26
Circuitos serie y paralelo Conexiones de varios receptores en un mismo circuito Hasta ahora hemos considerado los circuitos con un solo receptor, pero lo cierto es que es más común encontrar varios receptores en el mismo circuito. Cuando se instalan varios receptores, éstos pueden ser montados de diferentes maneras: En serie En paralelo Mixtos Circuitos en serie En un circuito en serie los receptores están instalados uno a continuación de otro en la línea eléctrica, de tal forma que la corriente que atraviesa el primero de ellos será la misma que la que atraviesa el último. Para instalar un nuevo elemento en serie en un circuito tendremos que cortar el cable y cada uno de los terminales generados conectarlos al receptor. Circuito en paralelo En un circuito en paralelo cada receptor conectado a la fuente de alimentación lo está de forma independiente al resto; cada uno tiene su propia línea, aunque haya parte de esa línea que sea común a todos. Para conectar un nuevo receptor en paralelo, añadiremos una nueva línea conectada a los terminales de las líneas que ya hay en el circuito.

Circuitos Serie y Paralelo

Embed Size (px)

Citation preview

Page 1: Circuitos Serie y Paralelo

Circuitos serie y paralelo

Conexiones de varios receptores en un mismo circuito

Hasta ahora hemos considerado los circuitos con un solo receptor, pero lo cierto es que es más común encontrar varios receptores en el mismo circuito.

Cuando se instalan varios receptores, éstos pueden ser montados de diferentes maneras:

En serie En paralelo Mixtos

Circuitos en serie

En un circuito en serie los receptores están instalados uno a continuación de otro en la línea eléctrica, de tal forma que la corriente que atraviesa el primero de ellos será la misma que la que atraviesa el último. Para instalar un nuevo elemento en serie en un circuito tendremos que cortar el cable y cada uno de los terminales generados conectarlos al receptor.

Circuito en paralelo

En un circuito en paralelo cada receptor conectado a la fuente de alimentación lo está de forma independiente al resto; cada uno tiene su propia línea, aunque haya parte de esa línea que sea común a todos. Para conectar un nuevo receptor en paralelo, añadiremos una nueva línea conectada a los terminales de las líneas que ya hay en el circuito.

Page 2: Circuitos Serie y Paralelo

Caída de tensión en un receptor

Aparece un concepto nuevo ligado a la tensión. Cuando tenemos más de un receptor conectado en serie en un circuito, si medimos los voltios en los extremos de cada uno de los receptores podemos ver que la medida no es la misma si aquellos tienen resistencias diferentes. La medida de los voltios en los extremos de cada receptor la llamamos caída de tensión.

La corriente en los circuitos serie y paralelo

Una manera muy rápida de distinguir un circuito en seria de otro en paralelo consiste en imaginala circulación de los electrones a través de uno de los receptores: si para regresen a la pila atravesando el receptor, los electrones tienen que atravesar otro receptor, el circuito está en serie; si los electrones llegan atravesando sólo el receptor seleccionado, el circuito está en paralelo.

Pulsa sobre los circuitos de abajo para ver el movimiento de los electrones

Características de los circuitos serie y paralelo

Serie Paralelo

Resistencia Aumenta al incorporar receptores Disminuye al incorporar receptores

Caida de tensión

Cada receptor tiene la suya, que aumenta con su resistencia. La suma de todas las caídas es igual a la tensión de la pila.

Es la misma para cada uno de los receptores, e igual a la de la fuente.

Intensidad Es la misma en todos los receptores e igual a la general en el circuito.

Cuantos más receptores, menor será la

Cada receptor es atravesado por una corriente independiente, menor cuanto mayor resistencia. La intensidad total es la suma de las intensidades individuales. Será, pues, mayor

Page 3: Circuitos Serie y Paralelo

corriente que circule. cuanto más receptores tengamos en el circuito.

Cálculos

Cálculo de problemas

Vamos a ver dos ejemplos de cálculo de problemas de circuitos en serie y en paralelo.

Ejemplo 1:

En el circuito de la figura sabemos que la pila es de 4'5 V, y las lámparas tienen una resistencia de R1= 60 Ω y R2= 30 Ω. Se pide:

1. Dibujar el esquema del circuito;

2. calcular la resistencia total o equivalente del circuito, la intensidad de corriente que circulará por él cuando se cierre el interruptor y las caídas de tensión en cada una de las bombillas.

Ejemplo 2:

En el circuito de la figura sabemos que la pila es de 4'5V, y las lámparas son de 60Ω y 30Ω, respectivamente. Calcular:

Page 4: Circuitos Serie y Paralelo

1. La intensidad en cada rama del circuito, la intensidad total que circulará y la resistencia equivalente.

2. Dibujar el esquema del circuito.

Fuente de alimentaciónDe Wikipedia, la enciclopedia libreSaltar a: navegación, búsqueda

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas.Puedes añadirlas así o avisar al autor principal del artículo en su página de discusión pegando: {{subst:Aviso referencias|Fuente de alimentación}} ~~~~

Fuente de alimentación para PC formato ATX (sin cubierta superior, para mostrar su interior y con el ventilador a un lado).

Page 5: Circuitos Serie y Paralelo

Fuentes de alimentación externas.

En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).

Contenido

[ocultar]

1 Clasificación o 1.1 Fuentes de alimentación colineales o 1.2 Fuentes de alimentación conmutadas

2 Especificaciones 3 Fuentes de alimentación especiales 4 Véase también 5 Enlaces externos

[editar] Clasificación

Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineales y conmutadas. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de la misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averías.

Page 6: Circuitos Serie y Paralelo

[editar] Fuentes de alimentación colineales

Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.

En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador. Esta corriente abarca toda la energía del circuito,esta fuente de alimentación deben tenerse en cuenta unos puntos concretos a la hora de decidir las características del transformador.

[editar] Fuentes de alimentación conmutadas

Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos) y filtrados (inductores y condensadores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son mas complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.

Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.

La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Width Modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.

Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.

[editar] Especificaciones

Page 7: Circuitos Serie y Paralelo

Una especificación fundamental de las fuentes de alimentación es el rendimiento, que se define como la potencia total de salida entre la potencia activa de entrada. Como se ha dicho antes, las fuentes conmutadas son mejores en este aspecto.

El factor de potencia es la potencia activa entre la potencia aparente de entrada. Es una medida de la calidad de la corriente.

Aparte de disminuir lo más posible el rizado, la fuente debe mantener la tensión de salida al voltaje solicitado independientemente de las oscilaciones de la línea, regulación de línea o de la carga requerida por el circuito, regulación de carga.

[editar] Fuentes de alimentación especiales

Entre las fuentes de alimentación alternas, tenemos aquellas en donde la potencia que se entrega a la carga está siendo controlada por transistores, los cuales son controlados en fase para poder entregar la potencia requerida a la carga.

Otro tipo de alimentación de fuentes alternas, catalogadas como especiales son aquellas en donde la frecuencia es variada, manteniendo la amplitud de la tensión logrando un efecto de fuente variable en casos como motores y transformadores de tensión...

Placa de pruebasDe Wikipedia, la enciclopedia libreSaltar a: navegación, búsqueda

Un computador basado en Intel 8088.

Una placa de pruebas, también conocida como protoboard o breadboard, es una placa de uso genérico reutilizable o semipermanente, usado para construir prototipos de circuitos electrónicos con o sin soldadura. Normalmente se utilizan para la realización de pruebas experimentales. Además de los protoboard plásticos, libres de soldadura, también existen en el mercado otros modelos de placas de prueba.

[editar] De uso temporal

Page 8: Circuitos Serie y Paralelo

Patrón típico de disposición de las láminas de material conductor en un protoboard.

Protoboard o breadboard: Es en la actualidad una de las placas de prueba más usadas. Está compuesta por bloques de plástico perforados y numerosas láminas delgadas, de una aleación de cobre, estaño y fósforo, que unen dichas perforaciones, creando una serie de líneas de conducción paralelas. Las líneas se cortan en la parte central del bloque de plástico para garantizar que dispositivos en circuitos integrados tipo DIP (Dual Inline Packages) puedan ser insertados perpendicularmente a las líneas de conductores. En la cara opuesta se coloca un forro con pegamento, que sirve para sellar y mantener en su lugar las tiras metálicas.

Un computador basado en el Motorola 68000 con varios circuitos TTL montados sobre un arreglo de protoboard.

Debido a las características de capacitancia (de 2 a 30 pF por punto de contacto) y resistencia que suelen tener los protoboard están confinados a trabajar a relativamente baja frecuencia (inferior a 10 ó 20 MHz, dependiendo del tipo y calidad de los componentes electrónicos utilizados).

Los demás componentes electrónicos pueden ser montados sobre perforaciones adyacentes que no compartan la tira o línea conductora e interconectados a otros dispositivos usando cables, usualmente unifilares. Uniendo dos o más protoboard es posible ensamblar complejos prototipos electrónicos que cuenten con decenas o cientos de componentes.

El nombre protoboard es una contracción de los vocablos ingleses prototype board y es el término que se ha difundido ampliamente en los países de habla hispana. Sin embargo, particularmente en Estados Unidos e Inglaterra, se conoce como breadboard. Anteriormente un breadboard era una tabla utilizada como base para cortar el pan, pero en los principios de la electrónica los pioneros usaban dichas tablas para montar sus prototipos, compuestos por tubos de vacío, clavijas, etc., los cuales eran asegurados por medio de tornillos e interconectados usando cables.

Page 9: Circuitos Serie y Paralelo

[editar] De uso permanente y/o temporal

Perfboard con material conductor alrededor de cada perforación.

Perfboard: Placa de circuito perforada cuyos huecos están circundados por material conductor, usualmente cobre, pero que no están interconectados entre sí. Este tipo de placas requieren que cada componente esté soldado a la placa y además las interconexiones entre ellos sea realizada a través de cables o caminos de soldadura.

Stripboard.

Stripboard: Es un tipo especial de perfboard con patrón, en donde los agujeros están interconectados formando filas de material conductor.

Estos tipos de placas generalmente se fabrican uniendo una lámina de material conductor, usualmente cobre o una aleación de él, a una base de material plástico sintético denominado baquelita. Cuando este tipo de placas se usan para construir perfboard, perfboard con patrón o stripboard, reciben el nombre genérico de "baquelita universal".

Resistencia eléctricaDe Wikipedia, la enciclopedia libreSaltar a: navegación, búsquedaPara el componente electrónico, véase Resistor.

La resistencia eléctrica de un objeto es una medida de su oposición al paso de corriente.

Page 10: Circuitos Serie y Paralelo

Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual a la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmímetro. Además, su cantidad recíproca es la conductancia, medida en Siemens.

Para una gran cantidad de materiales y condiciones, la resistencia eléctrica depende de la corriente eléctrica que pasa a través de un objeto y de la tensión en los terminales de este. Esto significa que, dada una temperatura y un material, la resistencia es un valor que se mantendrá constante. Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón de la tensión y la corriente, así :1

Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

Contenido

[ocultar]

1 Comportamientos ideales y reales o 1.1 Comportamiento en corriente continua o 1.2 Comportamiento en corriente alterna

2 Asociación de resistencias o 2.1 Resistencia equivalente o 2.2 Asociación en serie o 2.3 Asociación en paralelo o 2.4 Asociación mixta o 2.5 Asociaciones estrella y triángulo o 2.6 Asociación puente

3 Resistencia de un conductor o 3.1 Influencia de la temperatura

4 Potencia que disipa una resistencia 5 Véase también 6 Referencias 7 Enlaces externos

[editar] Comportamientos ideales y reales

Page 11: Circuitos Serie y Paralelo

Figura 2. Circuito con resistencia.

Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm:

donde i(t) es la corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.

[editar] Comportamiento en corriente continua

Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:

donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.

[editar] Comportamiento en corriente alterna

Page 12: Circuitos Serie y Paralelo

Figura 3. Diagrama fasorial.

Como se ha comentado anteriormente, una resistencia real muestra un comportamiento diferente del que se observaría en una resistencia ideal si la intensidad que la atraviesa no es continua. En el caso de que la señal aplicada sea senoidal, corriente alterna (CA), a bajas frecuencias se observa que una resistencia real se comportará de forma muy similar a como lo haría en CC, siendo despreciables las diferencias. En altas frecuencias el comportamiento es diferente, aumentando en la medida en la que aumenta la frecuencia aplicada, lo que se explica fundamentalmente por los efectos inductivos que producen los materiales que conforman la resistencia real.

Por ejemplo, en una resistencia de carbón los efectos inductivos solo provienen de los propios terminales de conexión del dispositivo mientras que en una resistencia de tipo bobinado estos efectos se incrementan por el devanado de hilo resistivo alrededor del soporte cerámico, además de aparecer una cierta componente capacitiva si la frecuencia es especialmente elevada. En estos casos, para analizar los circuitos, la resistencia real se sustituye por una asociación serie formada por una resistencia ideal y por una bobina también ideal, aunque a veces también se les puede añadir un pequeño condensador ideal en paralelo con dicha asociación serie. En los conductores, además, aparecen otros efectos entre los que cabe destacar el efecto películar.

Consideremos una resistencia R, como la de la figura 2, a la que se aplica una tensión alterna de valor:

De acuerdo con la ley de Ohm circulará una corriente alterna de valor:

donde . Se obtiene así, para la corriente, una función senoidal que está en fase con la tensión aplicada (figura 3).

Si se representa el valor eficaz de la corriente obtenida en forma polar:

Page 13: Circuitos Serie y Paralelo

Y operando matemáticamente:

De donde se deduce que en los circuitos de CA la resistencia puede considerarse como una magnitud compleja con parte real y sin parte imaginaria o, lo que es lo mismo con argumento nulo, cuya representación binómica y polar serán:

[editar] Asociación de resistencias

[editar] Resistencia equivalente

Figura 4. Asociaciones generales de resistencias: a) Serie y b) Paralelo. c) Resistencia equivalente.

Se denomina resistencia equivalente de una asociación respecto de dos puntos A y B, a aquella que conectada la misma diferencia de potencial, UAB, demanda la misma intensidad, I (ver figura 4). Esto significa que ante las mismas condiciones, la asociación y su resistencia equivalente disipan la misma potencia.

[editar] Asociación en serie

Page 14: Circuitos Serie y Paralelo

Dos o más resistencias se encuentran conectadas en serie cuando al aplicar al conjunto una diferencia de potencial, todas ellas son recorridas por la misma corriente.

Para determinar la resistencia equivalente de una asociación serie imaginaremos que ambas, figuras 4a) y 4c), están conectadas a la misma diferencia de potencial, UAB. Si aplicamos la segunda ley de Kirchhoff a la asociación en serie tendremos:

Aplicando la ley de Ohm:

En la resistencia equivalente:

Finalmente, igualando ambas ecuaciones se obtiene que:

Y eliminando la intensidad:

Por lo tanto, la resistencia equivalente a n resistencias montadas en serie es igual a la sumatoria de dichas resistencias.

[editar] Asociación en paralelo

Dos o más resistencias se encuentran en paralelo cuando tienen dos terminales comunes de modo que al aplicar al conjunto una diferencia de potencial, UAB, todas las resistencias tienen la misma caída de tensión, UAB.

Para determinar la resistencia equivalente de una asociación en paralelo imaginaremos que ambas, figuras 4b) y 4c), están conectadas a la misma diferencia de potencial mencionada, UAB, lo que originará una misma demanda de corriente eléctrica, I. Esta corriente se repartirá en la asociación por cada una de sus resistencias de acuerdo con la primera ley de Kirchhoff:

Aplicando la ley de Ohm:

Page 15: Circuitos Serie y Paralelo

En la resistencia equivalente se cumple:

Igualando ambas ecuaciones y eliminando la tensión UAB:

De donde:

Por lo que la resistencia equivalente de una asociación en paralelo es igual a la inversa de la suma de las inversas de cada una de las resistencias.

Existen dos casos particulares que suelen darse en una asociación en paralelo:

1. Dos resistencias: en este caso se puede comprobar que la resistencia equivalente es igual al producto dividido por la suma de sus valores, esto es:

2. k resistencias iguales: su equivalente resulta ser:

[editar] Asociación mixta

Page 16: Circuitos Serie y Paralelo

Figura 5. Asociaciones mixtas de cuatro resistencias: a) Serie de paralelos, b) Paralelo de series y c) Ejemplo de una de las otras posibles conexiones.

En una asociación mixta podemos encontrarnos conjuntos de resistencias en serie con conjuntos de resistencias en paralelo. En la figura 5 pueden observarse tres ejemplos de asociaciones mixtas con cuatro resistencias.

A veces una asociación mixta es necesaria ponerla en modo texto. Para ello se utilizan los símbolos "+" y "//" para designar las asociaciones serie y paralelo respectivamente. Así con (R1 + R2) se indica que R1 y R2 están en serie mientras que con (R1//R2) que están en paralelo. De acuerdo con ello, las asociaciones de la figura 5 se pondrían del siguiente modo:

a) (R1//R2)+(R3//R4)b) (R1+R3)//(R2+R4)c) ((R1+R2)//R3)+R4

Para determinar la resistencia equivalente de una asociación mixta se van simplificando las resistencias que están en serie y las que están en paralelo de modo que el conjunto vaya resultando cada vez más sencillo, hasta terminar con un conjunto en serie o en paralelo. Como ejemplo se determinarán las resistencias equivalentes de cada una de las asociaciones de la figura 5:

Page 17: Circuitos Serie y Paralelo

a)R1//R2 = R1//2

R3//R4 = R3//4

RAB = R1//2 + R3//4

b)R1+R3 = R1+3

R2+R4 = R2+4

RAB = R1+3//R2+4

c)R1+R2 = R1+2

R1+2//R3 = R1+2//3

RAB = R1+2//3 + R4

Desarrollando se obtiene:

a)

b)

c)

[editar] Asociaciones estrella y triángulo

Artículo principal: Teorema de Kennelly

Figura 6.a) Asociación en estrella.b) Asociación en triángulo.

En la figura a) y b) pueden observarse respectivamente las asociaciones estrella y triángulo, también llamadas T y π o delta respectivamente. Este tipo de asociaciones son comunes en las cargas trifásicas. Las ecuaciones de equivalencia entre ambas asociaciones vienen dadas por el teorema de Kennelly:

Page 18: Circuitos Serie y Paralelo

Resistencias en estrella en función de las resistencias en triángulo (transformación de triángulo a estrella)

El valor de cada una de las resistencias en estrella es igual al cociente del producto de las dos resistencias en triángulo adyacentes al mismo terminal entre la suma de las tres resistencias en triángulo.

Resistencias en triángulo en función de las resistencias en estrella (transformación de estrella a triángulo)

El valor de cada una de las resistencias en triángulo es igual la suma de las dos resistencias en estrella adyacentes a los mismos terminales más el cociente del producto de esas dos resistencias entre la otra resistencia.

[editar] Asociación puente

Figura 7. Asociación puente.

Si en una asociación paralelo de series como la mostrada en la figura 5b se conecta una resistencia que una las dos ramas en paralelo, se obtiene una asociación puente como la mostrada en la figura 7.

Page 19: Circuitos Serie y Paralelo

La determinación de la resistencia equivalente de este tipo de asociación tiene sólo interés pedagógico. Para ello se sustituye bien una de las configuraciones en triángulo de la asociación, la R1-R2-R5 o la R3-R4-R5 por su equivalente en estrella, bien una de las configuraciones en estrella, la R1-R3-R5 o la R2-R4-R5 por su equivalente en triángulo. En ambos casos se consigue transformar el conjunto en una asociación mixta de cálculo sencillo. Otro método consiste en aplicar una fem (E) a la asociación y obtener su resistencia equivalente como relación de dicha fem y la corriente total demandada (E/I).

El interés de este tipo de asociación está en el caso en el que por la resistencia central, R5, no circula corriente, pues permite calcular los valores de una de las resistencias, R1, R2, R3 o R4, en función de las otras tres. En ello se basan los puentes de Wheatstone y de hilo para la medida de resistencias con precisión.

[editar] Resistencia de un conductor

El conductor es el encargado de unir eléctricamente cada uno de los componentes de un circuito. Dado que tiene resistencia óhmica, puede ser considerado como otro componente más con características similares a las de la resistencia eléctrica.

De este modo, la resistencia de un conductor eléctrico es la medida de la oposición que presenta al movimiento de los electrones en su seno, o sea la oposición que presenta al paso de la corriente eléctrica. Generalmente su valor es muy pequeño y por ello se suele despreciar, esto es, se considera que su resistencia es nula (conductor ideal), pero habrá casos particulares en los que se deberá tener en cuenta su resistencia (conductor real).

La resistencia de un conductor depende de la longitud del mismo ( ) en m, de su sección () en m², del tipo de material y de la temperatura. Si consideramos la temperatura constante (20 ºC), la resistencia viene dada por la siguiente expresión:

en la que es la resistividad (una característica propia de cada material).

[editar] Influencia de la temperatura

Resistividad de algunos materiales a 20 °C

Material Resistividad (Ω·m)

Plata 2 1,55 × 10–8

Cobre 3 1,70 × 10–8

Oro 4 2,22 × 10–8

Aluminio 5 2,82 × 10–8

Wolframio 6 5,65 × 10–8

Níquel 7 6,40 × 10–8

Hierro 8 8,90 × 10–8

Platino 9 10,60 × 10–8

Estaño 10 11,50 × 10–8

Acero inoxidable 301 11 72,00 × 10–8

Grafito 12 60,00 × 10–8

Page 20: Circuitos Serie y Paralelo

La variación de la temperatura produce una variación en la resistencia. En la mayoría de los metales aumenta su resistencia al aumentar la temperatura, por el contrario, en otros elementos, como el carbono o el germanio la resistencia disminuye.

Como ya se comentó, en algunos materiales la resistencia llega a desaparecer cuando la temperatura baja lo suficiente. En este caso se habla de superconductores.

Experimentalmente se comprueba que para temperaturas no muy elevadas, la resistencia a

un determinado valor de t ( ), viene dada por la expresión:

donde

= Resistencia de referencia a 20 °C. = Coeficiente Olveriano de temperatura. = Diferencia de temperatura respecto a los 20 °C (t-20).

[editar] Potencia que disipa una resistencia

Una resistencia disipa en calor una cantidad de potencia cuadráticamente proporcional a la intensidad que la atraviesa y a la caída de tensión que aparece en sus bornes.

Comúnmente, la potencia disipada por una resistencia, así como la potencia disipada por cualquier otro dispositivo resistivo, se puede hallar mediante:

A veces es más cómodo usar la ley de Joule para el cálculo de la potencia disipada, que es:

o también

Observando las dimensiones del cuerpo de la resistencia, las características de conductividad de calor del material que la forma y que la recubre, y el ambiente en el cual está pensado que opere, el fabricante calcula la potencia que es capaz de disipar cada resistencia como componente discreto, sin que el aumento de temperatura provoque su destrucción. Esta temperatura de fallo puede ser muy distinta según los materiales que se estén usando. Esto es, una resistencia de 2 W formada por un material que no soporte mucha temperatura, estará casi fría (y será grande); pero formada por un material metálico, con recubrimiento cerámico, podría alcanzar altas temperaturas (y podrá ser mucho más pequeña).

El fabricante dará como dato el valor en vatios que puede disipar cada resistencia en cuestión. Este valor puede estar escrito en el cuerpo del componente o se tiene que deducir

Page 21: Circuitos Serie y Paralelo

de comparar su tamaño con los tamaños estándar y su respectivas potencias. El tamaño de las resistencias comunes, cuerpo cilíndrico con 2 terminales, que aparecen en los aparatos eléctricos domésticos suelen ser de 1/4 W, existiendo otros valores de potencias de comerciales de ½ W, 1 W, 2 W, etc.

Generador de señalesDe Wikipedia, la enciclopedia libreSaltar a: navegación, búsqueda

Generador de señal Leader Instruments LSG-15 .

Un generador de señales, de funciones o de formas de onda es un dispositivo electrónico de laboratorio que genera patrones de señales periódicas o no periódicas tanto analógicas como digitales. Se emplea normalmente en el diseño, test y reparación de dispositivos electrónicos; aunque también puede tener usos artístico.

Hay diferentes tipos de generadores de señales según el propósitos y aplicación; que se corresponderá con el precio. Tradicionalmente los generadores de señales eran dispositivos estáticos apenas configurales, pero actualmente permiten la conexión y control desde un PC. Con lo que pueden ser controlados mediante software hecho a medida según la aplicación, aumentando la flexibilidad.