q R S T U A B C D E F G H I J K L M N O P Q R S T U Waters: A, B, C, D, E, F Other vial manufacturers: G, H, I, J & U – United Kingdom K, L, M, N, O, P, Q, S & T – United States R- China The ESI source is not a new technology. It was borrowed from the automotive industry and takes its origin from the principles of elec- tro-painting. The fundamental role of ESI is relatively easy to un- derstand. The liquid effluent is converted into fine droplets by a process called “pneumatic nebulization”. This step is produced with a coaxial probe with the assistance of a nebulization gas (nitrogen) and a high voltage (kilovolts). As the droplets are produced, the presence of the high voltage ensures that static charges will be po- sitioned on the surface of those droplets, hence the name “electrospray”. With high temperature, the size of a droplet will shrink to a smaller size due to a desolvation effect, up to a point that the multiple charges on the surface can no longer co-exist and thus will create a “coulomb explosion”. At that point, the charged species trapped in the droplet becomes a free ion in the gas phase. It is for this reason that ESI is also referred as to “solution chemis- try”, meaning that the ionization is produced by a chemical process in the solution rather than gas phase chemistry (e.g. electron im- pact, chemical ionization). The surface charges exhibit a pulling ef- fect on ions present in the bulk of the droplets and moving those ions toward the outer surface. During that transition, multiple side- reactions (e.g. collisions) can occur. This is the core of the ion sup- pression/enhancement debate. Vials 95% 50% +A 50% 50% +B 5% Vials 95% 50% +A 50% 50% +B 5% Vials 95% 50% +A 50% 50% +B 5% Vials 95% 50% +A 50% 50% +B 5% A B C D E F G I J K L M N O P Q R S T U Vials 95% 50% +A 50% 50% +B 5% Vials 95% 50% +A 50% 50% +B 5% Vials 95% 50% +A 50% 50% +B 5% Vials 95% 50% +A 50% 50% +B 5% A B C D E F G I J K L M N O P Q R S T U 2777 2777 0.2 mL/ min 0.2 mL/ min + 500 uLloop 2777 W ater ® Micromass ® Quattro Micro™ W aters 515 pump W aters 1525 µ pump 2777 ESI TEE 0.2 mL/ min 0.2 mL/ min + 500 uLloop Scan ES+ Scan ES+ 100 0 % Scan ES+ 472.63 100 0 % 472.63 100 464 466 468 470 472 474 476 478 480 482 484 m/z 0 % 472.63 Terfenadine Scan ES+ Scan ES+ 100 0 % Scan ES+ 472.63 100 0 % 472.63 100 464 466 468 470 472 474 476 478 480 482 484 m/z 0 % 472.63 Terfenadine 50/50 Water ACN + 0.5 % NH 4 OH Peak intensity: 5 143 003 136 Enhancement effect: + 41% 50/50 Water ACN Peak intensity: 3 636 985 856 Standard solution – no additive 50/50 Water ACN + 0.5 % TFA Peak intensity: 893 059 072 Suppression effect: - 75 % Scan ES+ Scan ES+ 100 0 % Scan ES+ 472.63 100 0 % 472.63 100 464 466 468 470 472 474 476 478 480 482 484 m/z 0 % 472.63 Terfenadine Scan ES+ Scan ES+ 100 0 % Scan ES+ 472.63 100 0 % 472.63 100 464 466 468 470 472 474 476 478 480 482 484 m/z 0 % 472.63 Terfenadine 50/50 Water ACN + 0.5 % NH 4 OH Peak intensity: 5 143 003 136 Enhancement effect: + 41% 50/50 Water ACN Peak intensity: 3 636 985 856 Standard solution – no additive 50/50 Water ACN + 0.5 % TFA Peak intensity: 893 059 072 Suppression effect: - 75 % 50/50 + base 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Time 0 100 % Ref Ref Sample Combine 100 scans 50/50 95/5 5/95 50/50 + acid 50/50 + base 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Time 0 100 % Ref Ref Sample Combine 100 scans 50/50 95/5 5/95 50/50 + acid 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Time 0 100 % Ref Ref Sample Combine 100 scans 50/50 95/5 5/95 50/50 + acid Note: each measurement was done with three vials and duplicate injection for a total of 6 runs per vial 50/50 + base 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Time 0 100 % Ref Ref Sample Combine 100 scans 50/50 95/5 5/95 50/50 + acid 50/50 + base 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Time 0 100 % Ref Ref Sample Combine 100 scans 50/50 95/5 5/95 50/50 + acid 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Time 0 100 % Ref Ref Sample Combine 100 scans 50/50 95/5 5/95 50/50 + acid Note: each measurement was done with three vials and duplicate injection for a total of 6 runs per vial 50 % methanol + 1 % formic acid A Study of Contributions From HPLC Vials To Ion Suppression/Enhancement in Electrospray Ionization

Claude R Mallet*, Erin Chambers, Diane M. Diehl, Jeff R. Mazzeo … · 2007-11-21 · Claude R Mallet*, Erin Chambers, Diane M. Diehl, Jeff R. Mazzeo Applied Technology, Waters Corporation,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Claude R Mallet*, Erin Chambers, Diane M. Diehl, Jeff R. Mazzeo … · 2007-11-21 · Claude R Mallet*, Erin Chambers, Diane M. Diehl, Jeff R. Mazzeo Applied Technology, Waters Corporation,

Waters

TO DOWNLOAD A COPY OF THIS POSTER VISIT WWW.WATERS.COM/POSTERS ©2006 Waters Corporation

Abstract Analyses are currently performed with the assistance of hyphenated instruments, especially SPE/LC/MS/MS systems. Many applications utilize electrospray ionization interface (ESI) versus a chemical ioniza-tion interface (APcI). This trend is easy to explain; the ESI interface is easy to use, has a large mass range (up to 100 kDa), a wide polarity range and is also applicable to thermally labile compounds. However, ESI is prone to a phenomena called “ion suppression”1,2,3. The mecha-nism of ion suppression is not well understood, but several sources were identified, such as the sample matrix and chromatographic con-ditions. In some cases, the suppression effect results in a 95 % loss of signal; in other situations, enhancement of the signal is observed. Mass spectra (100 – 1000 amu) were acquired for each test solution and ion intensities of each drug were measured against a common ref-erence. The vials were subjected to rigorous testing conditions, such as various percentages of organic, strong acid and strong base. A previous paper3 reported the effects of sample preparation techniques and mobile phase composition on the signal of ESI in positive mode using a simple setup for the quantification of ion suppression/enhancement. This work continues that study and focuses on another potential sources of suppression or enhancement, the sample vials. The concern is related to the potential leaching of material from vari-ous compositions of glass, septum and/or the presence of residues left behind from the manufacturing process. [1] Miller-Stein C, Bonfiglio R, Olah TV, King RC, Am. Pharm. Rev., 2000, 3, 54. [2] Matuszewski BK, Constanzer ML, Chavez-Eng CM, Anal. Chem., 2003, 75: 675. [3] Mallet, CR, Lu, Z, Mazzeo, JR, Rapid Commun. Mass Spectrome-try, 2004, 18: 49.

Claude R Mallet*, Erin Chambers, Diane M. Diehl, Jeff R. Mazzeo Applied Technology, Waters Corporation, 34 Maple St., Milford, MA 01757-3696 * corresponding author [email protected]

What is ion suppression or enhancement ?

Experimental setup

Conclusions

Trace levelMinor contaminants

Intermediate contaminantsMajor contaminants

Trace levelMinor contaminants

Intermediate contaminantsMajor contaminants

5 % methanol + no additive

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Reference

Vial

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Reference

Vial

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Reference

Vial

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Reference

Vial

50 % methanol + no additive

50 % methanol + 1 % ammonium hydroxide

95 % methanol + no additive

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000m/z0

100

%

Scan ES+ 9.50e5

Vial

Reference

The mechanisms of ion suppression/enhancement are not well understood at this time. However, it is clear that in or-der to achieve quality results, it is necessary to identify the major sources of suppression or enhancement. Adding to a previous study of mobile phase additives and sample preparation (protein precipitation), vials were added to see the extent of their contributions. This preliminary study raised many questions, but one stood out: “how much sup-pression/enhancement is acceptable?”. It becomes clear that the contribution from a contaminated vial can have a measurable effect during quantitation.

The experiment was conducted with the above two pump con-figuration. Both pumps are connected to the same mobile phase reservoir and both lines are connected to the mass spec-trometer via a tee. An autosampler is inserted in one of the lines as seen in the above diagram. Several mobile phases compositions (5 %, 50 % & 95% methanol) and additives (formic acid & ammonium hydroxide both at 1 %) were evalu-ated to see if a particular condition would be suited for this task. The measurements were done following the following protocol: each vial was filled with 1.5 mL of a solvent mixture and let equilibrate for 4 hours. The measurements were made by re-cording the effluent of both pumps with the injection valve in the load position (reference), followed by the injection valve in the inject position (sample) and back to load position for confirma-tion. Each sequence was measured for 5 minutes for a total of 15 minutes. A hundred scans was combined for the reference and the sample as shown in the diagram below.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

Waters: A, B, C, D, E, F Other vial manufacturers: G, H, I, J & U – United Kingdom K, L, M, N, O, P, Q, S & T – United States R- China

The ESI source is not a new technology. It was borrowed from the automotive industry and takes its origin from the principles of elec-tro-painting. The fundamental role of ESI is relatively easy to un-derstand. The liquid effluent is converted into fine droplets by a process called “pneumatic nebulization”. This step is produced with a coaxial probe with the assistance of a nebulization gas (nitrogen) and a high voltage (kilovolts). As the droplets are produced, the presence of the high voltage ensures that static charges will be po-sitioned on the surface of those droplets, hence the name “electrospray”. With high temperature, the size of a droplet will shrink to a smaller size due to a desolvation effect, up to a point that the multiple charges on the surface can no longer co-exist and thus will create a “coulomb explosion”. At that point, the charged species trapped in the droplet becomes a free ion in the gas phase. It is for this reason that ESI is also referred as to “solution chemis-try”, meaning that the ionization is produced by a chemical process in the solution rather than gas phase chemistry (e.g. electron im-pact, chemical ionization). The surface charges exhibit a pulling ef-fect on ions present in the bulk of the droplets and moving those ions toward the outer surface. During that transition, multiple side-reactions (e.g. collisions) can occur. This is the core of the ion sup-pression/enhancement debate.

Vials 95% 50%+A 50% 50%+B 5%Vials 95% 50%+A 50% 50%+B 5%Vials 95% 50%+A 50% 50%+B 5%Vials 95% 50%+A 50% 50%+B 5%

ABCDEFGIJKLMNOPQRSTU

Vials 95% 50%+A 50% 50%+B 5%Vials 95% 50%+A 50% 50%+B 5%Vials 95% 50%+A 50% 50%+B 5%Vials 95% 50%+A 50% 50%+B 5%

ABCDEFGIJKLMNOPQRSTU

Quattro Micro

515 1525u

2777

ESI

TEE

W ater® Micromass®

Quattro Micro™

W aters515 pump

W aters1525µ pump

2777

ESI

TEE0.2 mL/ min

0.2 mL/ min

+ 500 uL loop

Quattro Micro

515 1525u

2777

ESI

TEE

W ater® Micromass®

Quattro Micro™

W aters515 pump

W aters1525µ pump

2777

ESI

TEE0.2 mL/ min

0.2 mL/ min

+ 500 uL loop

Neat Solution

Scan ES+

Scan ES+

100

0

%

Scan ES+

472.63

100

0

%

472.63

100

464 466 468 470 472 474 476 478 480 482 484m/z0

%

472.63

Terfenadine

Scan ES+

Scan ES+

100

0

%

Scan ES+

472.63

100

0

%

472.63

100

464 466 468 470 472 474 476 478 480 482 484m/z0

%

472.63

Terfenadine

50/50 Water ACN + 0.5 % NH4OHPeak intensity: 5 143 003 136Enhancement effect: + 41%

50/50 Water ACNPeak intensity: 3 636 985 856Standard solution – no additive

50/50 Water ACN + 0.5 % TFAPeak intensity: 893 059 072Suppression effect: - 75 %

Neat Solution

Scan ES+

Scan ES+

100

0

%

Scan ES+

472.63

100

0

%

472.63

100

464 466 468 470 472 474 476 478 480 482 484m/z0

%

472.63

Terfenadine

Scan ES+

Scan ES+

100

0

%

Scan ES+

472.63

100

0

%

472.63

100

464 466 468 470 472 474 476 478 480 482 484m/z0

%

472.63

Terfenadine

50/50 Water ACN + 0.5 % NH4OHPeak intensity: 5 143 003 136Enhancement effect: + 41%

50/50 Water ACNPeak intensity: 3 636 985 856Standard solution – no additive

50/50 Water ACN + 0.5 % TFAPeak intensity: 893 059 072Suppression effect: - 75 %

50/50 + base

2.00 4.00 6.00 8.00 10.00 12.00 14.00Time0

100

%

Ref RefSampleCombine 100 scans

50/50

95/5

5/95

50/50 + acid

* Three vials + duplicate injections = 6 runs per vials

50/50 + base

2.00 4.00 6.00 8.00 10.00 12.00 14.00Time0

100

%

Ref RefSampleCombine 100 scans

50/50

95/5

5/95

50/50 + acid

* Three vials + duplicate injections = 6 runs per vials

2.00 4.00 6.00 8.00 10.00 12.00 14.00Time0

100

%

Ref RefSampleCombine 100 scans

50/50

95/5

5/95

50/50 + acid

* Three vials + duplicate injections = 6 runs per vials Note: each measurement was done with three vials and duplicate injection for a total of 6 runs per vial

50/50 + base

2.00 4.00 6.00 8.00 10.00 12.00 14.00Time0

100

%

Ref RefSampleCombine 100 scans

50/50

95/5

5/95

50/50 + acid

* Three vials + duplicate injections = 6 runs per vials

50/50 + base

2.00 4.00 6.00 8.00 10.00 12.00 14.00Time0

100

%

Ref RefSampleCombine 100 scans

50/50

95/5

5/95

50/50 + acid

* Three vials + duplicate injections = 6 runs per vials

2.00 4.00 6.00 8.00 10.00 12.00 14.00Time0

100

%

Ref RefSampleCombine 100 scans

50/50

95/5

5/95

50/50 + acid

* Three vials + duplicate injections = 6 runs per vials Note: each measurement was done with three vials and duplicate injection for a total of 6 runs per vial

50 % methanol + 1 % formic acid

A Study of Contributions From HPLC Vials To Ion Suppression/Enhancement in Electrospray Ionization