4
W, S, M, HP, WWF Shapes C, MC Shapes WT, WWT Shapes Single Angles Double Angles Rec Y Y Y Y Y k1=20 t=14.4 t=9.9 b=152 b=400 t=12.7 y=96.1 x=23.4 x=14 t=29.2 d=178 t=12. X =410 T X d=20 X X d=88.9 d=428 X y=61.4 w=8.8 w=7.7 b=102 y=42.7 (0,8, b=179 b=59 gap) W410x67 C200x21 WT420x149.5 L178x102x13 2L152x152x13 A = 8600 A = 2600 A = 19100 A = 3390 A = 7400 A = d = 410 mm d = 203 mm d = 428 mm d = 178 mm d = 152 mm h = w = 8.8 mm w = 7.7 mm w = 18.2 mm b = 102 mm b = 152 mm b = 179 mm 59 mm 400 mm t = 12.7 mm t = 12.7 mm 14.4 mm 9.9 mm 29.2 mm k = 26 mm Mass = 58.1 kg/m Mass = Ds_i= W16x45 in. k = 22 mm 51 mm Mass = 26.6 kg/m 16.4 k = 31 mm Dn_i = 8 in. Dn_i = 16.5 in. 150 20 mm Wt_i = 13.75 lb/ft Wt_i = 100.5 lb/ft 11.1 47.1 mm Dn_i = 16 in. 0.11 Mass = 149.5 kg/m 95.6 42.7 mm Wt_i = 45 lb/ft 193.1 mm BT = 6.85 57.3 mm Ds_i = 2L6x6x0.500 in. Mass = 67 kg/m Mass = 21 kg/m HW = 21.9 61.4 mm Wt_i = 39 lb/ft BT = 6.22 303 Ds_i = L7x4x0.500 in. 63.6 mm HW = 43.3 14.9 912 Wt_i = 17.9 lb/ft 66.3 mm 246 147 126 mm 2.75 67.1 mm Dn_i = 1200 75.8 mm 96.1 mm 35 ry(12) = 67.8 mm Wt_i = 169 mm Ds_i = C8x13.75 in. Ds_i = WT16.5x100.5 in. 28.5 mm ry(16) = 69.2 mm J = 1360 0.627 Yo = 81.5 mm 23.4 mm ry(20) = 70.7 mm C = 13.8 13.9 156 Rxp = 60 mm 1 Ds_i = 154 15.5 mm 780 Ryp = 22.2 mm Yo = 36.3 mm 40 mm 14 mm 90.3 mm BT = 8.03 J = 398 239 BT = 5.96 Rop = 175 mm DT = 14 Cw = 0.703 0.27 HW = 23.8 BetX = 282 mm Rop = 86.1 mm SA = 1.22 m 395.6 mm J = 77 J = 4320 0.336 J = 469 5.04 22.9 Lxy = 3.18 540 a = 0.41 mm a = 0.12 mm J = 183 Plates D.=406 a = 1.73 mm SA = 0.627 m SA = 1.66 m 0.338 Y 17700 Omeg = 0.783 a = 0.07 mm t=0.3 11.4 SA = 0.56 m X 242 Omeg = 0.552 b=12 670 A = t = 0.3 mm O.D. = b = 12 mm I.D. = Mass = 28.26 kg/m A = 3.600 0.027 Mass = 0.180 0.087 mm 43.200 7.200 3.464 mm J = J = 43.227 C = CISC 9th EDITION MEMBER DIMENSIONS AND PROPERTIES VIEWER mm 2 mm 2 mm 2 mm 2 mm 2 b = b = b = t(des) = t = t = t = k = Ix = 10 6 mm 4 Ix = Sx = 10 3 mm 3 Sx = k1 = Ix = 10 6 mm 4 rx = rx = rts = Sx = 10 3 mm 3 y = Zx = ho(d-t) = rx = Iy = y = Sy = Ix = 10 6 mm 4 ry(0) = ry = Ix = 10 6 mm 4 Sx = 10 3 mm 3 ry(8) = Zy = Ix = 10 6 mm 4 Sx = 10 3 mm 3 rx = Iy = 10 6 mm 4 ry(10) = Sx = 10 3 mm 3 rx = y = Sy = 10 3 mm 3 rx = ry = Zx = 10 3 mm 3 Iy = 10 6 mm 4 x = Iy = 10 6 mm 4 Sy = 10 3 mm 3 Iy = 10 6 mm 4 TAN(a) = Sy = 10 3 mm 3 ry = Sy = 10 3 mm 3 ry = x = ry = 10 3 mm 4 Zy = 10 3 mm 3 10 9 mm 6 rts = ho(d-t) = 10 3 mm 4 10 3 mm 4 TAN(a) = 10 3 mm 4 Cw = 10 9 mm 6 Cw = 10 9 mm 6 10 6 mm 4 Cw = 10 9 mm 6 10 3 mm 4 Cw = 10 9 mm 6 Wn = mm 2 Sw = 10 6 mm 4 Qf = 10 3 mm 3 Qw = 10 3 mm 3 t(nom) = mm 2 t(des) = Ix = 10 6 mm 4 Sx = 10 3 mm 3 I = rx = S = Iy = 10 6 mm 4 r = Sy = 10 3 mm 3 Z = ry = 10 3 mm 4 Reference: The shapes contained in this database are taken from the CISC Canadian Institute of Steel Construction STRUCTURAL SECTION TABLES (SST) Version 9.2.

CISC 9.2 Sections Viewer

Embed Size (px)

DESCRIPTION

CISC 9.2 Sections Viewer

Citation preview

Page 1: CISC 9.2 Sections Viewer

W, S, M, HP, WWF Shapes C, MC Shapes WT, WWT Shapes Single Angles Double Angles Rectangular HSS G40&A500

Y Y Y Y Y Y

k1=20

k t=14.4 t=9.9 b=152 t(des)=4.3 b=400 t=12.7

y=96.1 x=23.4

x=14 t=29.2 d=178 t=12.7 Xd=410 T X d=203 X X d=152 d=88.9 X

d=428 X y=61.4w=8.8 w=7.7 w=18.2 b=102 y=42.7

(0,8,10,12,16,or 20

b=179 b=59 gap) b=63.5

W410x67 C200x21 WT420x149.5 L178x102x13 2L152x152x13 HA89x64x4.8

A = 8600 A = 2600 A = 19100 A = 3390 A = 7400 A = 1190

d = 410 mm d = 203 mm d = 428 mm d = 178 mm d = 152 mm h = 88.9 mm

w = 8.8 mm w = 7.7 mm w = 18.2 mm b = 102 mm b = 152 mm b = 63.5 mm

179 mm 59 mm 400 mm t = 12.7 mm t = 12.7 mm 4.3 mm

14.4 mm 9.9 mm 29.2 mm k = 26 mm Mass = 58.1 kg/m Mass = 10.3 kg/m

Ds_i= W16x45 in. k = 22 mm 51 mm Mass = 26.6 kg/m 16.4 1.26

k = 31 mm Dn_i = 8 in. Dn_i = 16.5 in. 150 28.3

20 mm Wt_i = 13.75 lb/ft Wt_i = 100.5 lb/ft 11.1 47.1 mm 32.5 mm

Dn_i = 16 in. 0.11 Mass = 149.5 kg/m 95.6 42.7 mm 34.9

Wt_i = 45 lb/ft 193.1 mm BT = 6.85 57.3 mm Ds_i = 2L6x6x0.500 in. 0.744

Mass = 67 kg/m Mass = 21 kg/m HW = 21.9 61.4 mm Wt_i = 39 lb/ft 23.4

BT = 6.22 303 Ds_i = L7x4x0.500 in. 63.6 mm 25 mm

HW = 43.3 14.9 912 Wt_i = 17.9 lb/ft 66.3 mm 27.6

246 147 126 mm 2.75 67.1 mm Dn_i = 3.5 in.

1200 75.8 mm 96.1 mm 35 ry(12) = 67.8 mm Wt_i = 6.89 lb/ft

169 mm Ds_i = C8x13.75 in. Ds_i = WT16.5x100.5 in. 28.5 mm ry(16) = 69.2 mm J = 1540

1360 0.627 Yo = 81.5 mm 23.4 mm ry(20) = 70.7 mm C = 38.2

13.8 13.9 156 Rxp = 60 mm 1 Ds_i = HA3.5x2.5x0.188 in.

154 15.5 mm 780 Ryp = 22.2 mm Yo = 36.3 mm

40 mm 14 mm 90.3 mm BT = 8.03 J = 398 Round HSS G40&A500239 BT = 5.96 Rop = 175 mm DT = 14 Cw = 0.703 Y0.27 HW = 23.8 BetX = 282 mm Rop = 86.1 mm SA = 1.22 m t(nom)=12.7

395.6 mm J = 77 J = 4320 0.336 J = 469 5.04 22.9 Lxy = 3.18

540 a = 0.41 mm a = 0.12 mm J = 183 Plates O.D.=406 Xa = 1.73 mm SA = 0.627 m SA = 1.66 m 0.338 Y

17700 Omeg = 0.783 a = 0.07 mm t=0.3 I.D.=394.57

11.4 SA = 0.56 m X242 Omeg = 0.552 b=12 HA406x13

670 A = 14200

t = 0.3 mm O.D. = 406 mm

b = 12 mm I.D. = 394.57 mm

Mass = 28.26 kg/m 12.7 mm

A = 3.600 11.43 mm

0.027 Mass = 123.00 kg/m

0.180 277

0.087 mm 1360

43.200 140 mm

7.200 1780

3.464 mm J = 554000

J = 43.227 C = 2720

CISC 9th EDITION MEMBER DIMENSIONS AND PROPERTIES VIEWER

mm2 mm2 mm2 mm2 mm2 mm2

b = b = b = t(des) =

t = t = t =

k = Ix = 106mm4 Ix = 106mm4

Sx = 103mm3 Sx = 103mm3

k1 = Ix = 106mm4 rx = rx =

rts = Sx = 103mm3 y = Zx = 103mm3

ho(d-t) = rx = Iy = 106mm4

y = Sy = 103mm3

Ix = 106mm4 ry(0) = ry =

Ix = 106mm4 Sx = 103mm3 ry(8) = Zy = 103mm3

Ix = 106mm4 Sx = 103mm3 rx = Iy = 106mm4 ry(10) =

Sx = 103mm3 rx = y = Sy = 103mm3

rx = ry = 103mm4

Zx = 103mm3 Iy = 106mm4 x = 103mm3

Iy = 106mm4 Sy = 103mm3 Iy = 106mm4 TAN(a) =Sy = 103mm3 ry = Sy = 103mm3

ry = x = ry = 103mm4

Zy = 103mm3 109mm6

rts =

ho(d-t) = 103mm4 103mm4 TAN(a) =

103mm4 Cw = 109mm6 Cw = 109mm6 106mm4

Cw = 109mm6 103mm4

Cw = 109mm6

Wn = mm2

Sw = 106mm4

Qf = 103mm3

Qw = 103mm3 mm2

t(nom) =

mm2 t(des) =

Ix = 106mm4

Sx = 103mm3 I = 106mm4

rx = S = 103mm3

Iy = 106mm4 r =

Sy = 103mm3 Z = 103mm3

ry = 103mm4

103mm4 103mm3

Reference: The shapes contained in this database are taken from the CISC Canadian Institute of Steel Construction STRUCTURAL SECTION TABLES (SST) Version 9.2.

K18
WORKABLE GAGES IN ANGLE LEGS (inches) Leg 8 7 6 5 4 3-1/2 3 2-1/2 2 1-3/4 1-1/2 1-3/8 1-1/4 1 g 4-1/2 4 3-1/2 3 2-1/2 2 1-3/4 1-3/8 1-1/8 1 7/8 7/8 3/4 5/8 g1 3 2-1/2 2-1/4 2 g2 3 3 2-1/2 1-3/4 For an angle, the gage "g" shown is the distance from the back of the member to the bolt in the angle leg, when only one row of bolts is present. For angle legs >= 5", the potential for two rows of bolts exists. Thus, the gage "g1" is analogous to "g" for the other angle leg, and gage "g2" is the spacing between the first and second row of bolts. (See illustration and table in AISC 13th Edition Manual page 1-46.) Note: Other gages are permitted to suit specific requirements subject to clearances and edge distance limitations.
Q22
The wall thickness, 't(des)', is the actual (design) value, not the nominal wall thickness.
B27
The 'T' distance shown is the nominal "detailing" value, and not the "design" value. T = d(nom)-2*k(det).
B28
The "gage" shown is the spacing between the bolts in the flange. The "halve-gage" is taken each side of the member centerline. When a gage is displayed as a set of three numbers such as: (3) 7.5 (3) it refers to 4 rows of bolts with 3 "gages" or spacings = 3", 7.5", and 3" in this case.
N30
The radius of gyration for the minor (Y) axis, 'ry', with a 0" gap between back-to-back of angle legs.
B31
The 'h/tw' ratio shown is calculated as follows: h/tw = (d-2*k(des))/tw = T(des)/tw
N31
The radius of gyration for the minor (Y) axis, 'ry', with a 3/8" gap between back-to-back of angle legs.
N32
The radius of gyration for the minor (Y) axis, 'ry', with a 3/4" gap between back-to-back of angle legs.
E43
Torsional property, 'a', is determined as follows: a = SQRT(E*Cw/G*J) where: E = 29,000 ksi (Elastic Modulus) G = 11,200 ksi (Shear Modulus)
H43
Torsional property, 'a', is determined as follows: a = SQRT(E*Cw/G*J) where: E = 29,000 ksi (Elastic Modulus) G = 11,200 ksi (Shear Modulus)
B44
Torsional property, 'a', is determined as follows: a = SQRT(E*Cw/G*J) where: E = 29,000 ksi (Elastic Modulus) G = 11,200 ksi (Shear Modulus)
K45
Torsional property, 'a', is determined as follows: a = SQRT(E*Cw/G*J) where: E = 29,000 ksi (Elastic Modulus) G = 11,200 ksi (Shear Modulus)
N52
Cross-sectional area, 'A', is determined as follows: A = b*t
N53
X-axis moment of inertia, 'Ix', is determined as follows: Ix = b*t^3/12
N54
X-axis section modulus, 'Sx', is determined as follows: Sx = b*t^2/6
N55
X-axis radius of gyration, 'rx', is determined as follows: rx = t/SQRT(12)
N56
Y-axis moment of inertia, 'Iy', is determined as follows: Iy = t*b^3/12
N57
Y-axis section modulus, 'Sy', is determined as follows: Sy = t*b^2/6
N58
Y-axis radius of gyration, 'ry', is determined as follows: ry = b/SQRT(12)
N59
Torsional constant, 'J', is determined as follows: J = Ix + Iy
Page 2: CISC 9.2 Sections Viewer