13
!"# %&'()*+',- ./ 01('1 39 CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCK !"# %&'()*+',- ./ 01('1 40 ' Inductor current time-sharing among the M output branches ' Two main-switches MP and MN ' M load-switches SW i (SW i , i = 1, …, M) ' M control loops and error signals " i " i = (V set,i – V out,i ) ' Inductor #CCM ' Outputs #DCM M. Belloni, E. Bonizzoni, E. Kiseliovas, P. Malcovati, F. Maloberti, T. Peltola, T. Teppo: "A 4-Output Single-Inductor DC-DC Buck Converter with Self-Boosted Switch Drivers and 1.2A Total Output Current” ISSCC 2008.

CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 39!

CIRCUIT DESIGN AND EXPERIMENTAL RESULTS:

SIMO BUCK

!"#$%&'()*+',-$./$01('1$ 40!

'  Inductor current time-sharing among the M output branches

'  Two main-switches MP and MN

'  M load-switches SWi (SWi, i = 1, …, M)

'  M control loops and error signals "i

"i = (Vset,i – Vout,i)

'  Inductor #CCM

'  Outputs #DCM

M. Belloni, E. Bonizzoni, E. Kiseliovas, P. Malcovati, F. Maloberti, T. Peltola, T. Teppo: "A 4-Output Single-Inductor DC-DC Buck Converter with Self-Boosted Switch Drivers and 1.2A Total Output Current” ISSCC 2008.!

Page 2: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 41!

'  If #("1+"2 +"3+"4)>0 (  The whole system needs

more energy (  X1 (main) should

increase '  If #("1+"2 +"3+"4)<0

(  The whole system needs less energy

(  X1 should decrease

!"#$%&'()*+',-$./$01('1$ 42!

'  If #"1-#("2 +"3+"4)>0 (  The first channel needs

more energy (  X2 (load1) should

increase '  If #"1-#("2 +"3+"4)<0

(  The first channel needs less energy

(  X2 should decrease

Page 3: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 43!

'  H(s) #First-order zero-pole filter '  A #Gain

!"#$%&'()*+',-$./$01('1$ 44!

!  Analog Processing

Page 4: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 45!

'  0.5!m CMOS Technology

'  5 Metal Levels

'  2 Poly Levels

'  Active area 3.5mm x 3.8mm

!"#$%&'()*+',-$./$01('1$ 46!

Hanh-Phuc Le et Al.

ISSCC07

Young-Jin Woo et Al.

ISSCC08

Kyoung-Sik Seol et Al.

ISSCC09

Outputs 5 2 4 5

Converter Topology Boost Boost Buck-Boost

Supply Voltage [V] 2.5#4.5 2.7#4.5 2.3#5 2.5#4.5

Output Voltages [V] (4-Outputs) 5# 12

(1-Outputs) -12# -5

-4.8#4 0#(Vsupply-0.5) (3-Outputs) 2# 9.5

(1-Outputs) 6# 10

(1-Outputs) 8# 12

Inductor [!H] 10 10 4.7 + 1

Output Capacitor [!F] 4.7 10 10 10

Switching Frequency [MHz] 0.7 1 3 1

Total Output Current [A] 0#0.11 0#0.1 0#0.145

Single Output Currents [A] 0 #0.04 0#0.1 0 #0.05

Peak Power Efficiency 80.8% 80% 83%

Page 5: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 47!

Cross Regulation!

!"#$%&'()*+',-$./$01('1$ 48!

!  Self boost snubber

Page 6: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 49!

!"#$%&'()*+',-$./$01('1$ 50!

Page 7: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 51!

CIRCUIT DESIGN AND EXPERIMENTAL RESULTS:

HIGH SWITCHING FREQUENCY

!"#$%&'()*+',-$./$01('1$ 52!

(  A control based on a Voltage-To-Pulse (V2P) converter avoids the Op-Amp and comparator use: $ Very low quiescent current $ Circuit area reduction

M. Belloni, E. Bonizzoni, F. Maloberti: "High Efficiency DC-DC Buck Converter with 60/120-MHz Switching Frequency and 1-A Output Current"; ESSCIRC 2009, pp. 452-455.!

Page 8: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 53!

(  The delay time between the CLOCK rising-edge and the OUT PULSES rising-edge depends on Verror:

(  Avoid inverter stages shoot-through currents to decrease the dynamic power consumption.

!"#$%&'()*+',-$./$01('1$ 54!

Page 9: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 55!

(  0.18!m gate length CMOS process with 5-metals and 2-poly (  1.2 mm x 0.76 mm active area (  0.003 mm2 used for the current-mode and V2P control

!"#$%&'()*+',-$./$01('1$ 56!

Page 10: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 57!

Pow

er E

ffici

ency

[%]

!"#$%&'()*+',-$./$01('1$ 58!

Supply Voltage 2.2V#2.8V Output Voltage 0.5V# (Vdd-0.2V) Output Current 0#1A

Nominal Switching Frequency 60MHz Maximum Switching Frequency 120MHz

Inductor 36nH (18nH @ 120MHz) Output Capacitor 4.7!F

Max Output Voltage Ripple 10mV Peak Power Efficiency @ 60MHz 93%

Peak Power Efficiency @ 120MHz 88% Max Line regulation 10mV/V

Load Regulation @ 60MHz 20mV/V Load Regulation @ 120MHz 25mV/V

Page 11: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 59!

CONCLUSIONS

!"#$%&'()*+',-$./$01('1$ 60!

!  Power Management for Portable systems enables: " High efficiency " Miniature solutions (all in package) " Multiple output single inductor

!  Power Management for Microsystems "  Is an emerging discipline " Will benefit from existing knowledge

# Digital # SiP # Power management for Autonomous Systems

Page 12: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 61!

Thank you!!!!

!"#$%&'()*+',-$./$01('1$ 62!

REFERENCES •  S.K. Hoon, N. Culp, J. Chen, F. Maloberti: "A PWM Dual-Output DC/DC Boost Converter in a

0.13µm CMOS Technology for Cellular-Phone Backlight Application"; Proc. of the 31st European Solid-State Circuits Conf., ESSCIRC 2005, Grenoble, 12-16 September 2005, pp. 81-84.

•  E. Bonizzoni, F. Borghetti, P. Malcovati, F. Maloberti, B. Niessen: "A 200mA 93% Peak Efficiency Single-Inductor Dual-Output DC-DC Buck Converter"; IEEE Int. Solid-State Circuits Conf. - Digest of Technical Papers, ISSCC 2007, San Francisco, 11-15 February 2007, pp. 526.

•  M. Belloni, E. Bonizzoni, E. Kiseliovas, P. Malcovati, F. Maloberti, T. Peltola, T. Teppo: "A 4-Output Single-Inductor DC-DC Buck Converter with Self-Boosted Switch Drivers and 1.2A Total Output Current"; IEEE Int. Solid-State Circuits Conf. - Digest of Technical Papers, ISSCC 2008, San Francisco, 3-7 February 2008, pp. 444-445.

•  M. Belloni, E. Bonizzoni, F. Maloberti: "High Efficiency DC-DC Buck Converter with 60/120-MHz Switching Frequency and 1-A Output Current"; 35th European Solid-State Circuits Conference, ESSCIRC 2009, Athens, 15-17 September 2009, pp. 452-455.

•  E. Bordeaux: “Portable Power Management: A Holistic Perspective”; Intersil Corp., Technical white paper.

•  Linear Technology: “Power Management for Portable Products – High Performance Analog Ics”, 10.2007.

Page 13: CIRCUIT DESIGN AND EXPERIMENTAL RESULTS: SIMO BUCKims.unipv.it/~franco/Presentations/Saopaolo2-2.pdf · !"#$%&'()*+',-$./$01('1$ 45! ' 0.5!m CMOS Technology ' 5 Metal Levels ' 2 Poly

!"#$%&'()*+',-$./$01('1$ 63!

•  “Portable Design in 2009”; Portable Design, January 2009, RTC Group Publications.

•  S. Dearborn: “Power Management in Portable Applications: Charging Lithium-Ion/Lithium-Polymer Batteries”; Microchip Technology inc., 2004, White paper AN947.

•  M. Davidson: “Understanding Portable Applications Requirements to Improve System Performance”; Power Designer, No. 103.

•  J. Falin: “Designing DC/DC Converters Based on SEPIC Topology”; Analog Applications Journal, Texas Instruments Inc., 4Q 2008.

•  O. Trescases, W. Tung Ng, H. Nishio. M. Edo, T. Kawashima: “A Digitally Controlled DC-DC Converter Module with a Segmented Output Stage for optimized Efficiency”; Proc. of the 18th Int. Symposium on Power Semiconductor Devices & IC’s, ISPSD 2006, Naples, 4-8 June 2006, pp. 1-4.

•  A. Yoo, M. Chang, O. Trescases, W. Tung Ng: “High Performance Low-Voltage Power MOSFETs with Hybrid Waffle Layout Structure in a 0.25µ Standard CMOS Process”; Proc. of the 20th International Power Semiconductor Devices and IC's, ISPSD 2008, Orlando, 18-22 May 2008, pp. 95-98.

•  J.A. Paradiso, T. Starner: “Energy scavenging for mobile and wireless electronics”; IEEE Pervasive Computing, Jan.-Mar. 2005, Vol. 4, No. 1, pp. 18-27.