55

Civil Code

Embed Size (px)

DESCRIPTION

Civil code

Citation preview

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.( Reaffirmed 1995 )HANDBOOK FOR STRUCTURALENGINEERS No.6 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.As in the Original Standard, this Page is Intentionally Left BlankPlease purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP: 6(6)-1972 HANDBOOK FOR STRUCTURALENGINEERS 6.APPLICATIONOFPLASTICTHEORYIN DESIGNOFSTEELSTRUCTURES BUREAUOFINDIANSTANDARDS MANAKBHAVAN,9BAHADURSHAHZAFARMARG NEWDELHI110002 PriceRs.275.00 October1973 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.BUREAUOFINDIANSTANDARDS Edition1-1972 SirthReprint DECEMBER 1998 UDC624.014.2:624.04 SP:6(6)-1972 QCopyrtght1973 BUREAUOFINDIANSTANDARDS ThispublicationisprotectedundertheIndianCopyrightAct(XIV of1957)andreproduction inwholeorinpart byauymeansexcept withwrittenpermissionofthepublishershallbedeemedtobean infringementofcopyrightunderthesaidAct. PrintedinIndiabyPrintsgraph,NewDelhiand PublishedbyBureauofIndianStandards,NewDelhi110002 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.CONTENTS PACE FOREWORD. . .. . .. .. . .. . . SYMBOLS. . .. . .. . .. . .s.. SECTI ONAI NTRODUCTI ON 1.SCOPE............... 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. GENERAL. . .. . .. . .. . .. . . STRUCTURALSTRENGTH. . .. . .. . .. . . MECHANICALPROPERTIESOF STEEL. . .. . .. . . MAXIMUM STRENGTHOF SOME ELEMENTS. . .. . . HISTORICALDEVELOPMENT. . .. . .. . . SECTI ON6J USTI FI CATI ONFORPLASTI CDESI GN WHYPLASTIC DESIGN. . .. . .. . . INADEQUACY OF STRESS ASTHE DESIGN CRITERION EXPERIMENTALVERIFICATION. . .. . . THECASE FOR PLASTICDESIGN. . .. . . SECTI ONCFLEXUREOFBEAMS ASSUMPTIONSANDCONDITIONS. . .. . . BENDING OF RECTANGULARBEAM. . .. . . BENDING OF WIDEFLANGE BEAM. . .. . . PLASTIC HINGE. . .. . .. . . REDISTRIBUTIONOF MOMENT. . .. . . SECTI ONDPLASTI CANALYSI S FUNDAMENTALPRINCIPLES. . .. . . STATICALMETHOD OF ANALYSIS. . .. . . MECHANISMMETHOD OF ANALYSIS. . .. . . FURTHER CONSIDERATIONS. . .. . . 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 II 15 15 16 19 21 23 25 26 32 33 35 35 40 43 45 49 53 56 66 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.8F:6(6)-1972 20. n. 22. P. 24. 25. 26. 27. 2%. 29. 30. SECTI ONEAPPLI CATI ONTODESI GN GENERAL............ PRFUYINARYDESIGN. . .. . .. . . G.WB~AL DESIGNPROCEDURE. . .. . . SECORDARYDESIGNCONSIDERATIONS . . . SECTl ONFDESI GNEXAMPLES INTRODUCTION. . .. . .. . .. . . DESIGNEXAMPLESON CONTINUOUSBEAMS. . . DESIGNEXAMPLESON IKDUSTRIALBUILDINGFRAMES DESIGNEXAMPLEON MULTI-STOREYSTRUCTURES SECTI ONGSI MPLI FI EDPROCEDURES INTRODUCTION. . .. . .. . .. . . CONTINUOUSBEAMS. . .. . .. . . SINGLE-SPANFRAMES(SINGLESTOREY). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31. MULTI-SPANFRAMES. . .. . .. . .. . . APPENDIXASELIXTEDREFERENCES. . .. . .. . . APPENDIXBSPACINGOF LATERALBRACING. . .. . . APPENDIXCCHARTSAND FORMULASFOR SIMPLEBEAMS. . . APPENDIXDCOMPOSITIONOFSTRUCTURALENGINEERINGSEG TIONALCOMMITTEE,SMBDC7. . .. . .. . . .APPENDIXEINDIANSTANDARDSRELATING TOSTRUCTURAL 77 77 78 81 125 125 136 178 187 187 188 191 195 198 203 216 ENGINEERING. . .. . .. . .. . . 218 6 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 FOREWORD ThisHandbook,whichhasbeenprocessedbytheStructural Eng!neeringSectionalCommittee,SMBDC7,thecompositionofwhich isg;veninAppendixD,hadbeenapprovedforpublicationbythe StrutturalandMetalsDivisionCouncilandtheCivilEngin&ring DivisionCouncilofISI. Steel,whichisaveryimportantbasicrawmaterialsforindus- trialization,hadbeenr&ivingattentionfromthePlanningCommis- sionevenfromtheveryearlystagesofthecountrysFirstFiveYear Planperiod.ThePlanningCommissionnotonlyenvisagedanincrease inproductioncapacityinthecountry,butalsoconsideredthequestion ofevengreaterimportance,namely,takingofurgentmeasuresfor theconservationofavailableresources.Itsexpertcommitteescame totheconclusionthatagoodproportionofthesteelconsumedbythe structuralsteelindustryinIndiacouldbesavedifhigherefficiency procedureswereadoptedintheproductionanduseofsteel.The PlanningCommission,therefore,recommendedtotheGovernmentof IndiathattheIndianStandardsInstitutionshouldtakeupaSteel EconomyProjectandprepareaseriesofIndianStandardspecifications andcodesofpracticeinthefieldofsteelproductionandutilization. Overfifteen.yearsofcontinuousstudyinTndiaandabroad,and thedeliberationsatnumeroussittingsofcommittees.panelsandstudy groupsresultedintheformulationofanumberofIndianStandards inthefieldofsteelproduction,designanduse,alistofwhichisgiven inAppendixE. ThisHandbookwhichrelatestotheapplicationofplastictheory indesignofsteelstructuresisintendedtopresenttheimportantprin- ciplesandassumptionsinvolvedintheplasticmethodofstructural analysis,andtoprovideillustrativeexamplesfortheguidanceofthe designerintheanalysisofpracticaldesignproblems. Thesubjectisintroducedbyconsideringthevariouslimitsof usefulnessofasteelstructure,thelimitsthatarefunction(inpart) ofthemechanicalpropertiesofsteel.Knowledgeoftheseproperties isusedinSectionAtoshowhowthemaximumstrengthofsomesimple structuresmaybecomputed. Thehistoricaldevelopmentofthe plastictheoryofstructuresisalsodealtwithinbrief. SectionBanswersthequestion Whyplasticdesign.Itisshown thatstressisaninadequatedesigncriterionforalargenumberof 7 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 practicalengineeringstructures.Theexperimentalverificatiorroftha plastictheory(whichbasesthedesignofstructuresonthemaximum strength)hasalsobeenindicated.Thebasictheoreticalworkisdeait withinSectionsCandD.Theconceptsofplasticbendingandredls- tributionofmomentsaredescribedandthemethodsofanalysishas beenindicated.SectionEcontainsgeneralcommentsondesign procedures.Althoughthissectioncoversafewexamplesrelatingto multistoreyframes,itisproposedtodealwiththesubjectindetailin asupplementinduecourse.Thelimitations,modificationsanddesign detailshavebeendescribedundertheheading SecondaryDesign Consideration.Properattentionshouldbegiventotheeffectofshear force,axialforce,localandlateralbuckling,etc.Further,thebeams, columnsandconnectionsshouldbedesignedtomeettherequirements ofplastichingeformation. Thesectionondesignexamplestreatsanumberofbuildingframes ofdifferentprofiles.Thesecondarydesignconsiderationsarechecked throughout.Section7describessimplifiedproceduresofsolvingdesign problemswiththeuseofformulas,chartsandgraphs. InAppendixAisgivenalistofselectedreferencesforfurther detailedinformationonplastictheoryofstructures. Whatwillplasticdesignmean?Tothe sidewalksuperintendent, itwillmeannothing.Thestructurewilllookjustthesameasacon- ventionallydesignedstructure.Totheengineer,itwillmeanamore rapidmethodofanalysis.Totheowner,itwillmeaneconomy,because plasticdesignrequireslesssteelthanconventionaldesign.Forthe buildingauthority,itwouldmeanmoreefficientoperationsbecause designsmaybecheckedfaster.Tosteelindustry,itwouldmeanmore efficientuseofitsproducts.Finally,toanation,itwillmeanbetter useofhernaturalresources. ThisHandbookisbasedonandrequiresreferencetothefollowing publicationsissuedbyISI: IS: IS: IS: IS: IS: 226-1969Specificationforstructuralsteel(standardquality) (fourt/zrevision) 800-1962Codeofpracticeforuseofstructuralsteelingeneral buildingconstruction(revised) 875-1964Codeofpracticeforstructuralsafetyofbuildings: Loadingstandards(revised) 2062-1969Specificationforstructuralsteel(fusionwelding quality)(@Strevision) 4000-1967Codeofpracticeforassemblyofstructuraljoints usinghightensilefrictiongripfasteners 8 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 Inthepreparationofthishandbook,thetechnicalcommitteehas derivedvahlableassistancefromDrLynnS.Bee&e,Professorof StructuralEngineering,LehighUniversity,Bethlehem,USA.DrBcedle preparedthepreliminarydraftofthishandbook.Thisassistance wasmadeavailabletoIS1throughMessrsRamseyer&Miller,Inc,Iron, andSteelIndustryConsultants,NewYork,bytheTechnicalCo-operation MissiontoIndiaoftheGovernmentofIndiaundertheirTechnical AssistanceProgrammc. Nohandbookofthiskindmaybemadecompleteforalltimesto comeattheveryfirstattempt.Asdesignersandcnginecrsbeginto USC it,theywillbeabletosuggestmodificationsandadditionsfor improvingitsutility.Theyarerequestedtosendsuchvaluable suggestionstoISIwhichwillbereceivedwithappreciationand gratitude. 9 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.As in the Original Standard, this Page is Intentionally Left BlankPlease purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP : 6(6) -1972 SYMBOLS AE AP= A,;= Aw= b = 5 ii= E= Symbolsusedinthishandbookshallhavethemeaningassigned tothemasindicatedbelow: Areaofcross-section ArcaofbothflangesofWFshape Areaofsplit-tee Areaofwebbetweenflanges Flangewidth Distancefromneutralaxistotheextremefibre Depthofsection Youngsmodulusofelasticity Strain-hardeningmodulus=2 rt Tangentmodulus Eccentricity Loadfactorofsafety Es,= E,= s .;=f =f =G = Gt= H = HB= I Iz I *= J = K= k = KL= L = L,= iu= Shapefactor=M=s M, Fixityfactorfor:seinevaluatingandrestraintcoefficient Modulusofelasticityinshear Modulusofelasticityinshearatonsetofstrain-hardening Hingerotationrequiredataplastichinge Portionofhingerotationthatoccursincritical(buckling)seg. mentofbeam Momentofinertia Momentofinertiaofelasticpartofcross-section Momentofinertiaofplasticpartofcross-section Numberofremainingredundanciesiuastructurethatis redundantatultimateload Eulerlengthfactor Distancefromflangefacetoendoff2lct Effective(pinend)lengthofcolumn Spanlength;actualcolumnlength Criticallengthforlateralbuckling Moment 11 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 m = Mb= MO= Mp= Mp= Mpc= Mps= M,= M,= i&c= M,= N = = ;= PC,= P= P,= P,= Pt= P"= P,= P,= R = = ;= s,= T = tf= ts= t.,= v = vc= Numberofplastichingesdevelopedinastructurethatis redundantatultimateload Momentatthehaunchpoint Endmoment;ausefulmaximummoment;hingemoment Plasticmoment Plasticmomentcapacityofabeamsection Plastichingemomentmodifiedtoincludetheeffectofaxial compression Plastichingemomentmodifiedtoincludeeffectofshearforce Maximummomentofasimply-supportedbeam Momentatwhichyieldpointisreachedinflcxure Momentatwhichinitialouterfibreyieldoccurswhenaxial thrustispresent Momentattheworkingload Numberofpossibleplastichinges Numberofpossibleindependentmechanisms Concentratedload Usefulcolumnload.Aloadusedasthemaximumcolumn load Eulerbucklingload Reducedmodulusload Stabilizingload Tangentmodulusload Theoreticalultimateload Workingload Axialloadcorrespondingtoyieldstresslevel;P=Aa, Rotationcapacity Radiusofgyration Sectionmodulus,I /C Sectionmodulusofelasticpartofcross-section Force Flangethickness Stiffnerthickness Webt hickncss Shearforce Shearcarryingcapacityofasection _. 2c, v,w=Displacementsinx,y,andzdirections W =TotaldistributedJoad 12 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SF:6(6)-1972 W EXT= Externalworkduetovirtualdisplacement WI NT= Internalworkduetovirtualdisplacement W = Distributedloadperunitoflength Wd = Thicknessofthewetdoublers WU =Totaluniformitydistributedload X =Numberofredundancies x =Longitudinalcoordinate x=Distancetopositionofplastichingeundrrdistributedload Y =Transversecoordinate Y =Distancefromneutralaxistocentroidofhalf-area 2 MtJ =Plasticmodulus=- CY 2, = Plasticmodulusofelasticportion 2, =Plasticmodulusofplasticportion 2=Lateralco-ordinate AL=Equivalentlengthofconnection 6=DC flection d=Strain Gt =Strainatstrain-hardening CY = Straincorrespondingtofirstattainmentofyieldstresslevel 8=Measuredanglechange;rotation.Rotation p =Poissonsratio =Radiusofcurvature d=Nomialstress QY = Loweryieldpoiat 9 =Proportionlimit 0, =Residualstress a,rt =Ultimatetensilestrengthofmaterial QWY = Upperyieldpoint 0, =Workingstress fJ Y I Yieldstresslevel =Shearstress =Rotationperunitlength,oraverageunitrotation;curvature Y = Curvaturecorrespondingtofirstyieldinflexure Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.As in the Original Standard, this Page is Intentionally Left BlankPlease purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SECTI ONA I NTRODUCTI ON 1.SCOPE 1.1Itisthepurposeofthishandbooktopresentthefundamental conceptsinvolvedinplasticdesignandtojustifyitsapplicationto structuralsteelframes.Themethodsofplasticanalysiswillbedes- cribedtogetherwiththedesignproceduresthathavesofarbeen developed.Secondarydesignconsiderationsarealsoincluded. 1.2Specificapplicationmaybemadetostaticallyloadedframesof structuralsteeltocontinuousbeams,tosingle-storeyedindustrialframes andtosuchotherstructureswhoseconditionofloadingandgeometry areconsistentwiththeassumptionsinvolvedinthetheory.Numerous applicationswillundoubtedlybemadetoothertypesofstructures suchasringsandarches,butforthetimebeingthescopeofapplication islimitedtotheindicatedstructuraltypes. 2. GENERAL 2.1Steelpossessesductility,auniquepropertythatnootherstructural materialexhibitsiuquitethesameway.Throughductilitystructural steelisabletoabsorblargedeformationsbeyondtheelasticlimitwith- outthedangeroffracture. 2.2Althoughthereareafewinstanceswhereconscioususehasbeen madeofthisproperty,byandLarge theengineerhasnotbeenableto fullyexploitthisfeatureofductilityinstructuralsteeLAsaresultof theselimitationsitturnsoutthatconsiderablesacrificeofeconomyis involvedintheso-calledconventionaldesignprocedures. 2.3 Engineershaveknownofthisductilityforyears,andsincethe 19206havebeenattemptingtoseeifsomeconscioususecouldbe madeofthispropertyindesign.Plasticdesignistherealizationofthat goal.Thisgoalhasbeenachievedbecausetwoimportantconditions havebeensatisfied.First,thetheoryconcerningtheplasticbehaviour ofcontinuoussteelframeshasbeensystematizedandreducedtosimple designprocedures.Secondly,everyconceivablefactorthatmighttend toLimit theload-carryingcapacitytosomethinglessthanthatpredicted 15 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 bythesimpleplastictheoryhasbeeninvestigatedandruleshavebeen formulatedtosafeguardagainstsuchfactors. 3.STRUCTURALSTRENGTH 3.1Thedesignofanyengineeringstructure,beitabridgeorbuilding, issatisfactoryifitispossibletobuiltitwiththeneededeconomyand ifthroughoutitsusefullifeitcarriesitsintendedloadsandotherwise performsitsintendedfunction.Asalreadymentioned,intheprocess ofselectingsuitablemembersforsuchastructure,itisnecessaryto makeageneralanalysisofstructuralstrengthandsecondlytoexamine certaindetailstoassurethatlocalfailuredoesnotoccur. 3.2Theabilitytocarrytheloadmaybetermedstructuralstrength. Broadlyspeaking,thestructuralstrengthordesignloadofasteelframe maybedeterminedorcontrolledbyanumberoffactors,factorsthat havebeencalledlimitsofstructuralusefulness.Theseare:first attainmentofyieldpointstress(conventionaldesign),brittlefracture, fatigue,instability,deflections,andfinallytheattainmentofmaximum plasticstrength. 3.3Strictlyspeaking,adesignba~sed onanyoneoftheabove-mentioned sixfactorscouldberoferredtoasa limitdesign,althoughtheterm usuallyhasbeenappliedtothedeterminationofultimateloadaslimited bybucklingormaximumstrengthl*.Plasticdesignasanaspectof limitdesignandasappliedtocontinuousbeamsandframesembraces, then,thelastofthelimits_theattainmentofmaximumplasticstrength. 3.4Thus,plasticdesignisfirstadesignonthebasisofthemaximum loadthestructurewillcarryasdeterminedfromananalysisofstrength intheplasticrange(thatisiaplasticanalysis).Secondlyitconsistsof aconsiderationbyrulesorformulasofcertainfactorsthatmightother- wisetendtopreventthestructurefromattainingthecomputedmaxi- mumload.Someofthesefactorsmaybepresentinconventional (elastic)design.Othersareassociatedonlywiththeplasticbehaviour ofthestructure.Buttheuniquefeatureofplasticdesignisthatthe ultimaL load ratherthantheyieldstressisregardedasthede&u Criterion. 3.5Itha;longbeenknownthatwhenevermembersarerigidlycon- nected,thestructurehasamuchgreaterload-carryingcapacitythan indicatedbytheelasticstressconcept.Continuousor rigidframes areabletocarryincreasedloadsabovefirstyieldbecausestructural steolhasthecapacitytoyieldinaductilemannerwithnolossinstrength; *Thisnumberreferstotheserialnumberoftheselectedreferencesgivenin AppendixA. 16 t Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 indeed,withfrequentincreaseinresistance.Althoughthephenomenon willbedescribedincompletedetaillater,ingeneraltermswhathappens isthis: Asloadisappliedtothestructure,thecross-sectionwiththe greatestbendingmomentwilleventuallyreachtheyieldmoment. Elsewherethestructureiselasticandthepeakmomentvalues arelessthanyield.As!oadisadded,azoneofyieldingdevelops atthefirstcriticalsection;butduetotheductilityofsteel,the momentatthatsectionremainsaboutconstant.Thestructure, therefore,callsuponitsless-heavilystressedportionstocarrythe increaseinload.Eventually,zmesofyieldingareformed atothersectionsuntilthemomentcapacityhasbeenexhausted atallnecessarycriticalsections.Afterreachingthemaximumload value,thestructurewouldsimplydeformatconstantload. 3.6Attheoutsetitisessentialtomakeacleardistinctionbetween elasticdesignandplasticdesign.Incmventionalelasticdesignprac- tice,amemberisselectedsuchthatthemaximumallowablebending stressisequalto1 650kgf/cm2attheworkingload.Asshownin Fig.1suchabeamhasareserveofstrengthof1.65iftheyieldpoint stressis2 400kgf/cm*.Duetotheductilityofsteelthereisan OESIBNBASIS CONVENTIONALDESIGN 0 PLASTICDESIGN FIG.1PLASTIC DESIGNCOMPARED WITHELASTIC DESIGN I_ ,\y .: .L 17 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1072 additionalreservewhichamountsto12to14percentforawideflange shape.Thusthetotalinherentoverloadfactorofsafetyisequalto 1~65x1~12=1~85asanaveragevalue. 3.7Inplasticdesign,ontheotherhand,thedesigncommenceswith thelcltimate load.(Aswillbeevidentlater,itismucheasiertoanalyze anindeterminatestructureforitsultimateloadthantocomputethe yieldload.)Thustheworkingload,P,,ismultipliedbythesameload factor(1.85)andamemberisselectedthatwillreachthisfactored load. 3.8Theloadvdeflectioncurvefortherestrainedbeamisshownin Fig.1.Ithasthesameultimateloadastheconventionaldesignofthe simplebeamandthememberiselasticatworkingload.Theimportant thingtonoteisthatthefactorofsafetyisthesameintheplasticdesign oftheindeterminatestructureasitisintheconventionaldesignofthe simplebeam. 3.9Whilethereareotherfeatureshere,theimportantpointtogetin mindatthisstageisthatinconventionalproceduresonecomputesthe maximummomentundertheworkingloadandselectsamembersuch thatthemaximumstressisnotgreaterthan1650kgf/cm2onthe otherhandinplasticdesignonemultiplestheworkingloadby F = 1.85andselectsamemberwhichwilljustsupporttheultimate load. 3.10Terminology-Plasticdesignnaturallyinvolvestheuseofsome newterms.Actuallythesearefewinnumber,butforconvenienceare listedbelow : LimitDesign-Adesignbasedonanychosenlimitofstructural usefulness. PlasticDesign -Adesignbasedupontheultimateload-carrying capacity(maximumstrength)ofthestructure.Theterm plastic isderivedfromthefactthattheultimateloadiscomputedfrom aknowledgeofthestrengthofsteelintheplasticrange. UltimateLoad(P,,)orMaximumStrength -Thehighestloada structurewillcarry.(Itisnottobeconfusedwiththetermas appliedtotheultimateloadcarriedbyanordinarytensiletest specimens.)InthedesignP,isdeterminedbymultiplyingthe expectedworkingload(PW) bytheloadfactor(seebelow). Plastijicath-Thedevelopmentoffullplasticyieldofthecross- section. PlasticMoment(M&-Maximummomentofresistanceofafully- yieldedcross-section. 18 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 Plasticlodzclus(Z)-Combinedstaticmomentsabouttheneutral axisofthecross-sectionalareasaboveandbelowtheneutralaxis. PlasticHiqeeAyieldedsectionofabeamwhichactsasifit werehinged,exceptwithaconstantrestrainingmoment. ShapeFactor(fl-Theratioofthemaximumresistingmoment ofacross-section(M,)totheyieldmoment(M,). Mechanism -A hingesystem,asystemofmembersthatcan movewithoutanincreaseinload. RedistributiorcofMoment 4Aprocesswhichresultsinthesuc- cessiveformationofplastichingesuntiltheultimateloadis reached.Byit,theless-highlystressedportionsofastructure alsomayreachthe(M&-value. LoadFactor(F)-Asafetyfactor.Thetermisselectedtoempha- sizethedependenceuponload-carryingcapacity.Itisthe numberbywhich*theworkingloadismultipliedtoobtainP,. 4.MECHANICALPROPERTIESOFSTEEL 4.1Anoutstandingpropertyofsteel,which(asalreadymentioned) setsitapartfromotherstructuralmaterials,istheamazingductility whichitpossesses.ThisischaracterizedbyFig.2whichshowsin somewhatidealizedformthestress-strainpropertiesofsteelintheinitial portionofthecurve.InFig.3areshownpartialtensilestress-strain curvesforanumberofdifferentsteels.Notethatwhentheelastic limitisreached,elongationsfrom8to15timestheelasticlimittake placewithoutanydecreaseinload.Afterwardssomeincreaseinstrength isexhibitedasthematerialstrainhardens. 4.2Althoughth;firstapplicationofplasticdesignistostructures fabricatedofstructuralgradesteel,itisnotlessapplicabletosteelsof STRAI N- STRESS-STRAINCURVE OF S~-42STEEL IDEALIZED 19 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 LASTICRANGE--W&RAINHARDENINO 0 If0 $0 STR4IN 3dx10-2 C FIG.3STRESS-STRAINCURVEOF ST&~ ANDST-%STRUCTURALSTEELS higher strength aslong as they possess thenecessary ductility. Figure 3 attests totheabilityofawiderangeofsteelstodeformplastically withcharacteristics similar tosteelconformingtoIS:226-1969*. 4.3Itis important tobear inmind thatthestrains shown inFig.3 are reallyverysmall.AsshowninFig.4,forordinarystructural steel, final failure byrupture occurs onlyafter aspecimen has stretched some IMALIZEDCURVE .Od! o- 11 l b50 1525 PERCENTAGEELONGATION____c FIG.4COMPLETESTRESS-STRAINCURVEOF STRUCTURALSTEEL -.__- *Structuralsteel(standardquality)(fourthrcuision). 20 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 15 to25timesthemaximumstrainthatisencounteredinplasticdesign. Eveninplasticdesign,atultimateloadthecriticalstrainswillnothave exceededpercentageelongationofabout1.5.Thus,theuseofultimate loadasthedesigncriterionstillleavesavailableamajorportionofthe reserveductilityofsteelwhichmaybeusedasanaddedmarginof safety.Thismaximumstrainof1.5percentisastrainatultimate load>n thestructurenotatworkingload.Inmostcasesunderworking loadthestrainswillstillbebelowtheelasticlimit. 5.MAXIMUMSTRENGTHOFSOMEELEMENTS 5.1Onthebasisoftheductilityofsteel(characterizedbyFig.2)itis nowpossibletocalculatequicklythemaximumcarryingcapacityof certainelementarystructures. Asafirstexampletakeatensionmembersuchasaneyebar(Fig.. 5). ThestressisQ =P/A. Thelo&dvdeflectionrelationshipwillbe\elasticuntiltheyield pointisreached.AsshowninFig.5deflectionattheelasticlimitis givenby6,=P,L/AE. t T- i A i 1 I L I I I UNRESTRICTED PLASTICFLOW STRESS: 6p =- A DEFLECTION: $1PUL 6,.EL:7:AE P,,s$A FIG. 5MAXIMUMSTRENGTHOF AN EYEBAR (DETERMINATESTRUCTURE) 21, Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 Sincethestressdistributionisuniformacrossthesection,unrest- rictedplasticflowwillsetinwhentheloadreachedthevaluegivenby P,= ayA Thisis,therefore,theultimateload.Itisthemaximumloadthe structurewillcarrywithouttheonsetofunrestrictedplasticflow. Asasecondexampleconsiderthethree-barstructureshownin Fig.6.Itisnotpossibletoconsiderthestateofstressbystaticsalone andthusitisindeterminate.Considertheelasticstate.Fromthe equilibriumconditionthereisobtained: 2Tl+TI =P. . .. . .. . .. ..(l) whereT1istheforceinbars1and3andT,theforceinthebar2. PARTIALLVPl .ASTl t PLASTIC EWL~IUY:21,+12-P VLLOLIMIT:pr212*2byh L 0 OEFLECTION- FIG. 6PLASTICAND ELASTICANALYSIS OF AN INDETERMINATESYSTEM Thenextconditiontoconsideriscontinuity.Forarigidcrossbar, thetotaldisplacementofBar1 willbeequaltothatofBar2. Therefore: l-14T&a AE-AE.**.**** . . . (2) T,= 2(asL,= 2L.J. . .. . .. ..(3) WiththisrelationshipbetweenT,andT,obtainedbythecontinuity condition,usingEq(1)itisfoundthat: T&.. . .. . .. . .. . .. ..(4) 22 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 Theloadatwhichthestructurewilltirstyieldmaythenbedetermined bysubstitutinginEq(4)themaximumloadwhichT,canreach, namely,oYA . Thus, P,,=2T,=2a,A. . .. . .. ..(5) Thedisplacementattheyieldloadwouldbedeterminedfrom: 8=q2& Yor;22E ....... ..(6) Now,whenthestructureispartiallyplasticitdeformsasifitwerea two-barstructureexceptthataconstantforceequaltoCT,,Aissuppliedby Bar2(thememberisintheplasticrange).Thissituationcontinues untiltheloadreachestheyieldvalueinthetwoouterbars.Notice howeasilyitispossibletocomputetheultimateload: P,=3ayA. . .. . .. ..(7) Thebasicreasonfort,hissimplicityisthatthecontinuitycondition neednotbeconsideredwhentheultimateloadintheplasticrangeis beingcomputed. Theload-deflectionrelationshipforthestructureshowninFig.6 isindicatedatthebottom.Notuntiltheloadreachesthatvalue computedbyaplasticanalysis(Eq7)didthedeflectionscommenceto increaserapidly.Thedeflectionwhentheultimateloadisfirstreached canbecomputedfrom: I.. . .. ..(8) Thethreeessentialfeaturesofthissimpleplasticanalysisareasfollows: a)Eachportionofthestructure(eachbar)reachedaplasticyield condition, b)Theequilibriumconditionwassatisfiedatultimateload,and c)Therewasunrestrictedplasticflowattheultimateload. Thesesamefeaturesareallthatarerequiredtocompletetheplastie analysisofanindeterminatebeamorframe,andinfact,thissimple exampleillustratesalloftheessentialfeaturesofaplasticanalysis. 6.HISTORICALDEVELOPMENT 6.1Theconceptofdesignbasedonultimateloadasthecriterionis morethan40yearsold!Theapplicationofplasticanalysistostructural designappearstohavebeeninitiatedbyDrGaborKazinszy,aHunga- rian,whopublishedresultsofhisTests2ofClampedGirdersasearlyas 23 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 1914.Healsosuggestedanalyticalproceduressimilartothose nowcurrent,anddesignsofapartment-typebuildingswereactually carriedout. 6.2InhisStrengthofMaterialsa,Timoshenkoreferstoearlysuggestions toutilizeultimateloadcapacityintheplasticrangeandstatesasfollows: Suchaprocedureappearslogicalinthecaseofsteelstructures submittedtotheactionofstationaryloads,sinceinsuchcasesa failureowingtothefatigueofmetalisexcludedandonlyfailure duetotheyieldingofmetalshastobeconsidered. EarlytestsinGermanyweremadebyMaier-Leibnitzwhoshowedthat theultimatecapacitywasnotaffectedbysettlementofsupportsof continuousbeams.Insodoinghecorroboratedtheprocedurespre- viouslydevelopedbyothersforthecalculationofmaximumloadcapa- city.TheeffortsofVandenBroeklinUSAandJ.F.Baker6310 and hisassociatesinGreatBritaintoutilizeactuallytheplasticreserve strengthasadesigncriterionarewellknown.Progressinthetheory ofplasticstructuralanalysis(particularlythatatBrownUniversity) hasbeensummarizedbySymondsandNeal. 6.3FormorethantenyearstheAmericanInstituteofSteelConstnm- tion,theWeldingResearchCouncil,theNavyDepartmentandthe AmericanIronandSteelInstitutehavesponsoredstudiesatLehigh University6**se.Thesestudieshavefeaturednotonlytheverification ofthismethodofanalysisthroughappropriatetestsonlargestructures, buthavegivenparticularattentiontotheconditionsthatshouldbe mettosatisfyimportantsecondarydesignrequirements. 6.4Plasticdesignhasnowcomeofage.Itisalreadyapartofthe BritishStandardspecificationsandnumerousstructuresbothinEurope andNorthAmericahavebeenconstructedtodesignsbaseduponthe plasticmethod.IS:800-1962*permitstheuseofPlasticTheoryin thedesignofsteelstructures(see13.5.1ofIS:800-1962*). *Codeofpracticeforuseofstructuralsteelingeneralbuildingconstruction :>T.$ - (rcuised). ** 24 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SECTI ONB J USTI FI CATI ONFORPLASTI CDESI GN 7.WHYPLASTICDESIGN 7.1 Whatisthejustificationforplasticdesign?Onecouldreversethe questionbyasking, whyuseelasticdesign?Ifthestructurewill suppor t theloadandotherwisemeetitsintendedfunction,arethe magnitudesofthestressesreallyimportant? 7.2Itistruethatinsimplestructurestheconceptofthehypothetical yieldpointasalimitofusefulnessisrational.Thisisbecausethe ultimateloadcapacityofasimplebeamisbut10to15percentgreater thanthehypotheticalyieldpoint,anddeflectionsstartincreasingverv rapidlyatsuchaload.Whileitwouldseemlogicaltoextendelastic stressanalysistoindeterminatestructures,suchprocedureshavetended tooveremphasizetheimportanceofstressratherthanstrengthasa guideinengineeringdesignandhaveintroducedacomplexitythatnow seemsunnecessaryforalargenumberofstructures. 7.3Actuallytheideaofdesignonthebasisofultimateloadratherthan allowablestressisareturntotherealisticpointofviewthathadtobe adoptedbyourforefathersinaverycrudewaybecausetheydidnot possessknowledgeofmathematicsandstaticsthatwouldallowthem tocomputestresses. 7.4Theintroductionofwelding,ofcourse,hasbeenaveryrealstimulus tostudiesoftheultimatestrengthofframes.Byweldingitispossible toachievecompletecontinuityatjointsandconnections-andtodo iteconomically.Thefullstrengthofonemembermaythusbetrans- mittedtoanother. 7.5Ithasoftenbeendemonstratedthatelasticstressanalysiscannot predicttherealstress-distributioninabuildingframewithanything likethedegreeofaccuracythatisassumedinthedesign.Thework doneinEnglandbyProf.Bakerandhisassociatesasaforerunnerto theirultimatestrengthstudiesclearlyindicatedthis. 7.6Examplesof imperfectionsthatcausesevereirregularityin measuredstressesare:differencesinbeam-columnconnectionfit-upand flexibility,spreadingofsupports,sinkingofsupports,residualstresses, 25 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 flexibilityassumedwhereactuallythereisrigidity(andvice-versa), andpointsofstressconcentration.Suchfactors,however,usuallydo notinfluencethemaximumplasticstrength. 7.7Assumingthatstressisnotthemostrationaldesigncriteria,inorder tojustifyourfurtherconsiderationofmaximumstrengthasthedesign criteriatheremustbeotheradvantages.Therearetwosuchadvantages: economyandsimplicity. 7.8Sincethereisconsiderablereserveofstrengthbeyondtheelastic limitandsincethecorrespondingultimateloadmaybecomputedquite accurately,thenstructuralmembersofsmallersizewilladequately supporttheworkingloadswhendesignisbasedonmaximumstrength. Numerousdemonstrationsofthiswillbemadelaterinthisbandbook. 7.9Thesecondfeaturewas simplicity.Ananalysisbasedupon ultimateloadpossessesaninherentsimplicitvbecausetheelasticcon- ditionofcontinuityneednolongerbeconsidered.Thiswasevident fromaconsiderationofthethree-bartrussinSectionA(Fig.6)andthe examplesofSectionDwilldemonstratethisfurther.Alsothe imper- fectionsmentionedaboveusuallymaybedisregarded. 7.10Asalreadymentionedtheconceptismorerational.Byplastic analysistheengineercandeterminewithanaccuracythatfarexceeds hispresentlyavailabletechniquestherealmaxirnumstrengthofa structure.Therebythefactorofsafetyhasmorerealmeaningthanat present.ItisnotunusualforthefactorofsafetytovaryfromI.65up to3ormoreforstructuresdesignedaccordingtoconventionalelastic methods. 7.11Thustheapplicationofplasticanalysisshouldbeconsidered seriouslybecauseitprovidesaless-expensivestructure,itisasimilar designofficetechnique,anditconstitutesarationaldesignbasis.Fur- ther,theseconceptsareverifiedbytestsand(asweshallnowsee)they havebeenusedconsciouslyorunconsciouslyinconventionaldesign practice. 8.INA.DEQUACYOFSTRESSASTHEDESIGNCRITERION 8.1 Thequestionimmediatelyarises,willitnotbepossiblesimplyto changetheallowablestressandretainthepresentstressconcept?While theoreticallypossible,thepracticalansweris no.Itwouldmeana differentworkingstressforeverytypeofstructureandwouldvaryfor differentloadingconditions. 8.2Toagreaterextentthanwemayrealize,themaxnnumstrengthof astructurehasalwaysbeenthedominantdesigncriteria.Whenthe 26 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 permissibleworkingstressof1 400k&mahasledtodesignsthatwere consistentlytooconservative,thenthatstresshasbeenchanged.Thus thebenefitsofplasticityhavebeenusedconsciouslyorunconsciously indesign.Itisalsoevidenttomostengineersthatpresentdesignpro- cedurescompletelydisregardlocalover-stressingatpointsofstress- concentrationlikeboltholes,notches,etc.Longexperiencewith similarstructuressodesignedshowsthatthisisasafeprocedure.Thus, thestressesthatarecalculatedfordesignpurposesarenottrue maximumstressesatall,theysimplyprovideanindexforstructura design. 8.3Anumberofexampleswillnowbegiveninwhichtheductilityof steelhasbeencountedupon(knowinglyornot)inelasticdesign.It shouldbeborneinmindthatplasticanalysishasnotgenerallybeen usedasabasisfordeterminingtheseparticulardesignrulesandasa resulttheso-calledelasticstressformulashavebeendevisedinarather haphazardfashion.Arationalbasisforthedesignofacomplete steelframe(aswellasitsdetails)canonlybeattainedwhenthe maximumstrengthintheplasticrangeisadopted.asthedesign criterion. 8.4Suchexamplesarethefollowingandarelistedintwocategories: (a)factorsthatareneglected.becauseofthecompensatingeffectof ductility;and(b)instancesinwhichtheworkingstresseshavebeen revisedbecausethe normalvaluewastooconservative.Several examplesofeacharegiven: a)F&tomthatareneglected: 1) 2) 3) 4) 5) 6) 7) 8) 9) Residualstresses(inthecaseofflexureduetocoolingafter rolling); Residualstressesresultingfromthecamberingofbeams; Erectionstresses; Foundationsettlements; Over-stressatpointsofstress-concentration(holes,etc); Bendingstressesinanglesconnectedintensionbyonelegonly; Over-stressatpointsofbearing: Non-uniformstress-distributioninsplices,leadingtodesign ofconnectionsontbeassumptionofauniformdistribution ofstressesamongtherivets,bolts,orwelds; Differenceinstress-distributionarisingfromthe cantilever ascomparedwiththe portalmethodofwindstress analysis; 27 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP: 6( 6) - 1972 10)IS:800- 1962specifiesthefollowingvaluesforbendingstresses: 1 650kgf/cmforrolledsections, 1 575kgf/cm*forplategirders,and 1 890kgf/cm2inflatbases. b)Revisionsinworkingstressduetoreserveplasticstrength: 1) 2) 3) 4) 5) Bendingstressof2109kgf/cm2(or30ksi)inroundpins(in AISCspecification); Bearingstressof2 812kgf/cms(or40ksi)onpinsindouble shear; Bendingstressof1 687kgf/cm2(or24ksi)inframedstruc- turesatpointsofinteriorsupports; Bendingstressof1 65?kgf/cm2and.1 575.kgf/cm2forrol!ed sae$onsandplategirdersrespectively(mIS:800-1962), Bendingstressof1 890kgf/cmsinslabbases(iuIS:800-1962*). ConsiderItem(a)(1)forexample.Allrolledmemberscontain residualstressesthatareformedduetocoolingafterrollingordueto cold-straightening.Atypicalwideflangeshapewithatypicalresidual stresspatternshowninFig.7.Whenloadcarryingbendingstresses areapplied,theresultingstrainsareadditivetotheresidualstrains alreadypresent.Asaresult,the finalstresscouldeasilyinvolve yieldingatworkingload. IntheexampleofFig.7,suchyieldinghas RESIDUALSTRESSAPPLIEDSTRESSFINALSTRESS (a)(b)(cl FIG.7RESIDUAL STRESSESIN *Code ofpractice foruse ofstructural (mviscd). 28 (d)(0) AROLLED BEAMSECTION steel ingeneral buildingconstruction Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 occurredbothatthecompressionflangetipsandatthecentreofthe tensionflange.Thus,itisseenthatcoolingresidualstresses(whose influenceisneglectedandyetwhicharepresentinallrolledbeams) causeyieldingintheflangetipsevenbelowtheworkingload. 8.5Structuralmembersexperienceyieldwhilebeingstraightenedin themill,fabricatedinashoporforcedintopositionduringerection. Actually,itisduringthesethreeoperationsthatductilityofsteel beyondtheyieldpointiscalledupontothegreatestdegree.Having permittedsuchyieldinginthemill,shopandfield,thereisnovalid basistoprohibititthereafter,providedsuchyieldhasnoadverseeffect uponthestructure.Asanillustrationofitem(a)(3)inthelistin8.4, Fig.8showshowerectionforceswillintroducebendingmomentintoa st.ructurepriortotheapplicationofexternalload(see firstlineforP =0) .Althoughtheyield-pointloadisreducedasaresultofthese erection moments(inthesecondlineofthefigure,theyield-pointloadhasbeen reachedforcase2).themis#oefectwhateveronthemaximumstrength. Thereasonforthisisthatredistributionofmomentfollowedtheonset ofyieldingatthecorners(case2)untiltheplasticmomentwasreached atthebeamcentre;therefore,theultimateloadmomentdiagramsfor cases1and2areidentical. 8.6Consider.next.thedesienofarivetedorboltedjoint[Item(a)(8) in8.41.Thecommonass&ptionismadethateachfastenercarriesthe p-0 P=Py(21 P=P FIG.8DEMONSTRATIONTHAT ERECTION STRESSESDO NOT INFLUENCE ULTIMATE LOAD 29 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 sameshearforce.Thisistrueonlyinthecaseoftwofasteners.When moreareadded(Fig.9),thenaslongasthejointremainselastic,the outerfastnersshouldcarrythegreaterportionoftheload.Forexample, withfourrivets,ifeachrivettransmittedthesameload,then,between rivetsCandDoneplatewouldcarryperhapsthreetimestheforcein theother.Therefore,itwouldstretchthreetimesasmuchandwould necessarilyforcetheouterrivetDtocarrymoreload.Theactual forceswouldlooksomethingliketheseshownundertheheading Elastic. Whateventuallyhappensisthattheouterrivetsyield,redistributing forcestotheinnerrivetsuntilallforcesareaboutequal.Therefore, thebasisfordesignofarivetjointisreallyitsultimateloadandnotthe attainmentoffirstyield. 8.7A revisedworkingstressexample[seeItem(b)(1)in8.41isshown inFig.10andisconcernedwiththedesignofaroundpin.Inasimple beamwithwideflanges,whenthemaximumstressduetobendingreaches theyieldpoint,mostoftheusablestrengthhasbeenexhausted.How- ever,forsomecross-sectionalshapes,muchadditionalloadmaybe carriedwithoutexcessivedeflections.Therelationbetweenbending momentandcurvatureforwideflangeandroundbeamsisshowninFig.10. Theuppercurveisforthepin,thelowerforatypicalwideflangebeam,the non-dimensionalplotbeingsuchthatthetwocurvescoincideinthe elasticrange.Themaximumbendingstrengthofthewideflangebeam isl-14MY,whereasthatofthepinisI.70My.Thepermissibledesign stresses(forsteelwithyieldstress36ksi)accordingtospecifications oftheAmericanInstituteofSteelConstructionare1550kgf/cmz(or 22ksi)forthewideflangebeamand2 320 kgf/cm2(or30ksi)forthe roundpin. A BcD FIG.9REDISTRIBUTIONOF SHEARINTHE FASTENERSOF ALAP JOINT 30 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 FIG.10MAXIMUM STRENGTH OF OF AWIDE 5 A- *Y lo AROUNDPINCOMPAREDWITH THAT FLANGE BEAM Expressingthesestressesasratiosofyieldpoints+-: Wideflange:0=F5g=0.61 QY Pin: =* 2320 -=20=0.91 =Y Forasimplv-supportedbeamthestresses,moments,andloadallbear alinearrelationshiptooneanotherintheelasticrangeandthus: PcM p,=6=My Therefore,themomentatallowableworkingstress(M,)inthewide flangebeamisO-61 My;forthepin,ontheotherhand,M,=0.91My. Whatisthetrueloadfactorofsafetyforeachcase1 M WideRange:F=p~=M*= ?_!%=1.87 0 0.61 M, Pin: ~&_2!%=1.87 0.91My Theexactagreementbetweenthetruefktorsofsafetywithrespectto ultimateloadinthetwocases,whilesomewhatofacoincidence,isindi- cativeoftheinfluenceoflongyearsofexperienceonthepartofengineers 31 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP: 6(6) -1972 whichhasresultedindifferentpermissibleworkingstressesforvarious conditionsresultinginpractice.Probablynosuchanalysisasthe foregoinginfluencedthechoiceofdifferentunitstressesthatgiveidentical factorsofsafetywithvarioussections;nevertheless,thechoiceofsuch stressesisfullyjustifiedonthisbasis.Whenyearsofexperienceand commonsensehaveledtocertainempiricalpracticesthesepracticesare usuallyjustifiedonascientificbasis. 8.8Permittinga20percentincreaseintheallowableworkingstressat pointsofinteriorsupportincontinuousbeamsrepresentsanothercase inwhichbothexperienceada plasticanalysisjustifyarevisionin workingstresses. 9. EXPERIMENTALVERIFICATION 9.1Inthepreviousclausessomeoftheimportantconceptsoftheplastic theoryaredescribed.Howwelldoesstructuralbehaviourbearoutthe theory?Dostructuresreailycontaintheductilityassumed?Ifwe testa fullsizestructurewithrolledmemberswillitactuallycarrythe loadpredictedbyplasticanalysis1 9.2Theimportantassumptionsmadewithregardtotheplasticbeha- viourofstructuresarerecapitulatedinFig.11).InLecture4of Ref12(see AppendixA),theexperimentalconfirmationoftheseassump- tionsisgiven,demonstratingtheductilityofsteel,thedevelopmentof plastichingesinbeamsand%oiinections,andredistributionofmoment. Inthelastanalysis,themostimportantverificationofplastictheoryis thatgivenbytheresultsoffull-scaletestsandsomeofthesewillnow bepresented. 9.3TypicalstructuresweretestedbothinUSAandothercountries. Thestructurecarriedthepredictedultimateload,theload-deflection curvebeingshowninFig.12. 9.4Furthertestsconductedonframesfabricatedfromrolledsections haveshownthattheactualstrengthofeventheweakeststructurewas within5percentofitspredictedultimateloadanagreementmuchbetter thanobtainedattheso-called elasticlimit~J6*20*a0@*u. Intestson beamswiththreesupports,applyingtheverticalload,thecentralsupport wasraiseduntiltheyieldpointwas:firstreached,withtheresultthat applicationofthefirstincrementofexternalloadcausedthestructure toyield.Inspiteofthis,thecomputedultimateloadwasattained. Inthetestsconductedonpinnedandfixedbasisandwithflat,saw toothant1gabledroofs,theultimateloadcomputedbytheplastic theorywasreachedandinnumerouscasesitexceededa14s*44. 32 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 FlASTCMOMENT-9 PlASTCHINGE -GMOMENTCAtXtTY= UTIMATEWADHING&--i&ANISM FIG.11ASSUMPTIONSMADE INREGARD TO PLASTIC BEHAVIOUROFSTRUCTURES 10.THECASEFORPLASTICDESIGN 10.1Assummarizedintheprecedingparagraphstheresultsoftestshave verifiedthetheoryofplasticanalysis.Istheengineernowjustifiedin givingfurtherattentiontothemethodofplasticanalysis,instudying it,andinapplyingittotheappropriatedesignproblems7Theanswer isyes. Thecaseforplasticdesignisillustratedbythefollowingobserva- tions : 4 Thereserveinstrengthaboveconventionalworkingloadsis considerableinindeterminatesteelstructures.Indeed,insome instancesasmuchload-carryingcapacityisdisregardedasis usedinconventionaldesign. .. 33 k.. Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.SP:6(6)-1972 016 0255075100125150175200225: DEFLECTION INcm- FIG.12LOAD-DEFLECTIONCURVE OFA TESTFRAME b) d 4 Useofultimateloadasthedesigncriterionprovidesatleast thesamemarginofsafetyasispresentlyaffordedintheelastic designofsimplebeams(Fig.1). Atworkingloadthestructureisstillintheso-calledelasticrange (Fig.1). Inmostcases,astructuredesignedbytheplasticmethodwill deflectnomoreatworkingloadthanwillasimply-supported beamdesignedbyconventionalmethodstosupportthesame load(Fig.1). 4 Plasticdesigngivespromiseofeconomyintheuseofsteel,of savingsinthedesignofficebyvirtueofitssimplicity,andof buildingframesmorelogicallydesignedforgreaterover-all strength. Itisimportanttobearinmindthatdependencemaybeplaced uponthemaximumplasticstrengthonlywhenproperattentionisgiven to details.Thesearethesecondarydesignconsiderationsmentioned earlierandtreatedinSectionE. 34 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.11.ASSUMPTIONSANDCONDITIONS SECTI ONC FLEXUREOFBEAMS 11.1Certainofthefundamentalconceptsofplasticanalysiswereprs sentedinSectionA(see3and4).Theexamplesthere,however,were limitedtocasesofsimpletensionandcompression.Thenextobjective istodeterminehowabeamdeformsbeyondtheelasticlimitunderthe actionofbendingmoments,thatis,todeterminethemoment-curvature (M-9)relationship. Theassumptionsandconditionsusedinthefollowingdevelopmentare: a)strainsareproportionaltothedistancefromtheneutralaxis (planesectionsunderbendingremainplaneafterdeformation). b)thestress-strain relationshipis idealizedtoconsistof twostraightlines: 4 4 u=E( O