6
Dayan Pérez-Quintana 1,2 , Alicia Torres-García 1,2 , Iñigo Ederra 1,2 , Miguel Beruete 1,2 Circular Polarization Antennas using Gap Waveguide Technologies at 60 GHz 1 Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, Spain 2 Institute of Smart Cities (ISC), Public University of Navarra, Navarra, Spain Introduction Theory Simulation Experimental Results Conclusion References [1] Ref. 1 A. Berenguer, V. Fusco, D. E. Zelenchuk, D. Sanchez-Escuderos, M. Baquero-Escudero, and V. E. Boria-Esbert, “Propagation Characteristics of Groove Gap Waveguide Below and Above Cutoff,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 1, pp. 27–36, Jan. 2016. [2] Ref. 2A. U. Zaman and P. Kildal, “Wide-Band Slot Antenna Arrays With Single-Layer Corporate-Feed Network in Ridge Gap Waveguide Technology,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2992–3001, 2014. Gap Waveguide Technology Advantages Low loss (most of the designs are fully metallic) No need of electric contact Adaptability to plane surfaces Lower manufacturing cost Circular polarization (CP) in wireless communications systems has several advantages over linear polarization: CP does not require polarization alignment between the transmitter and the receiver and is more robust against multipath effects. Why use Circular Polarization? [email protected] , [email protected] , [email protected] Groove Gap Waveguide [1] Ridge Gap Waveguide [2] Microstrip Gap Waveguide

Circular Polarization Antennas using Gap Waveguide ... - Presentation.pdf1. Simple, compact and low profile antenna using RGW technology. 2. Novel and simple mechanism to generate

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Circular Polarization Antennas using Gap Waveguide ... - Presentation.pdf1. Simple, compact and low profile antenna using RGW technology. 2. Novel and simple mechanism to generate

Dayan Pérez-Quintana 1,2, Alicia Torres-García 1,2, Iñigo Ederra 1,2, Miguel Beruete 1,2

Circular Polarization Antennas using Gap Waveguide Technologies at 60 GHz

1 Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, Spain

2 Institute of Smart Cities (ISC), Public University of Navarra, Navarra, Spain

Introduction Theory Simulation Experimental Results Conclusion

References[1] Ref. 1 A. Berenguer, V. Fusco, D. E. Zelenchuk, D. Sanchez-Escuderos, M. Baquero-Escudero, and V. E. Boria-Esbert,“Propagation Characteristics of Groove Gap Waveguide Below and Above Cutoff,” IEEE Trans. Microw. Theory Tech., vol. 64, no.1, pp. 27–36, Jan. 2016.[2] Ref. 2A. U. Zaman and P. Kildal, “Wide-Band Slot Antenna Arrays With Single-Layer Corporate-Feed Network in Ridge GapWaveguide Technology,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2992–3001, 2014.

Gap Waveguide Technology Advantages

• Low loss (most of the designs are fully metallic)

• No need of electric contact

• Adaptability to plane surfaces

• Lower manufacturing cost

Circular polarization (CP) in wireless communications systems

has several advantages over linear polarization: CP does not

require polarization alignment between the transmitter and the

receiver and is more robust against multipath effects.

Why use Circular Polarization?

[email protected], [email protected] , [email protected]

Groove Gap Waveguide [1]

Ridge Gap Waveguide [2]

Microstrip Gap Waveguide

Page 2: Circular Polarization Antennas using Gap Waveguide ... - Presentation.pdf1. Simple, compact and low profile antenna using RGW technology. 2. Novel and simple mechanism to generate

Introduction Theory Simulation Conclusion

Design and Circular Polarization Analysis

Dayan Pérez-Quintana 1,2, Alicia Torres-García 1,2, Iñigo Ederra 1,2, Miguel Beruete 1,2

Circular Polarization Antennas using Gap Waveguide Technologies at 60 GHz

Electric Field Distribution at 63.5 GHz

Surface Currents at 63.5 GHz

Electric Field and Surface Currents at 63.5 GHz

Experimental Results

[email protected], [email protected] , [email protected]

Page 3: Circular Polarization Antennas using Gap Waveguide ... - Presentation.pdf1. Simple, compact and low profile antenna using RGW technology. 2. Novel and simple mechanism to generate

Introduction Theory Simulation Conclusion

Geometry of the model Diamond Horn Groove AntennaGeometry of the model Diamond Antenna

Dayan Pérez-Quintana 1,2, Alicia Torres-García 1,2, Iñigo Ederra 1,2, Miguel Beruete 1,2

Circular Polarization Antennas using Gap Waveguide Technologies at 60 GHz

Diamond Antenna (D)Diamond Horn Groove

Antenna (DHG)

No

rmal

ized

Am

plit

ud

e(d

B)

XPD > 15 dB

Abs RHCP LHCP

Copolar and crosspolar radiation pattern

Radiation Pattern at 63.5 GHz

XPD > 15 dB

Copolar and crosspolar radiation pattern

Abs RHCP LHCP

Radiation Pattern at 63.5 GHz

Experimental Results

[email protected], [email protected] , [email protected]

Page 4: Circular Polarization Antennas using Gap Waveguide ... - Presentation.pdf1. Simple, compact and low profile antenna using RGW technology. 2. Novel and simple mechanism to generate

Introduction Theory Simulation Experimental Results Conclusion

Experimental Results Diamond Antenna

Dayan Pérez-Quintana 1,2, Alicia Torres-García 1,2, Iñigo Ederra 1,2, Miguel Beruete 1,2

Circular Polarization Antennas using Gap Waveguide Technologies at 60 GHz

WR-15 Feeding System

BWSIM = 14.55 % (58.95 - 68.16 GHz)

BWMEA = 13.90 % (60.50 - 69.30 GHz)

BWSIM= 17.06 % (59 – 69.8 GHz)

BWMEA = 12.79 % (59.3 – 67.4 GHz)

BWtotal = 10.74 % (60.5 – 67.4 GHz)

Gainmax = 5.49 dB @ 67 GHz

S11

Axial Ratio

Practical Operation BW

[email protected], [email protected] , [email protected]

Page 5: Circular Polarization Antennas using Gap Waveguide ... - Presentation.pdf1. Simple, compact and low profile antenna using RGW technology. 2. Novel and simple mechanism to generate

Introduction Theory Simulation Conclusion

Experimental Results Diamond Horn Groove Antenna

Dayan Pérez-Quintana 1,2, Alicia Torres-García 1,2, Iñigo Ederra 1,2, Miguel Beruete 1,2

Circular Polarization Antennas using Gap Waveguide Technologies at 60 GHz

WR-15 Feeding System

BWSIM = 14.17 % (59.0 - 68.0 GHz)

BWMEA = 14.64 % (60.3 - 69.6 GHz)

BWSIM= 17.85 % (59.3 – 70.0 GHz)

BWMEA = 17.32 % (59.0 – 70.0 GHz)

BWtotal = 14.69 % (60.3 – 69.6 GHz)

Gainmax = 11.12 dB @ 67 GHz

S11

Axial Ratio

Practical Operation BW

Experimental Results

[email protected], [email protected] , [email protected]

Page 6: Circular Polarization Antennas using Gap Waveguide ... - Presentation.pdf1. Simple, compact and low profile antenna using RGW technology. 2. Novel and simple mechanism to generate

Introduction Theory Simulation Setup Results Conclusion

1. Simple, compact and low profile antenna using RGW technology.

2. Novel and simple mechanism to generate circular polarization.

3. BW above 14% with respect to the center frequency using the DHG antenna.

4. Maximum gain of 11.12 dB at 67 GHz.

Dayan Pérez-Quintana 1,2, Alicia Torres-García 1,2, Iñigo Ederra 1,2, Miguel Beruete 1,2

Circular Polarization Antennas using Gap Waveguide Technologies at 60 GHz

1 Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, Spain

2 Institute of Smart Cities (ISC), Public University of Navarra, Navarra, Spain

Publications

1. D. Pérez-Quintana, A. E. Torres-García, I. Ederra and M. Beruete, "Compact Groove Diamond Antenna in Gap Waveguide Technology With BroadbandCircular Polarization at Millimeter Waves," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 8, pp. 5778-5783, Aug. 2020, doi:10.1109/TAP.2020.2996364.

2. D. Pérez-Quintana, I. Ederra and M. Beruete, "Bull’s-Eye Antenna with Circular Polarization at Millimeter Waves based on Ridge Gap Waveguide Technology,"in IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2020.3019565.

Contacts

[email protected], [email protected] , [email protected]