44
Leveraging Linialโ€™s Locality limit Christoph Lenzen and Roger Wattenhofer Presented by Yam Chemel

Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Leveraging Linialโ€™s Locality limit

Christoph Lenzen and Roger Wattenhofer

Presented by Yam Chemel

Page 2: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Linial (1992)

3-coloring and MIS

on a ring (๐‘…๐‘›)

takes at least logโˆ—(๐‘›) rounds

Reminder

Page 3: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Prove logโˆ—(๐‘›) Lower bound for MaxIS algorithms in rings

Our Goal:

How?

MaxIS ๐‘œ(logโˆ— ๐‘› )

3-coloring ๐‘œ logโˆ— ๐‘›

Contradicts Linial!

Page 4: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

MaxIS vs. MIS - Example

Independent Set MIS MaxIS

(general graphs)

MIS โŸธ MaxIS

Page 5: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

MaxIS in rings

1 2

3 4

1 2

3

4

5

Q: What if each even node returns 1, and each odd node returns 0?

1 2

3 4

๐‘…4 MaxIS

1 2

3

4

5 ๐‘…5

MaxIS

Page 6: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

1 3

2 4

MaxIS

Identifiers are not necessarily in order!

1 3

2 4

Page 7: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

MaxIS vs. MIS โ€“ in rings

MIS โŸธ MaxIS

Algorithm ๐ด MaxIS

๐‘œ(logโˆ— ๐‘› )

Algorithm ๐ด MIS

๐‘œ logโˆ— ๐‘›

Contradicts Linial!

Page 8: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

f-approximation algorithm for MaxIS

๐‘€ -MaxIS solution ๐ผ โ€“ algorithm A solution

๐ผ = ๐‘€

If ๐ด is ๐‘“(๐‘›)-approximation: ๐ผ โ‰ค ๐‘€

and also:

๐ผ โˆ— ๐‘“(๐‘›) โ‰ฅ |๐‘€|

๐ด ๐‘…๐‘› = ๐‘…๐‘›

A is 2-approximation for MaxIS

๐ผ =๐‘›

4

๐‘›

4โˆ— 2 โ‰ฅ ๐‘€ =

๐‘›

2

Page 9: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Leveraging Linialโ€™s Locality limit

MaxIS approximation ๐‘œ(๐‘™๐‘œ๐‘”โˆ— ๐‘› )

3-coloring ๐‘œ ๐‘™๐‘œ๐‘”โˆ— ๐‘›

Page 10: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Leveraging Linialโ€™s Locality limit

MaxIS approximation ๐œŽ ๐‘›

3-coloring ๐œŽ(๐‘›)

Page 11: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Leveraging Linialโ€™s Locality limit

๐œŽ(๐‘›)-alternating ๐œŽ(๐‘›)

MaxIS approximation ๐œŽ ๐‘›

3-coloring ๐œŽ(๐‘›)

Page 12: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

๐œŽ(๐‘›)-alternating algorithm - Definition:

Suppose A is an algorithm operating on ๐‘…๐‘› which assigns each node ๐‘ฃ๐‘– โˆˆ ๐‘‰๐‘› a value ๐‘(๐‘ฃ๐‘–) โˆˆ {0, 1}. We call A ๐œŽ(n)-alternating, if the length of any monochromatic sequence

๐‘ ๐‘ฃ๐‘– = ๐‘ ๐‘ฃ๐‘–+1 = โ‹ฏ = ๐‘ ๐‘ฃ๐‘–+๐‘˜ is smaller than ๐ˆ(n).

< ๐œŽ(๐‘›)

Page 13: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

๐ด ๐‘…๐‘› = ๐‘…๐‘›

๐œŽ(๐‘›)-alternating algorithm - examples

n is even

Longest monochromatic sequence = 1

n is odd

Longest monochromatic sequence = 2

A is 3-alternating (also 4-alternating, 5-alternatingโ€ฆ)

(Not necessarily MaxIS algorithm)

Page 14: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

๐ด ๐‘…๐‘› = ๐‘…๐‘›

A is (n+1)-alternating

(Not necessarily MaxIS algorithm)

๐œŽ(๐‘›)-alternating algorithm - examples

Page 15: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Lemma - Modified MaxIS approximation Suppose an f-approximation algorithm A for the MaxIS problem on the ring ๐‘…๐‘› running in at most g(n) โ‰ฅ 1 rounds is given, where we have ๐‘“(๐‘›)๐‘”(๐‘›) โˆˆ ๐‘œ(logโˆ—(๐‘›)). Then an ๐‘œ(logโˆ—(๐‘›))-alternating algorithm Aโ€ฒ requiring ๐‘œ logโˆ— ๐‘› communication rounds exists.

A

MaxIS, ๐‘“(๐‘›)-approximation,

๐‘”(๐‘›) rounds, ๐‘“ ๐‘› ๐‘” ๐‘› โˆˆ ๐‘œ ๐‘™๐‘œ๐‘”โˆ— ๐‘›

Aโ€™ ๐‘œ ๐‘™๐‘œ๐‘”โˆ— ๐‘› -alternating,

๐‘œ ๐‘™๐‘œ๐‘”โˆ— ๐‘› rounds

Page 16: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Modified MaxIS approximation - Proof

General idea

๐‘†๐‘›

๐‘…๐‘›

๐‘…๐‘›โ€ฒ ๐‘›

๐‘†๐‘›โ€ฒ

Page 17: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Observation: For each node ๐‘ฃ๐‘–, ๐‘(๐‘ฃ๐‘–) is a function of:

๐‘ฃ๐‘–

๐‘”(๐‘›) ๐‘”(๐‘›)

๐‘” ๐‘› = #๐‘Ÿ๐‘œ๐‘ข๐‘›๐‘‘๐‘ 

โ€ข The IDs of its ๐‘”(๐‘›) neighbors on each side

โ€ข ๐‘› โ€ข Its ID

๐‘”(๐‘›) ๐‘”(๐‘›)

Modified MaxIS approximation - Proof

Page 18: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

โ€ข ๐‘†๐‘’๐‘ก ๐œŽ ๐‘› โ† 10๐‘“(๐‘›)๐‘”(๐‘›)

๐‘†๐‘› =

๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘” ๐‘› , ๐‘ฃ๐‘” ๐‘› +1, โ€ฆ, ๐‘ฃ๐‘” ๐‘› +๐œŽ ๐‘› , ๐‘ฃ๐‘” ๐‘› +1+๐œŽ ๐‘› , โ€ฆ , ๐‘ฃ2๐‘” ๐‘› +๐œŽ ๐‘ฃ

| โˆ€๐‘– โˆˆ ๐‘ฃ๐‘” ๐‘› +1, โ€ฆ, ๐‘ฃ๐‘” ๐‘› +๐œŽ ๐‘› ๐‘ ๐‘ฃ๐‘– = 0

0 0

?

?

0

? ?

? ?

๐‘”(๐‘›) ๐‘”(๐‘›) ๐œŽ(๐‘›)

Modified MaxIS approximation - Proof

โ€ข Define exactly the set of sequences preventing that A is ๐œŽ(๐‘›)-alternating

Page 19: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

๐‘”(๐‘›) ๐œŽ(๐‘›)

? ? ? 0 0 0 ? ? ?

Id=2 Id=11 Id=8 Id=9 Id=14 Id=21 Id=7 Id=6 Id=3

๐‘”(๐‘›)

๐‘  = 2, 11, 8, 9, 14, 21, 7, 6, 3 โ†’ ๐‘†๐‘›

Take 2๐‘” ๐‘› + ๐œŽ(๐‘›) consecutive nodes in ๐‘…๐‘›

Assign them identifiers

Run A on the sequence / on ๐‘…๐‘› containing the sequence.

If the ๐œŽ(๐‘›) center nodes compute 0, add s to ๐‘†๐‘›

Id=2 Id=11 Id=8 Id=9 Id=14 Id=21 Id=7 Id=6 Id=3

Building ๐‘†๐‘›

2๐‘” ๐‘› + ๐œŽ(๐‘›)

Page 20: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Construct a sequence of identifiers for ๐‘…๐‘›:

๐‘ 2

๐‘ 1 ๐‘› โˆ’ ๐‘—

๐‘…๐‘› ๐‘ ๐‘˜

Modified MaxIS approximation - Proof

1. Choose an arbitrary sequence s from ๐‘†๐‘› and assign the identifiers to ๐‘ฃ1, โ€ฆ , ๐‘ฃ ๐‘  .

2. Assuming we already assigned labels to the nodes ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘—:

While there exists a sequence ๐‘  โˆˆ ๐‘†๐‘› that can be appended to ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘— without duplicating an identifier, we do so.

3. If no further sequence fits, we add ๐‘› โˆ’ ๐‘— arbitrary identifiers not yet present in ๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘— to

complete the labeling (๐‘ฃ1, โ€ฆ , ๐‘ฃ๐‘›) of ๐‘…๐‘›.

Page 21: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Assume for contradiction, that for arbitrarily large n it is possible to

label ๐‘…๐‘› as described, with at least ๐‘› โˆ’๐‘›

5๐‘“ ๐‘› identifiers

stemming from sequences out of ๐‘†๐‘›.

# ๐‘›๐‘œ๐‘‘๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘๐‘œ๐‘š๐‘๐‘ข๐‘ก๐‘’ 1 ๐‘–๐‘› ๐‘…๐‘› โ‰ค ๐‘› โˆ’๐œŽ ๐‘› โˆ— ๐‘›

๐œŽ ๐‘› + 2๐‘” ๐‘›โˆ’

๐‘›

5๐‘“ ๐‘›

โ‰ฅ ๐‘›๐‘œ๐‘‘๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘๐‘œ๐‘š๐‘๐‘ข๐‘ก๐‘’ 0 ๐‘–๐‘› ๐‘  โˆˆ ๐‘†๐‘›

๐‘›๐‘œ๐‘‘๐‘’๐‘  ๐‘–๐‘› ๐‘  โˆˆ ๐‘†๐‘›โˆ— ๐‘› โˆ’ #(๐‘›๐‘œ๐‘‘๐‘’๐‘  ๐‘›๐‘œ๐‘ก ๐‘–๐‘› ๐‘  โˆˆ ๐‘†๐‘›)

Modified MaxIS approximation - Proof

# ๐‘›๐‘œ๐‘‘๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘๐‘œ๐‘š๐‘๐‘ข๐‘ก๐‘’ 0 ๐‘–๐‘› ๐‘…๐‘› โ‰ฅ

=๐œŽ ๐‘›

๐œŽ ๐‘› + 2๐‘”(๐‘›)โˆ— ๐‘› โˆ’

๐‘›

5๐‘“ ๐‘›

Page 22: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

# ๐‘›๐‘œ๐‘‘๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘๐‘œ๐‘š๐‘๐‘ข๐‘ก๐‘’ 1 ๐‘–๐‘› ๐‘…๐‘› โ‰ค ๐‘› โˆ’๐œŽ ๐‘› โˆ— ๐‘›

๐œŽ ๐‘› + 2๐‘” ๐‘›โˆ’

๐‘›

5๐‘“ ๐‘›

= ๐‘› 1 โˆ’๐œŽ ๐‘›

๐œŽ ๐‘› + 2๐‘” ๐‘›+

1

5๐‘“ ๐‘›

๐œŽ ๐‘› = 10๐‘“ ๐‘› ๐‘”(๐‘›)

Modified MaxIS approximation - Proof

= ๐‘› 1 โˆ’10๐‘“ ๐‘› ๐‘” ๐‘›

10๐‘“ ๐‘› ๐‘” ๐‘› + 2๐‘” ๐‘›+

1

5๐‘“ ๐‘›

= ๐‘› 1 โˆ’5๐‘“ ๐‘›

5๐‘“ ๐‘› + 1+

1

5๐‘“ ๐‘›

= ๐‘› 1 โˆ’ 1 โˆ’1

5๐‘“ ๐‘› + 1+

1

5๐‘“ ๐‘›

= ๐‘›1

5๐‘“ ๐‘› + 1+

1

5๐‘“ ๐‘›

โ‰ค ๐‘›1

5๐‘“ ๐‘› + 0+

1

5๐‘“ ๐‘›

=2๐‘›

5๐‘“ ๐‘›

Page 23: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

๐ผ = # ๐‘›๐‘œ๐‘‘๐‘’๐‘  ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘๐‘œ๐‘š๐‘๐‘ข๐‘ก๐‘’ 1 ๐‘–๐‘› ๐‘…๐‘› โ‰ค2๐‘›

5๐‘“ ๐‘›

However, according to f-approximation definition: ๐‘“ ๐‘› ๐ผ โ‰ฅ ๐‘€

(M -an arbitrary MaxIS of G)

๐‘…6

Contradicts the assumption! (โ€œFor arbitrarily large n it is possible to label ๐‘…๐‘› as described, with at least

๐‘› โˆ’๐‘›

5๐‘“ ๐‘› identifiers stemming from sequences out of ๐‘†๐‘›.โ€)

Modified MaxIS approximation - Proof

๐‘“(๐‘›) ๐ผ โ‰ค2

5๐‘›

Choosing every other node in ๐‘…๐‘› is a MaxIS solution:

๐‘€ =๐‘›

2

Combining the equations:

๐‘“ ๐‘› ๐ผ โ‰ฅ๐‘›

2

Page 24: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

At least ๐’

๐Ÿ“๐’‡ ๐’ identifiers remain which cannot form a further

sequence from ๐‘†๐‘›.

Set ๐‘›โ€ฒ โ† max ๐‘›0, 5๐‘“ ๐‘› โˆ™ ๐‘›

In ๐‘…๐‘›โ€ฒ

#๐‘Ÿ๐‘’๐‘š๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘–๐‘‘๐‘’๐‘›๐‘ก๐‘–๐‘“๐‘–๐‘’๐‘Ÿ๐‘ 

โ‰ฅ๐‘›โ€ฒ

5๐‘“ ๐‘›โ€ฒ

For a large n (๐‘› > ๐‘›0) it is possible to label ๐‘…๐‘› as described, with

at most ๐‘› โˆ’๐‘›

5๐‘“ ๐‘› identifiers stemming from sequences out of ๐‘บ๐’

Modified MaxIS approximation - Proof

๐‘ 2

๐‘ 1 ๐‘› โˆ’ ๐‘—

๐‘…๐‘› ๐‘ ๐‘˜

โ‰ฅ5๐‘“ ๐‘› โˆ™ ๐‘›

5๐‘“ ๐‘›= ๐‘›

Page 25: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

๐‘…๐‘› ๐‘…๐‘›โ€ฒ

๐‘Ÿ๐‘›

Algorithm Aโ€™ : ๐‘Ÿ๐‘ข๐‘› โˆถ ๐ด(๐‘›โ€ฒ, ๐‘› ๐‘–๐‘‘๐‘’๐‘›๐‘ก๐‘–๐‘“๐‘–๐‘’๐‘Ÿ๐‘  ๐‘“๐‘Ÿ๐‘œ๐‘š ๐‘…๐‘›โ€ฒ )

Modified MaxIS approximation - Proof

Page 26: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

๐‘…4 ๐‘…11

1

2

3

4

3

8

1

4

๐‘Ÿ4

Algorithm Aโ€™ : ๐‘…๐‘ข๐‘› ๐ด(11, 3, 8, 1, 4 )

Example:

Modified MaxIS approximation - Proof

Page 27: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Aโ€™ is ๐ˆ ๐’โ€ฒ -alternating

No ๐ˆ(๐’โ€ฒ) consecutive 0โ€™s No ๐ˆ(๐’โ€ฒ) consecutive 1โ€™s

๐ด computes an independent setโ†’ no 2 neighbors in independent set โ†’

no 2 consecutive 1โ€™s

No ๐‘  โˆˆ ๐‘†๐‘›โ€ฒ in remaining n nodes of ๐‘…๐‘›โ€ฒ โ†’ No ๐œŽ ๐‘›โ€ฒ consecutive nodes compute 0 in

Aโ€™ run

Maximum monochromatic sequence : ๐œŽ ๐‘›โ€ฒ โˆ’ 1 โˆˆ ๐‘‚ ๐‘“ ๐‘›โ€ฒ ๐‘” ๐‘›โ€ฒ โŠ‚ ๐‘œ logโˆ— ๐‘›โ€ฒ = ๐‘œ logโˆ— ๐‘›

Aโ€™ running time -๐’(๐’๐’๐’ˆโˆ—(๐’)) rounds ๐‘” ๐‘› โ‰ค ๐‘” ๐‘› ๐‘“ ๐‘› โˆˆ ๐‘œ(๐‘™๐‘œ๐‘”โˆ— ๐‘›)

๐‘” ๐‘›โ€ฒ โˆˆ ๐‘œ(๐‘™๐‘œ๐‘”โˆ— ๐‘›)

Aโ€™ is ๐’ ๐’๐’๐’ˆโˆ— ๐’ -alternating

Page 28: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Leveraging Linialโ€™s Locality limit

๐œŽ(๐‘›)-alternating ๐œŽ(๐‘›)

MaxIS approximation ๐œŽ ๐‘›

3-coloring ๐œŽ(๐‘›)

Page 29: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Leveraging Linialโ€™s Locality limit

๐œŽ(๐‘›)-alternating ๐œŽ(๐‘›)

MaxIS approximation ๐œŽ ๐‘›

3-coloring ๐œŽ(๐‘›)

Page 30: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

2. Proof : Lemma โ€“ Given a ๐ˆ(๐’)-alternating algorithm A running in ๐‘‚(๐œŽ(๐‘›)) rounds, a 3-coloring of the ring can be computed in ๐‘‚(๐œŽ(๐‘›)) rounds.

1. Run A. Let ๐‘‘(๐‘ฃ) โˆˆ {0, 1} denote the result of this run.

2. Find a pair of neighboring nodes {๐‘ค1, ๐‘ค2} with ๐‘‘ ๐‘ค1 โ‰  ๐‘‘ ๐‘ค2 which is closest to v.

0 1 ๐’— ๐‘ค2

1 0 ๐’— ๐‘ค2

If ๐‘ฃ โˆˆ {๐‘ค1, ๐‘ค2}: if ๐‘‘(๐‘ฃ) = 0: set ๐‘ ๐‘ฃ โ† ๐‘ otherwise: set ๐‘(๐‘ฃ) โ† ๐‘Ÿ

0 1 ๐’— ๐‘ค2

1 0 ๐’— ๐‘ค2

1 0 1 1

๐‘ค2 ๐‘ค1 ๐’— ๐‘ค

1 0 1 1

Else: denote by ๐›ฟ the distance to the closer node in {๐‘ค1, ๐‘ค2}, w.l.o.g. ๐‘ค1. if ๐›ฟ โˆˆ 2โ„•: set ๐‘ ๐‘ฃ โ† ๐‘(๐‘ค1) else: set ๐‘ ๐‘ฃ โ† ๐‘(๐‘ค2)

1 0 1 1

๐‘ค2 ๐‘ค1 ๐’— ๐‘ค (๐›ฟ โˆˆ 2โ„•)

๐›ฟ

Page 31: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

3 8 ๐’— ๐‘ค

8 3 ๐’— ๐‘ค

3. If v has a neighbor w with ๐‘(๐‘ฃ) = ๐‘(๐‘ค) and v > w, set ๐‘(๐‘ฃ) โ† ๐‘”.

3 8 ๐’— ๐‘ค

8 3 ๐’— ๐‘ค

3 8 ๐’— ๐‘ค

1 2 3 8 ๐’— ๐‘ค

1 2 (3)

4. If v has a neighbor w with ๐‘(๐‘ฃ) = ๐‘(๐‘ค) = ๐‘” and v > w, set c(v) to the color none of the neighbors of v has.

3 8 ๐’— ๐‘ค

1 2 (4)

2. Proof : Lemma โ€“ Given a ๐ˆ(๐’)-alternating algorithm A running in ๐‘‚(๐œŽ(๐‘›)) rounds, a 3-coloring of the ring can be computed in ๐‘‚(๐œŽ(๐‘›)) rounds.

Page 32: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Running time: ๐‘ถ ๐ˆ ๐’

Step 1: Running A- ๐‘‚ ๐œŽ ๐‘›

Step 2: Finding a pair of neighbors with different d - ๐œŽ ๐‘› .

No more than ๐œŽ(๐‘ฃ) consecutive nodes take the same decision d(v)

since A is ๐œŽ(๐‘›)-alternating.

Page 33: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Valid 3-coloring of ๐‘น๐’

Step 2: Each node ๐‘ฃ chooses different from one of its neighbors,

1 1 0 1 1 1 1 0 1

so at most one of the neighbors of ๐‘ฃ may take the same choice.

Step 3: From each pair of neighbors with the same color one chooses g.

Step 4: If that same color was g, v chooses the color non of its neighbors has.

v v

v

1 1 0

v

1 1 1 1 0 1

v v

Page 34: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Leveraging Linialโ€™s Locality limit

๐œŽ(๐‘›)-alternating ๐œŽ(๐‘›)

MaxIS approximation ๐œŽ ๐‘›

3-coloring ๐œŽ(๐‘›)

Page 35: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Therefore, there isnโ€™t a MaxIS approximation algorithms running on a ring

in less than log*(n)

Proof - Summary

Assume by contradiction that there exists a MaxIS approximation algorithm A running in less than ๐‘™๐‘œ๐‘”โˆ—(๐‘›).

Construct a ๐‘œ ๐‘™๐‘œ๐‘”โˆ— ๐‘› -alternating algorithm running in ๐‘œ(๐‘™๐‘œ๐‘”โˆ—(๐‘›)) using algorithm A.

By lemma 2, a 3-coloring of the ring can be computed in ๐’(๐’๐’๐’ˆโˆ—(๐’)) rounds.

This contradicts Linialโ€™s 3-coloring lower bound.

Page 36: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

- Discuss MDS lower bound - Compare MDS and MaxIS difficulty

Our (new) Goal:

No! Weโ€™ll show a case where MIS is easier than MDS

MDS on rings O(1)

Is MDS always easier than MIS?

How?

Page 37: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

MDS โ€“ Minimum Dominating Set

DS MDS

Page 38: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

MDS in rings

Taking every third node gives a minimum dominating set

๐‘€ =๐‘›

3

Taking every node gives a 3-approximation MDS in 1 round โˆˆ ๐‘œ logโˆ— ๐‘›

๐‘…๐‘›

๐‘…๐‘›

There is no ๐’๐’๐’ˆโˆ—(๐’) bound MDS approximation in rings! MDS approximation in rings takes ๐‘ถ(๐Ÿ) rounds

MDS approximation in rings

Page 39: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Can we compare MaxIS and MDS difficulty?

MDS

MaxIS

We saw that in ๐‘…๐‘› MDS can be computed in 1 round, but MaxIS requires at least ๐‘™๐‘œ๐‘”โˆ—(๐‘›) round.

Is it always easier to compute MDS than MaxIS?

Page 40: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

MaxIS graph family

๐บ ๐‘ฃ ๐‘ค

Any graph that can be constructed this way

Page 41: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Lemma (Local computation of a MaxIS on MaxIS Graphs): The set {๐‘ฃ โˆˆ ๐‘‰ | |๐‘1

+(๐‘ฃ)|๐‘š๐‘œ๐‘‘ 2 = 1} is a MaxIS for any MaxIS Graph.

Proof โ€“ part 1:

- For ๐‘ฃ๐‘– โˆˆ ๐‘‰๐‘– ๐‘– โˆˆ {3,4}, ๐‘ฃ๐‘– has 2|๐‘1+ ๐‘ฃ | neighbors.

- ๐‘1+ ๐‘ฃ๐‘– = 2 ๐‘1

+ ๐‘ฃ + 1 โ‡’ ๐‘1+ ๐‘ฃ๐‘– ๐‘–๐‘  ๐‘œ๐‘‘๐‘‘

- For ๐‘ฃ๐‘– โˆˆ ๐‘‰๐‘– ๐‘– โˆˆ {1,2}, ๐‘1+ ๐‘ฃ๐‘– = 4 ๐‘1

+ ๐‘ฃ โ‡’ ๐‘1+ ๐‘ฃ๐‘– ๐‘–๐‘  ๐‘’๐‘ฃ๐‘’๐‘›

- {๐‘ฃ โˆˆ ๐‘‰ | |๐‘1+(๐‘ฃ)|๐‘š๐‘œ๐‘‘ 2 = 1} = ๐‘‰3 โˆช ๐‘‰4

Page 42: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Proof โ€“ part 2:

- ๐‘‰3 โˆช ๐‘‰4 is an Independent set โ€“ according to the construction of

MaxIS graph

- (๐‘ฃ1, ๐‘ฃ3, ๐‘ฃ2, ๐‘ฃ4) forms a cycle, so for each 4 nodes as such, only 2 can be in the IS.

- MaxIS canโ€™t be larger than ๐‘‰

2

- ๐‘‰3 โˆช ๐‘‰4 =๐‘‰

2

โ‡’ ๐‘‰3 โˆช ๐‘‰4 ๐‘–๐‘  ๐‘Ž ๐‘€๐‘Ž๐‘ฅ๐ผ๐‘†

Lemma (Local computation of a MaxIS on MaxIS Graphs): The set {๐‘ฃ โˆˆ ๐‘‰ | |๐‘1

+(๐‘ฃ)|๐‘š๐‘œ๐‘‘ 2 = 1} is a MaxIS for any MaxIS Graph.

Conclusion โ€“ MaxIS on a MaxIS graph can be determined locally, without communication (in ๐‘‚(1) rounds).

Page 43: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

MDS on MaxIS graphs

We can prove that MDS on MaxIS graphs is as efficient as in general graphs, meaning:

ฮฉlog ๐‘›

log log ๐‘›

MaxIS

MDS

Page 44: Christoph Lenzen and Roger Wattenhoferwebcourse.cs.technion.ac.il/236825/Spring2015/ho...ย ยท - MaxIS canโ€™t be larger than ๐‘‰ 2 - ๐‘‰3โˆช๐‘‰4 = ๐‘‰ 2 โ‡’๐‘‰3โˆช๐‘‰4 ๐ผ Lemma

Ring graphs - ๐‘…๐‘› MaxIS graphs

MaxIS

MDS ๐‘‚(1)

ฮฉlog ๐‘›

log log ๐‘›

MDS

MaxIS ๐‘‚(1)

ฮฉ logโˆ— ๐‘›

MaxIS and MDS are not comparable in general graphs!