56
The even Orlicz Minkowski problem Christoph Haberl joint work with E. Lutwak, D. Yang, and G. Zhang University of Salzburg Cortona, 2011 The even Orlicz Minkowski problem

Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The even Orlicz Minkowski problem

Christoph Haberl

joint work with E. Lutwak, D. Yang, and G. Zhang

University of Salzburg

Cortona, 2011

The even Orlicz Minkowski problem

Page 2: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The Minkowski problem

The Minkowski problem concerns

Existence

Uniqueness

Stability

of convex hypersurfaces whose Gauss curvature (possibly in ageneralized sense) is prescribed as a function of the outer unitnormals.

The even Orlicz Minkowski problem

Page 3: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Definitions

Convex bodies

A convex body is a compact convex subset of Rn with non-emptyinterior.

Support function

hK (x) = max{x · y : y ∈ K}

Surface area measure of a convex body

SK (ω) = Hn−1{x ∈ ∂K : x has an outer unit normal in ω}

The even Orlicz Minkowski problem

Page 4: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Definitions

Convex bodies

A convex body is a compact convex subset of Rn with non-emptyinterior.

Support function

hK (x) = max{x · y : y ∈ K}

Surface area measure of a convex body

SK (ω) = Hn−1{x ∈ ∂K : x has an outer unit normal in ω}

The even Orlicz Minkowski problem

Page 5: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Definitions

Convex bodies

A convex body is a compact convex subset of Rn with non-emptyinterior.

Support function

hK (x) = max{x · y : y ∈ K}

Surface area measure of a convex body

SK (ω) = Hn−1{x ∈ ∂K : x has an outer unit normal in ω}

The even Orlicz Minkowski problem

Page 6: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The Minkowski problem

The Minkowski problem

Which measures on the sphere are surface area measures?

Theorem (Minkowski 1897, Fenchel & Jessen 1938)

If µ ∈M(Sn−1) satisfies∫Sn−1

u dµ(u) = o

and µ(s) < µ(Sn−1) for each great subsphere s of Sn−1, then

µ = SK .

The even Orlicz Minkowski problem

Page 7: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The Minkowski problem

The Minkowski problem

Which measures on the sphere are surface area measures?

Theorem (Minkowski 1897, Fenchel & Jessen 1938)

If µ ∈M(Sn−1) satisfies∫Sn−1

u dµ(u) = o

and µ(s) < µ(Sn−1) for each great subsphere s of Sn−1, then

µ = SK .

The even Orlicz Minkowski problem

Page 8: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The Lp-Minkowski problem

The Lp-Minkowski problem

What are necessary and sufficient conditions on µ ∈M(Sn−1)such that there exists K ∈ Kn with

h1−pK dSK = dµ?

(Chen, Chou, Guan, Hu, Hug, Jiang, Lin, Lutwak, Ma, Oliker,Shen, Stancu, Umanskiy, Wang, Yang, Zhang,... )

Even case (p 6= n): Lutwak ’93

p > n: Chou & Wang ’06, Guan & Lin

Polytopal case for p > 1: Chou & Wang ’06

different approach by Hug, Lutwak, Yang & Zhang

The even Orlicz Minkowski problem

Page 9: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The Lp-Minkowski problem

The Lp-Minkowski problem

What are necessary and sufficient conditions on µ ∈M(Sn−1)such that there exists K ∈ Kn with

h1−pK dSK = dµ?

(Chen, Chou, Guan, Hu, Hug, Jiang, Lin, Lutwak, Ma, Oliker,Shen, Stancu, Umanskiy, Wang, Yang, Zhang,... )

Even case (p 6= n): Lutwak ’93

p > n: Chou & Wang ’06, Guan & Lin

Polytopal case for p > 1: Chou & Wang ’06

different approach by Hug, Lutwak, Yang & Zhang

The even Orlicz Minkowski problem

Page 10: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The sharp Lp Sobolev inequality (Aubin ’76, Talenti ’76)

For 1 < p < n‖f ‖ np

n−p≤ cn,p‖∇f ‖p.

The even Orlicz Minkowski problem

Page 11: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The sharp Lp Sobolev inequality (Aubin ’76, Talenti ’76)

For 1 < p < n‖f ‖ np

n−p≤ cn,p‖∇f ‖p.

The affine Lp Sobolev inequality (Lutwak, Yang, Zhang ’02)

For 1 < p < n‖f ‖ np

n−p≤ cn,p Ep(f ).

Ep(f )−n = dn,p

∫Sn−1

‖u · ∇f ‖−np du

The even Orlicz Minkowski problem

Page 12: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The sharp Lp Sobolev inequality (Aubin ’76, Talenti ’76)

For 1 < p < n‖f ‖ np

n−p≤ cn,p‖∇f ‖p.

The affine Lp Sobolev inequality (Lutwak, Yang, Zhang ’02)

For 1 < p < n‖f ‖ np

n−p≤ cn,p Ep(f ).

The affine inequality is stronger than the classical one

Ep(f ) ≤ ‖∇f ‖p.

The even Orlicz Minkowski problem

Page 13: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The sharp Lp Sobolev inequality (Aubin ’76, Talenti ’76)

For 1 < p < n‖f ‖ np

n−p≤ cn,p‖∇f ‖p.

The affine Lp Sobolev inequality (Lutwak, Yang, Zhang ’02)

For 1 < p < n‖f ‖ np

n−p≤ cn,p Ep(f ).

H., Schuster ’09: Further strengthening of the affine LpSobolev inequality

The even Orlicz Minkowski problem

Page 14: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The sharp Lp Sobolev inequality (Aubin ’76, Talenti ’76)

For 1 < p < n‖f ‖ np

n−p≤ cn,p‖∇f ‖p.

The affine Lp Sobolev inequality (Lutwak, Yang, Zhang ’02)

For 1 < p < n‖f ‖ np

n−p≤ cn,p Ep(f ).

H., Schuster ’09: Further strengthening of the affine LpSobolev inequality

Affine inequalities for p ≥ n (Cianchi, Lutwak, Yang,Zhang, H., Schuster, Xiao, Bastero, Romance, Alonso,...)

The even Orlicz Minkowski problem

Page 15: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The geometry behind Ep(f ):

Let µt be the even measure∫Sn−1

g(v) dµt(v) =

∫{|f |=t}

g

(∇f (x)

|∇f (x)|

)|∇f (x)|p−1 dHn−1(x)

for every g ∈ Ce(Sn−1). Then dµt = h1−pK dSK and

‖u · ∇f ‖pp =

∫Rn

|u · ∇f (x)|p dx

=

∫ ∞0

∫{|f |=t}

|u · ∇f (x)|p

|∇f (x)|dHn−1(x) dt

=

∫ ∞0

∫Sn−1

|u · v |ph1−pKt

(v)dSK (v) dt

=

∫ ∞0

h(ΠpKt , v)p dt

The even Orlicz Minkowski problem

Page 16: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The geometry behind Ep(f ): Let µt be the even measure∫Sn−1

g(v) dµt(v) =

∫{|f |=t}

g

(∇f (x)

|∇f (x)|

)|∇f (x)|p−1 dHn−1(x)

for every g ∈ Ce(Sn−1).

Then dµt = h1−pK dSK and

‖u · ∇f ‖pp =

∫Rn

|u · ∇f (x)|p dx

=

∫ ∞0

∫{|f |=t}

|u · ∇f (x)|p

|∇f (x)|dHn−1(x) dt

=

∫ ∞0

∫Sn−1

|u · v |ph1−pKt

(v)dSK (v) dt

=

∫ ∞0

h(ΠpKt , v)p dt

The even Orlicz Minkowski problem

Page 17: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The geometry behind Ep(f ): Let µt be the even measure∫Sn−1

g(v) dµt(v) =

∫{|f |=t}

g

(∇f (x)

|∇f (x)|

)|∇f (x)|p−1 dHn−1(x)

for every g ∈ Ce(Sn−1). Then dµt = h1−pK dSK and

‖u · ∇f ‖pp =

∫Rn

|u · ∇f (x)|p dx

=

∫ ∞0

∫{|f |=t}

|u · ∇f (x)|p

|∇f (x)|dHn−1(x) dt

=

∫ ∞0

∫Sn−1

|u · v |ph1−pKt

(v)dSK (v) dt

=

∫ ∞0

h(ΠpKt , v)p dt

The even Orlicz Minkowski problem

Page 18: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The geometry behind Ep(f ): Let µt be the even measure∫Sn−1

g(v) dµt(v) =

∫{|f |=t}

g

(∇f (x)

|∇f (x)|

)|∇f (x)|p−1 dHn−1(x)

for every g ∈ Ce(Sn−1). Then dµt = h1−pK dSK and

‖u · ∇f ‖pp =

∫Rn

|u · ∇f (x)|p dx

=

∫ ∞0

∫{|f |=t}

|u · ∇f (x)|p

|∇f (x)|dHn−1(x) dt

=

∫ ∞0

∫Sn−1

|u · v |ph1−pKt

(v)dSK (v) dt

=

∫ ∞0

h(ΠpKt , v)p dt

The even Orlicz Minkowski problem

Page 19: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The geometry behind Ep(f ): Let µt be the even measure∫Sn−1

g(v) dµt(v) =

∫{|f |=t}

g

(∇f (x)

|∇f (x)|

)|∇f (x)|p−1 dHn−1(x)

for every g ∈ Ce(Sn−1). Then dµt = h1−pK dSK and

‖u · ∇f ‖pp =

∫Rn

|u · ∇f (x)|p dx

=

∫ ∞0

∫{|f |=t}

|u · ∇f (x)|p

|∇f (x)|dHn−1(x) dt

=

∫ ∞0

∫Sn−1

|u · v |ph1−pKt

(v)dSK (v) dt

=

∫ ∞0

h(ΠpKt , v)p dt

The even Orlicz Minkowski problem

Page 20: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The geometry behind Ep(f ): Let µt be the even measure∫Sn−1

g(v) dµt(v) =

∫{|f |=t}

g

(∇f (x)

|∇f (x)|

)|∇f (x)|p−1 dHn−1(x)

for every g ∈ Ce(Sn−1). Then dµt = h1−pK dSK and

‖u · ∇f ‖pp =

∫Rn

|u · ∇f (x)|p dx

=

∫ ∞0

∫{|f |=t}

|u · ∇f (x)|p

|∇f (x)|dHn−1(x) dt

=

∫ ∞0

∫Sn−1

|u · v |ph1−pKt

(v)dSK (v) dt

=

∫ ∞0

h(ΠpKt , v)p dt

The even Orlicz Minkowski problem

Page 21: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

An application of the even Lp-Minkowski problem

The geometry behind Ep(f ): Let µt be the even measure∫Sn−1

g(v) dµt(v) =

∫{|f |=t}

g

(∇f (x)

|∇f (x)|

)|∇f (x)|p−1 dHn−1(x)

for every g ∈ Ce(Sn−1). Then dµt = h1−pK dSK and

‖u · ∇f ‖pp =

∫Rn

|u · ∇f (x)|p dx

=

∫ ∞0

∫{|f |=t}

|u · ∇f (x)|p

|∇f (x)|dHn−1(x) dt

=

∫ ∞0

∫Sn−1

|u · v |ph1−pKt

(v)dSK (v) dt

=

∫ ∞0

h(ΠpKt , v)p dt

The even Orlicz Minkowski problem

Page 22: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Towards an Orlicz Brunn-Minkowski theory

The basis of the Lp Brunn-Minkowski theory is the addition

hpK+pL= hpK + hpL, p ≥ 1

(Firey ’62)

which is based on t 7→ tp.

The even Orlicz Minkowski problem

Page 23: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Towards an Orlicz Brunn-Minkowski theory

The basis of the Lp Brunn-Minkowski theory is the addition

hpK+pL= hpK + hpL, p ≥ 1

(Firey ’62) which is based on t 7→ tp.

The even Orlicz Minkowski problem

Page 24: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Towards an Orlicz Brunn-Minkowski theory

The basis of the Lp Brunn-Minkowski theory is the addition

hpK+pL= hpK + hpL, p ≥ 1

(Firey ’62) which is based on t 7→ tp.

Orlicz Brunn-Minkowski theory

Is there a theory of convex bodies based on general convexfunctions φ?

The even Orlicz Minkowski problem

Page 25: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Towards an Orlicz Brunn-Minkowski theory

The basis of the Lp Brunn-Minkowski theory is the addition

hpK+pL= hpK + hpL, p ≥ 1

(Firey ’62) which is based on t 7→ tp.

Orlicz Brunn-Minkowski theory

Is there a theory of convex bodies based on general convexfunctions φ?

Uncovered elements of an Orlicz Brunn-Minkowski theory

Lutwak, Yang, Zhang ’10: Orlicz projection and centroidbodies

Ludwig, Reitzner ’10: Orlicz affine surface areas

The even Orlicz Minkowski problem

Page 26: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The even Orlicz Minkowski problem

Suppose ϕ : R+ → R+ is continuous and µ ∈Me(Sn−1) isnot concentrated on a great subsphere of Sn−1.

Does thereexist an origin symmetric convex body K such that

cϕ(hK ) dSK = dµ

for some positive number c?

The even Orlicz Minkowski problem

Page 27: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The even Orlicz Minkowski problem

Suppose ϕ : R+ → R+ is continuous and µ ∈Me(Sn−1) isnot concentrated on a great subsphere of Sn−1. Does thereexist an origin symmetric convex body K such that

cϕ(hK ) dSK = dµ

for some positive number c?

Chou & Wang ’06: Smooth setting

The even Orlicz Minkowski problem

Page 28: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The even Orlicz Minkowski problem

Suppose ϕ : R+ → R+ is continuous and µ ∈Me(Sn−1) isnot concentrated on a great subsphere of Sn−1. Does thereexist an origin symmetric convex body K such that

cϕ(hK ) dSK = dµ

for some positive number c?

Theorem (H., Lutwak, Yang, Zhang ’10)

If ϕ is decreasing, then there exists an origin symmetricconvex body K such that

cϕ(hK ) dSK = dµ

where c = V (K )1

2n−1

The even Orlicz Minkowski problem

Page 29: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The even Orlicz Minkowski problem

Suppose ϕ : R+ → R+ is continuous and µ ∈Me(Sn−1) isnot concentrated on a great subsphere of Sn−1. Does thereexist an origin symmetric convex body K such that

cϕ(hK ) dSK = dµ

for some positive number c?

Theorem (H., Lutwak, Yang, Zhang ’10)

If ϕ is decreasing, then there exists an origin symmetricconvex body K such that

cϕ(hK ) dSK = dµ

where c = V (K )1

2n−1

ϕ ≡ 1: Solution to classical even Minkowski problem.

The even Orlicz Minkowski problem

Page 30: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

φ(t) :=

∫ t

0

1

ϕ(s)ds.

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

V (f ) := V (⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ f (u)})

Goal

Find a function where Φ attains maximum.

The even Orlicz Minkowski problem

Page 31: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

φ(t) :=

∫ t

0

1

ϕ(s)ds.

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

V (f ) := V (⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ f (u)})

Goal

Find a function where Φ attains maximum.

The even Orlicz Minkowski problem

Page 32: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

φ(t) :=

∫ t

0

1

ϕ(s)ds.

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

V (f ) := V (⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ f (u)})

Goal

Find a function where Φ attains maximum.

The even Orlicz Minkowski problem

Page 33: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

φ(t) :=

∫ t

0

1

ϕ(s)ds.

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

V (f ) := V (⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ f (u)})

Goal

Find a function where Φ attains maximum.

The even Orlicz Minkowski problem

Page 34: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

The search can be restricted to support functions of originsymmetric convex bodies: The Aleksandrov body K ofh ∈ C+

e (Sn−1) is origin symmetric with

0 < hK ≤ h.

φ increasing, V (h) = V (hK ) =⇒ Φ(h) ≤ Φ(hK ).

The even Orlicz Minkowski problem

Page 35: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

The search can be restricted to support functions of originsymmetric convex bodies:

The Aleksandrov body K ofh ∈ C+

e (Sn−1) is origin symmetric with

0 < hK ≤ h.

φ increasing, V (h) = V (hK ) =⇒ Φ(h) ≤ Φ(hK ).

The even Orlicz Minkowski problem

Page 36: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

The search can be restricted to support functions of originsymmetric convex bodies: The Aleksandrov body K ofh ∈ C+

e (Sn−1) is origin symmetric with

0 < hK ≤ h.

φ increasing, V (h) = V (hK ) =⇒ Φ(h) ≤ Φ(hK ).

The even Orlicz Minkowski problem

Page 37: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

The search can be restricted to support functions of originsymmetric convex bodies: The Aleksandrov body K ofh ∈ C+

e (Sn−1) is origin symmetric with

0 < hK ≤ h.

φ increasing, V (h) = V (hK ) =⇒ Φ(h) ≤ Φ(hK ).

The even Orlicz Minkowski problem

Page 38: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

The search can be restricted to support functions of originsymmetric convex bodies contained in some ball of fixedradius: Choose vK ∈ Sn−1 such that for rK > 0 the pointrKvK ∈ K has maximal distance from the origin.∫

Sn−1

φ(hK ) dµ ≥∫Sn−1

φ(rKh[−v̄K ,v̄K ]) dµ

≥ |µ|φ(

1

|µ|

∫Sn−1

rKh[−v̄K ,v̄K ] dµ

)≥ |µ|φ(crK ).

The even Orlicz Minkowski problem

Page 39: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

The search can be restricted to support functions of originsymmetric convex bodies contained in some ball of fixedradius:

Choose vK ∈ Sn−1 such that for rK > 0 the pointrKvK ∈ K has maximal distance from the origin.∫

Sn−1

φ(hK ) dµ ≥∫Sn−1

φ(rKh[−v̄K ,v̄K ]) dµ

≥ |µ|φ(

1

|µ|

∫Sn−1

rKh[−v̄K ,v̄K ] dµ

)≥ |µ|φ(crK ).

The even Orlicz Minkowski problem

Page 40: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

The search can be restricted to support functions of originsymmetric convex bodies contained in some ball of fixedradius: Choose vK ∈ Sn−1 such that for rK > 0 the pointrKvK ∈ K has maximal distance from the origin.

∫Sn−1

φ(hK ) dµ ≥∫Sn−1

φ(rKh[−v̄K ,v̄K ]) dµ

≥ |µ|φ(

1

|µ|

∫Sn−1

rKh[−v̄K ,v̄K ] dµ

)≥ |µ|φ(crK ).

The even Orlicz Minkowski problem

Page 41: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

The search can be restricted to support functions of originsymmetric convex bodies contained in some ball of fixedradius: Choose vK ∈ Sn−1 such that for rK > 0 the pointrKvK ∈ K has maximal distance from the origin.∫

Sn−1

φ(hK ) dµ ≥∫Sn−1

φ(rKh[−v̄K ,v̄K ]) dµ

≥ |µ|φ(

1

|µ|

∫Sn−1

rKh[−v̄K ,v̄K ] dµ

)≥ |µ|φ(crK ).

The even Orlicz Minkowski problem

Page 42: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

Φ(hK ) = 2nV (K )1

2n −∫Sn−1

φ(hK ) dµ

≤ 2nr1/2K V (B)

12n − |µ|φ(crK )

rK > r =⇒ Φ(hK ) < 0.

The even Orlicz Minkowski problem

Page 43: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

Crucial functional

Φ(f ) = 2nV (f )1

2n −∫Sn−1

φ ◦ f dµ, f ∈ C+e (Sn−1)

Φ(hK ) = 2nV (K )1

2n −∫Sn−1

φ(hK ) dµ

≤ 2nr1/2K V (B)

12n − |µ|φ(crK )

rK > r =⇒ Φ(hK ) < 0.

The even Orlicz Minkowski problem

Page 44: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

F = {K ∈ Kne : K ⊂ rB}.

limi→∞

Φ(hKi) = sup{Φ(hK ) : K ∈ F}.

Assume limi→∞ Ki = K0.

2nV (K0)1

2n = limi→∞

2nV (hKi)

12n ≥ lim

i→∞Φ(hKi

) > 0.

Hence K0 has non-empty interior and

Φ(f ) ≤ Φ(hK0).

The even Orlicz Minkowski problem

Page 45: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

F = {K ∈ Kne : K ⊂ rB}.

limi→∞

Φ(hKi) = sup{Φ(hK ) : K ∈ F}.

Assume limi→∞ Ki = K0.

2nV (K0)1

2n = limi→∞

2nV (hKi)

12n ≥ lim

i→∞Φ(hKi

) > 0.

Hence K0 has non-empty interior and

Φ(f ) ≤ Φ(hK0).

The even Orlicz Minkowski problem

Page 46: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

F = {K ∈ Kne : K ⊂ rB}.

limi→∞

Φ(hKi) = sup{Φ(hK ) : K ∈ F}.

Assume limi→∞ Ki = K0.

2nV (K0)1

2n = limi→∞

2nV (hKi)

12n ≥ lim

i→∞Φ(hKi

) > 0.

Hence K0 has non-empty interior and

Φ(f ) ≤ Φ(hK0).

The even Orlicz Minkowski problem

Page 47: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

F = {K ∈ Kne : K ⊂ rB}.

limi→∞

Φ(hKi) = sup{Φ(hK ) : K ∈ F}.

Assume limi→∞ Ki = K0.

2nV (K0)1

2n = limi→∞

2nV (hKi)

12n ≥ lim

i→∞Φ(hKi

) > 0.

Hence K0 has non-empty interior and

Φ(f ) ≤ Φ(hK0).

The even Orlicz Minkowski problem

Page 48: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

F = {K ∈ Kne : K ⊂ rB}.

limi→∞

Φ(hKi) = sup{Φ(hK ) : K ∈ F}.

Assume limi→∞ Ki = K0.

2nV (K0)1

2n = limi→∞

2nV (hKi)

12n ≥ lim

i→∞Φ(hKi

) > 0.

Hence K0 has non-empty interior and

Φ(f ) ≤ Φ(hK0).

The even Orlicz Minkowski problem

Page 49: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

ht(u) := h(t, u) = hK0(u) + tf (u).

d

dt(Φ ◦ ht)

∣∣∣∣t=0

= 0.

d

dt2nV (ht)

12n

∣∣∣∣t=0

= V (K0)1

2n−1

∫Sn−1

f dSK0 ,

d

dt

∫Sn−1

φ ◦ ht dµ∣∣∣∣t=0

=

∫Sn−1

1

ϕ ◦ hK0

f dµ.

V (K0)1

2n−1ϕ(hK0) dSK0 = dµ.

The even Orlicz Minkowski problem

Page 50: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

ht(u) := h(t, u) = hK0(u) + tf (u).

d

dt(Φ ◦ ht)

∣∣∣∣t=0

= 0.

d

dt2nV (ht)

12n

∣∣∣∣t=0

= V (K0)1

2n−1

∫Sn−1

f dSK0 ,

d

dt

∫Sn−1

φ ◦ ht dµ∣∣∣∣t=0

=

∫Sn−1

1

ϕ ◦ hK0

f dµ.

V (K0)1

2n−1ϕ(hK0) dSK0 = dµ.

The even Orlicz Minkowski problem

Page 51: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

ht(u) := h(t, u) = hK0(u) + tf (u).

d

dt(Φ ◦ ht)

∣∣∣∣t=0

= 0.

d

dt2nV (ht)

12n

∣∣∣∣t=0

= V (K0)1

2n−1

∫Sn−1

f dSK0 ,

d

dt

∫Sn−1

φ ◦ ht dµ∣∣∣∣t=0

=

∫Sn−1

1

ϕ ◦ hK0

f dµ.

V (K0)1

2n−1ϕ(hK0) dSK0 = dµ.

The even Orlicz Minkowski problem

Page 52: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

ht(u) := h(t, u) = hK0(u) + tf (u).

d

dt(Φ ◦ ht)

∣∣∣∣t=0

= 0.

d

dt2nV (ht)

12n

∣∣∣∣t=0

= V (K0)1

2n−1

∫Sn−1

f dSK0 ,

d

dt

∫Sn−1

φ ◦ ht dµ∣∣∣∣t=0

=

∫Sn−1

1

ϕ ◦ hK0

f dµ.

V (K0)1

2n−1ϕ(hK0) dSK0 = dµ.

The even Orlicz Minkowski problem

Page 53: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

Sketch of the proof

ht(u) := h(t, u) = hK0(u) + tf (u).

d

dt(Φ ◦ ht)

∣∣∣∣t=0

= 0.

d

dt2nV (ht)

12n

∣∣∣∣t=0

= V (K0)1

2n−1

∫Sn−1

f dSK0 ,

d

dt

∫Sn−1

φ ◦ ht dµ∣∣∣∣t=0

=

∫Sn−1

1

ϕ ◦ hK0

f dµ.

V (K0)1

2n−1ϕ(hK0) dSK0 = dµ.

The even Orlicz Minkowski problem

Page 54: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The even Orlicz Minkowski problem

Theorem (H., Lutwak, Yang, Zhang ’10)

If φ(t) =∫ t

0 1/ϕ(s) ds exists and is unbounded for t →∞, thenthere exists an origin symmetric convex body K and c > 0 suchthat

cϕ(hK ) dSK = dµ

and ‖hK‖φ = 1.

‖hK‖φ = inf

{λ > 0 :

1

|µ|

∫Sn−1

φ

(hKλ

)dµ ≤ φ(1)

}.

ϕ(t) = t1−p: Solution of even Lp-Minkowski problem for0 < p 6= n

The even Orlicz Minkowski problem

Page 55: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The even Orlicz Minkowski problem

Theorem (H., Lutwak, Yang, Zhang ’10)

If φ(t) =∫ t

0 1/ϕ(s) ds exists and is unbounded for t →∞, thenthere exists an origin symmetric convex body K and c > 0 suchthat

cϕ(hK ) dSK = dµ

and ‖hK‖φ = 1.

‖hK‖φ = inf

{λ > 0 :

1

|µ|

∫Sn−1

φ

(hKλ

)dµ ≤ φ(1)

}.

ϕ(t) = t1−p: Solution of even Lp-Minkowski problem for0 < p 6= n

The even Orlicz Minkowski problem

Page 56: Christoph Haberl - web.math.unifi.itweb.math.unifi.it/cortona2011/talks/haberl.pdf · ud (u) = o and (s) < (Sn 1) for each great subsphere s of Sn 1, then = S K: The even Orlicz Minkowski

The even Orlicz Minkowski problem

Theorem (H., Lutwak, Yang, Zhang ’10)

If φ(t) =∫ t

0 1/ϕ(s) ds exists and is unbounded for t →∞, thenthere exists an origin symmetric convex body K and c > 0 suchthat

cϕ(hK ) dSK = dµ

and ‖hK‖φ = 1.

‖hK‖φ = inf

{λ > 0 :

1

|µ|

∫Sn−1

φ

(hKλ

)dµ ≤ φ(1)

}.

ϕ(t) = t1−p: Solution of even Lp-Minkowski problem for0 < p 6= n

The even Orlicz Minkowski problem